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1. Introduction

The goal of the topological optimization problem is to find an optimal design with an a priori
poor information on the optimal shape of the structure. The shape optimization problem
consists in minimizing a functional j(Ω) = J(Ω, uΩ) where the function uΩ is defined, for
example, on a variable open and bounded subset Ω of R

N. For ε > 0, let Ωε = Ω \ (x0 + εω)
be the set obtained by removing a small part x0 + εω from Ω, where x0 ∈ Ω and ω ⊂ R

N is
a fixed open and bounded subset containing the origin. Then, using general adjoint method,
an asymptotic expansion of the function will be obtained in the following form:

j(Ωε) = j(Ω) + f(ε)g(x0) + o
(
f(ε)

)
,

lim
ε→ 0

f(ε) = 0, f(ε) > 0.
(1.1)

The topological sensitivity g(x0) provides information when creating a small hole located at
x0. Hence, the function g will be used as descent direction in the optimization process.
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In this paper, we study essentially a topological optimization problem with a nonlinear
operator. There are many works in literature concerning topological optimization. However,
many of these authors study linear operators. We notice that Amstutz in [1] established some
results in topological optimization with a semilinear operator of the form −Δu + φ(u) = 0 in
a domain Ω with some hypothesis in φ.

In this paper, we will limit in the p-Laplacian operator and we reline the theoretical
result obtained with an application in image processing.

The paper is organized as follows: in Section 2, we recall image processing models and
the Mumford-Shah functional which are widely studied in literature. In Section 3, we present
the general adjoint method. Section 4 is devoted to the topological optimization problem
and the main result of the paper which is proved inSection 5. InSection 6, the topological
optimization algorithm and numerical applications in image processing are presented.

2. Formulation of the Problem

2.1. A Model of Image Processing

Many models and algorithms [2] have been proposed for the study of image processing.
In [3], Koenderink noticed that the convolution of signal with Gaussian noise at each

scale is equivalent to the solution of the heat equation with the signal as initial datum.
Denoting by u0 this datum, the “scale space” analysis associated with u0 consists in solving
the system

∂u(x, t)
∂t

= Δu(x, t)

u(x, 0) = u0(x)
in R

N. (2.1)

The solution of this equation with an initial datum is u(x, t) = Gt ∗ u0, where Gσ =
(1/4πσ) exp(−‖x‖2/4σ) is the Gauss function, and ‖x‖ the euclidian norm of x ∈ R

N.
In [4], Malik and Perona in their theory introduced a filter in (2.1) for the detection of

edges. They proposed to replace the heat equation by a nonlinear equation:

∂u

∂t
= div

(
f(|∇u|)∇u)

u(x, 0) = u0(x)
in R

N. (2.2)

In this equation, f is a smooth and nonincreasing function with f(0) = 1, f(s) ≥ 0, and f(s)
tending to zero at infinity. The idea is that the smoothing process obtained by the equation
should be conditional: if |∇u(x)| is large, then the diffusion will be low and, therefore, the
exact location of the edges will be kept. If |∇u(x)| is small, then the diffusion will tend to be
smooth still more around x. Notice that the new model reduces to the heat equation when
f(s) = 1.
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Nordström [5] introduced a new term in (2.2) which forces u(x, t) to remain close to
x. Because of the forcing term u − v, the new equation

∂u

∂t
− div

(
f(|∇u|)∇u) = v − u in Ω × (0, T]

∂u

∂ν
= 0 in ∂Ω × (0, T]

u(x, 0) = u0(x) in Ω × {t = 0}

(2.3)

has the advantage to have a nontrivial steady state, eliminating, therefore, the problem of
choosing a stoping time.

2.2. The Mumford-Shah Functional

One of the most widely studied mathematical models in image processing and computer
vision addresses both goals simultaneously, namely, Mumford and Shah [6] who presented
the variational problem of minimizing a functional involving a piecewise smooth repre-
sentation of an image. The Mumford-Shah model defines the segmentation problem as a
joint smoothing/edge detection problem: given an image v(x), one seeks simultaneously a
“piecewise smoothed image” u(x) with a setK of abrupt discontinuities, the edges of v. Then
the “best” segmentation of a given image is obtained by minimizing the functional

E(u,K) =
∫

Ω\K

(
α|∇u|2 + β(u − v)2

)
dx +HN−1(K), (2.4)

whereHN−1(K) is the (N − 1)-dimensional Hausdorff measure of Kand α and β are positive
constants .

The first term imposes that u is smooth outside the edges, the second that the piecewise
smooth image u(x) indeed approximates v(x), and the third that the discontinuity set K has
minimal length (and, therefore, in particular, it is as smooth as possible).

The existence of minimums of the Mumford-Shah has been proved in some sense, we
refer to [7]. However, we are not aware that the existence problem of the solution for this
problem is closed.

Before beginning the study of the topological optimization method, let us recall
additional information about the other techniques.

We say that an image can be viewed as a piecewise smooth function and edges can be
considered as a set of singularities.

We recall that a classical way to restore an image u from its noisy version v defined in
a domain included in R

2 is to solve the following PDE problem:

u − div(c∇u) = v in Ω,

∂u

∂ν
= 0 in ∂Ω,

(2.5)
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where c is a small positive constant. This method is well known to give poor results: it blurs
important structures like edges. In order to improve this method, nonlinear isotropic and
anisotropic methods were introduced, we can cite here the work of Malik and Perona, Catté
et al., and, more recently, Weickert and Aubert.

In topological gradient approach, c takes only two values: c0, for example, c0 = 1, in the
smooth part of the image and a small value ε on edges. For this reason, classical nonlinear
diffusive approaches, where c takes all the values of the interval [ε, c0], could be seen as
a relaxation of the topological optimization method. Many classification models have been
studied and tested on synthetic and real images in image processing literature, and results are
more or less comparative taking in to account the complexity of algorithms suggested and/or
the cost of operations defined. We can cite here some models enough used like the structural
approach by regions growth, the stochastic approaches, and the variational approaches which
are based on various strategies like level set formulations, the Mumford-Shah functional,
active contours and geodesic active contour methods, or wavelet transforms.

The segmentation problem consists in splitting an image into its constituent parts.
Many approaches have been studied. We can cite here some variational approaches such
as the use of the Mumford-Shah functional, or active contours and snakes. Our approach
consists in using the restoration algorithm in order to find the edges of the image, and we
will give a numerical result.

To end this section, let us sum up our aim about the numerical aspects.
Considering the Mumford Shah functional, our objective in the numerical point of

view is to apply topological gradient approach to images. We are going to show that it is
possible to solve these image processing problems using topological optimization tools for
the detection of edges (the topological gradient method is able to denoise an image and
preserve features such as edges). Then, the restoration becomes straightforward, and in most
applications, a satisfying approximation of the optimal solution is reached at the first iteration
or the second iteration of the optimization process.

We refer the reader, for additional details, to the work in [8–17].

3. General Adjoint Method

In this section, we give an adaptation of the adjoint method introduced in [18] to a nonlinear
problem. Let V be a Hilbert space and let

aε(u, v) = lε(v), v ∈ V, (3.1)

be a variational formulation associated to a partial differential equation. We suppose that
there exist forms δa(u, v), δl, and a function f(ε) > 0 which goes to zero when ε goes to zero.
Let uε (resp., u0) be the solution of (3.1) for ε > 0 (resp., for ε = 0).

We suppose that the following hypothesis hold:

(H-1) ‖uε − u0‖V = o(f(ε)),

(H-2) ‖aε − a0 − f(ε)δa‖V = O(f(ε)),

(H-3) ‖lε − l0 − f(ε)δl‖V = O(f(ε)).

Let j(ε) = Jε(uε) be the cost function. We suppose that for ε = 0, J0(u0) = J(u0) is
differentiable with respect to u0 and we denote by DJ(u0) the derivative of J at u0.
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(H-4) We suppose that there exists a function δJ such that

Jε(uε) − J0(u0) = DJ(u0)(uε − u0) + f(ε)δJ(u0) +O
(
f(ε)

)
. (3.2)

Under the aforementioned hypothesis, we have the following theorem.

Theorem 3.1. Let j(ε) = Jε(uε) be the cost function, then j has the following asymptotic expansion:

j(ε) − j(0) = (δa(u0, w0) + δJ(u0) − δl(w0))f(ε) + o
(
f(ε)

)
, (3.3)

where w0 is the unique solution of the adjoint problem: find w0 such that

a0
(
φ,w0

)
= −DJ(u0)φ, ∀φ ∈ V. (3.4)

The expression g(x0) = δa(u(x0), η(x0))+δJ(u(x0))−δl(η(x0)) is called the topological
gradient and will be used as descent direction in the optimization process.

The fundamental property of an adjoint technique is to provide the variation of a
function with respect to a parameter by using a solution uΩ and adjoint state vΩ which do
not depend on the chosen parameter. Numerically, it means that only two systems must be
solved to obtain the discrete approximation of g(x) for all x ∈ Ω.

Proof of Theorem 3.1. Let L(u, η) = a(u, η) + J(u) − l(η) be the Lagrangian of the system as
introduced by Lions, in [19] and applied by Cea in optimal design problems in [18]. We use
the fact that the variation of the Lagrangian is equal to the variation of the cost function:

j(ε) − j(0) = Lε
(
uε, η

) − L0
(
u0, η

)

=
(
aε
(
uε, η

) − lε
(
η
)) − (a0

(
u0, η

) − l0
(
η
))

+ (Jε(uε) − J(u0))

= aε(uε, η) − a0(u, η)︸ ︷︷ ︸
(i)

− lε(η) + l0(η)︸ ︷︷ ︸
(ii)

+ Jε(uε) − J(u0)︸ ︷︷ ︸
(iii)

.
(3.5)

It follows from hypothesis (H-2) that (i) is equal to

aε
(
uε, η

) − a0
(
u0, η

)
= f(ε)δa

(
u0, η

)
+O

(
f(ε)

)
, (3.6)

(H-3) implies that (ii) is equal to

lε
(
η
) − l0

(
η
)
= f(ε)δl

(
η
)
+O

(
f(ε)

)
, (3.7)

and (H-4) gives an equivalent expression of (iii)

Jε(uε) − J0(u0) = DJ(u0)(uε − u0) + f(ε)δJ(u0) +O
(
f(ε)

)
. (3.8)
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Further (3.5) becomes

j(ε) − j(0) = f(ε)[δa(u0, η
)
+ δJ(u0) − δl

(
η
)]

+DJ(u0)(uε − u0) +O
(
f(ε)

)
. (3.9)

Let η0 be the solution of the adjoint problem: find η0 ∈ V such that

a0
(
φ, η0

)
= −DJ(u0)φ, ∀φ ∈ V. (3.10)

It follows from the hypothesis (H-1)–(H-4) that

j(ε) = j(0) + f(ε)g(x0) +O
(
f(ε)

)
, ∀x0 ∈ Ω, (3.11)

which finishes the proof of the theorem.

4. Position of the Problem and Topological Sensitivity

Initial domain Perturbed domain

For ε > 0, let Ωε = Ω \ωε, where ωε = x0 + εω0, x0 ∈ Ω, and ω0 ⊂ R
N is a reference domain.

The topological optimization problem consists of determining the asymptotic
expansion of the N-dimensional part of the Mumford-Shah energy, and applying it to image
processing. For v ∈ L2(Ω), let us consider the functional

JΩε(uε) = α
∫

Ωε

|∇uε|2dx + β
∫

Ωε

(uε − v)2dx, (4.1)

where uε is the solution of the stationary model of (2.3) with f(s) = |s|p−2, p > 1, that is, uε
satisfies

uε − div
(
|∇uε|p−2∇uε

)
= v in Ωε,

∂uε
∂ν

= 0 on ∂Ωε \ ∂ωε,

uε = 0 on ∂ωε,

(4.2)
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α, β are positive constants and for ε = 0, u0 = u is the solution of

u − div
(
|∇u|p−2∇u

)
= v in Ω,

∂u

∂ν
= 0 on ∂Ω ∈ L2(Ω).

∈ L2(Ω) (4.3)

Before going on, let us underline that interesting works were done by Auroux and Masmoudi
[10], Auroux et al. [12], and Auroux [11] by considering the Laplace operator, that is, (p = 2)
and the first term of the Mumford Shah functional, that is,

JΩ(u) =
∫

Ω
|∇u|2d, (4.4)

as criteria to be optimized.
Contrarily to the Dirichlet case, we do not get a natural prolongment for the Neumann

condition to the boundary ∂Ω. For this reason, all the domains which will be used are
supposed to satisfy the following uniform extension property (P). Let D be an open subset
of R

N :

(P)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(i) ∀ω ⊂ D, there exist a continuous and linear operator

of prolongment Pω : W1,p(ω) −→W1,p(D) and apositive constant

cω such that ‖Pω(u)‖W1,p(D) ≤ cω ‖u‖W1,p(ω),

(ii) there exists aconstant M > 0 such that ∀ω ⊂ D, ‖Pω‖ ≤M.

(4.5)

Lemma 4.1. Let v ∈ L2(Ω) problem (4.3) (resp., (4.2)) has a unique solution. Moreover, one has

‖uε − u0‖V = O
(
f(ε)

)
, (4.6)

where

‖u‖V = ‖u‖L2(Ω) + ‖∇u‖Lp(Ω) =
(∫

Ω
|u|2dx

)1/2

+
(∫

Ω
|∇u|pdx

)1/p
. (4.7)

In order to prove the lemma, we need the following result which in [20, Theorem 2.1].
Let Ω be a bounded open domain of R

N (no smoothness is assumed on ∂Ω) and p, p′ be real
numbers such that

1 < p, p′ < +∞, 1
p
+

1
p′

= 1. (4.8)

Consider the operator A defined on W1,p(Ω) by

A(u) = −div(a(x, u(x),∇u(x))), (4.9)
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where a : Ω × R × R
N → R is a Caratheodory function satisfying the classical Laray-Lions

hypothesis in the sense of [20], described in what follows:

|a(x, s, ζ)| ≤ c(x) + k1|s|p−1 + k2|ζ|p−1, (4.10)

[a(x, s, ζ) − a(x, s, ζ∗)](ζ − ζ∗) > 0 , (4.11)

a(x, s, ζ)ζ

|ζ| + |ζ|p−1
−→ +∞
|ζ|→+∞ , (4.12)

almost every x ∈ Ω, for all s ∈ R, ζ, ζ∗ ∈ R
N, ζ /= ζ∗.

Consider the nonlinear elliptic equation

−div(a(x, un,∇un)) = fn + gn in D′(Ω). (4.13)

We assume that

un converges to u on W1,p(Ω) weakly and strongly in L
p

loc(Ω), (4.14)

fn −→ f strongly in W−1,p′(Ω), and almost everywhere in Ω. (4.15)

The hypotheses (4.13)–(4.15) imply that gn ∈ W−1,p′(Ω) and is bounded on this set. We
suppose either gn is bounded inMb(Ω) (space on Radon measures ), that is,

∣∣〈gn, ϕ〉
∣∣ ≤ cK

∥∥ϕ
∥∥
L∞(K), ∀ϕ ∈ D(K), with supp

(
ϕ
) ⊂ K, (4.16)

cK is a constant which depends only on the compact K.

Theorem 4.2. If the hypotheses (4.10)–(4.15) are satisfied, then

∇un −→ ∇u strongly in
(
Lmloc(Ω)

)N
, ∀m < p, (4.17)

where u is the solution of

−div(a(x, u,∇u)) = f + g in D′(Ω). (4.18)

For the proof of the theorem, we refer to [20].

Remark 4.3. Such assumptions are satisfied if a(x, s, ζ) = |ζ|p−2ζ, that is, the operator with
which we work on in this paper see [20, Remark 2.2].
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Proof of Lemma 4.1. We prove at first that (4.3) has a unique solution. The approach is classic:
the variational approach.

Let

V =
{
u ∈ L2(Ω),∇u ∈ (Lp(Ω))N, and u satisfying the property P

}
, (4.19)

I[u] =
1
2

∫

Ω
u2dx +

1
p

∫

Ω
|∇u|pdx −

∫

Ω
u · vdx. (4.20)

If there exists u ∈ V such that I[u] = minη∈VI[η], then u satisfies an optimality condition
which is the Euler-Lagrange equation I ′[u] = 0. Let h ∈ D(Ω), t ∈ R,

I[u + th] =
1
2

∫

Ω
(u + th)2dx +

1
p

∫

Ω
|∇(u + th)|pdx −

∫

Ω
v(u + th)dx

=
1
2

∫

Ω
(u + th)2dx +

1
p

∫

Ω

(
|∇(u + th)|2

)p/2
dx −

∫

Ω
v(u + th)dx

=
1
2

∫

Ω
(u + th)2dx +

1
p

∫

Ω

(
|∇u|2 + 2t∇u∇h + t2|∇h|2

)p/2
dx

−
∫

Ω
v(u + th)dx.

(4.21)

Using Taylor expansion, it follows that

∫

Ω

[
|∇u|p + t∇h∇u|∇u|p−2 − uv − thv

]
dx + o(t),

〈
I ′[u], h

〉
= lim

t→ 0

I[u + th] − I[u]
t

= 0⇐⇒
〈
u − div

(
|∇u|p−2∇u

)
− v, h

〉
= 0, ∀h ∈ D(Ω).

(4.22)

Since h ∈ D(Ω), we have u − div(|∇w|p−2∇u) = v in D′(Ω).
Now, let u ∈ W1,p(Ω) be a weak solution of (4.3), then the variational formulation

gives

∫

Ω

(
uϕ +

(
|∇u|p−2∇u

))
∇ϕ −

∫

Γ
|∇u|p−2 ∂u

∂ν
=
∫

Ω
vϕ. (4.23)

Let us introduce C1
c(Ω) be the set of functions C1-regular in Ω and with compact support in

Ω. Choosing ϕ ∈ C1
c(Ω), it follows that

u − div
(
|∇u|p−2∇u

)
= v in D′Ω. (4.24)
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We come back to (4.3) with ϕ ∈ C1(Ω), and we obtain

∫

∂Ω
|∇u|p−2 ∂u

∂ν
ϕ = 0, (4.25)

as u is not constant almost everywhere, we obtain

∂u

∂ν
= 0 on ∂Ω. (4.26)

Consequently (4.3) admits a unique solution which is obtained by minimizing the functional
(4.20). For achieving this part of the proof, it suffices to prove that the problem: find u ∈ V
such that

I[u] = min
η∈V

I
[
η
]

(4.27)

admits a unique solution, where I[·] is defined by (4.20).
In fact, I[w] is a strict convex functional and the set V is convex. To achieve our aim,

we prove that I[·] is bounded from what follows: let α = infη∈VI[η], then α > −∞.
We have

I
[
η
] ≥ 1

2

∫

Ω
η2dx −

∫

Ω
η · vdx ≥ 1

2
∥∥η

∥∥2
L2(Ω) − ‖v‖L2(Ω)

∥∥η
∥∥
L2(Ω)

≥ E
(∥∥∥

v

2

∥∥∥
L2(Ω)

)
> −∞,

(4.28)

where E(X) = X2 − ‖v‖L2(Ω)X.
This proves that I[·] has a unique minimum and this minimum is the solution of (4.3).
We use the same arguments to prove that (4.2) admits a unique solution and the

solution is obtained by minimizing the functional (4.1) in the set

Vε =
{
u ∈ L2(Ω), ∇u ∈ (Lp(Ω))N, u satisfies P, u = 0 on ∂ωε

}
. (4.29)

To end the proof, we have to prove that ||uε − u0||V → 0
ε→ 0

.

On the one hand, we suppose for simplicity that ωε = B(x0, ε). The proof will remain
true if ωε is regular enough, for example, ∂ωε has a Lipschitz regularity with a uniform
Lipschitz’s constant. Let ε = 1/n, here and in the following, we set un = uε = u(Ωn). That
is, un is the solution of

un − div
(
|∇un|p−2∇un

)
= v in Ωn,

∂un
∂ν

= 0 on ∂Ω = ∂Ωn \ ∂B
(
x0,

1
n

)
,

un = 0 on ∂B

(
x0,

1
n

)
.

(4.30)
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Let ũn be the extension of uε in B(x0, 1/n), that is,

ũn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

un(x), if x ∈ Ωn,

0, if x ∈ B
(
x0,

1
n

)
.

(4.31)

The variational form of the problem is

∫

Ω
ũ2
ndx +

∫

Ω
|∇ũn|pdx =

∫

Ω
ũnvdx. (4.32)

Since

|∇ũn|p ≥ 0, we get
∫

Ω
|∇ũn|pdx ≥ 0. (4.33)

This implies that

∫

Ω
|ũn|2dx ≤

∫

Ω
|ũnv|dx. (4.34)

By Cauchy-Schwarz inequality, we have

‖ũn‖2
L2(Ω) ≤ ‖ũn‖L2(Ω)‖v‖L2(Ω), (4.35)

and then

‖ũn‖L2(Ω) ≤ ‖v‖L2(Ω) ≤ c1. (4.36)

By the same arguments, and estimation (4.36), we prove that

‖∇ũn‖Lp(Ω) ≤ ‖v‖L2(Ω) ≤ c2. (4.37)

Since Ω is bounded, ‖ũn‖L2(Ω) and ‖∇ũn‖Lp(Ω) are bounded, and thus there exist u∗ ∈ L2(Ω)
and T ∈ (Lp(Ω))N such that

ũn ⇀
σ(L2,L2)

u∗, ∇ũn ⇀
σ(Lp,Lp′ )

T, (4.38)

we can prove now that T = ∇u∗ almost everywhere in Ω:

∂ũn
∂xi

⇀
σ(Lp,Lp′ )

Ti (i = 1, . . . ,N)

⇐⇒ ∀f ∈ Lp′(Ω),
〈
∂ũn
∂xi

, f

〉
−→ 〈

T, f
〉
,

(4.39)



12 Boundary Value Problems

D(Ω) ⊂ Lp′(Ω), thus for all ϕ ∈ D(Ω),

〈
Ti, ϕ

〉←−
〈
∂ũn
∂xi

, ϕ

〉
= −

〈
ũn,

∂ϕ

∂xi

〉
−→ −

〈
u∗,

∂ϕ

∂xi

〉
. (4.40)

Thus,

〈
T, ϕ

〉
= −

〈
u∗,

∂ϕ

∂xi

〉
, ∀ϕ ∈ D(Ω),

=⇒ Ti =
∂u∗

∂xi
in D′(Ω) =⇒ Ti =

∂u∗

∂xi
almost everywhere in Ω.

(4.41)

It follows from (4.38) that ũn ⇀
σ(L2,L2)

u∗ and ϕ ∈ D(Ω) thus ∂ϕ/∂xi ∈ D(Ω). This implies that

−
〈
ũn,

∂ϕ

∂xi

〉
−→ −

〈
u∗,

∂ϕ

∂xi

〉
=
〈
∂u∗

∂xi
, ϕ

〉
,

〈
∂u∗

∂xi
, ϕ

〉
=
〈
T, ϕ

〉
, ∀ϕ ∈ D(Ω) =⇒ Ti =

∂u∗

∂xi
almost everywhere.

(4.42)

Thus it follows from the Theorem 4.2 that u∗ = u, and ∇u = ∇u∗, and we deduce ||un −
u∗||V.

The main result is the following which gives the asymptotic expansion of the cost
function.

Theorem 4.4 (Theorem (main result)). Let j(ε) = Jε(uε) be the Mumford-Shah functional. Then
j has the following asymptotic expansion:

j(ε) − j(0) = f(ε)δj(u0, η0
)
+ o

(
f(ε)

)
, (4.43)

where δj(u0, η0) = δa(u0, η0) + δJ(u0)− δl(η0) and η0 is the unique solution of the so-called adjoint
problem: find η0 such that

a0
(
ψ, η0

)
= −DJ(u0)ψ ∀ψ ∈ V. (4.44)

5. Proof of the Main Result

A sufficient condition to prove the main result is to show at first that the hypothesis (H-1),
(H-2), (H-3), and (H-4) (cf. Section 3) are satisfied. Then we apply in the second step of the
proof the Theorem 3.1 to get the desired result.

The Lemma 4.1 gives the hypothesis ((H-3)).
The variational formulation associated to (3.1) is

∫

Ωε

uεφdx +
∫

Ωε

|∇uε|p−1∇uε∇φdx =
∫

Ωε

vφdx, ∀φ ∈ Vε. (5.1)
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We set

aε
(
uε, φ

)
=
∫

Ωε

uεφdx +
∫

Ωε

|∇uε|p−1∇uε∇φdx, ∀φ ∈ Vε,

lε
(
φ
)
=
∫

Ωε

vφdx, ∀φ ∈ Vε.
(5.2)

5.1. Variation of aε − a0

Proposition 5.1. The asymptotic expansion of aε is given by

aε
(
uε, η

) − a0
(
u, η

) − f(ε)δa(u, η) = O(f(ε)), (5.3)

where

f(ε)δa
(
u, η

)
= −

[∫

ωε

(
uη + |∇u|p−2∇u∇η

)
dx

]

, ∀η ∈ Vε. (5.4)

For the proof, we need the following result:

Theorem 5.2 (Theorem (Egoroff’s theorem)). Let μ be a measure on R
N and suppose fk : R

N →
R
m(k = 1, 2, . . .) are μ-measurable. Assume also A ⊂ R

N is μ-measurable, with μ(A) < ∞, and
fk → gμ a.e on A. Then for each ε > 0 there exists a μ-measurable set B ⊂ A such that

(i) μ(A − B) < ε,

(ii) fk → g uniformly on B.

For the proof of Egoroff’s theorem we refer to [21].

Proof of Proposition 5.1.

aε
(
uε, η

) − a0
(
u, η

)
=
∫

Ωε

uεηdx +
∫

Ωε

|∇uε|p−2∇uε∇ηdx

−
∫

Ω
uηdx −

∫

Ω
|∇u|p−2∇u∇ηdx

=
∫

Ωε

(uε − u)ηdx
︸ ︷︷ ︸

I

+
∫

Ωε

(|∇uε|p−2∇uε − |∇u|p−2∇u)∇ηdx
︸ ︷︷ ︸

II

−
∫

ωε

(
uη + |∇u|p−2∇u∇η

)
dx

(5.5)
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We have now to prove that I and II tend to zero with ε.
Estimation of I:

∣
∣
∣
∣
∣

∫

Ωε

(uε − u)ηdx
∣
∣
∣
∣
∣
≤
(∫

Ωε

η2dx

)1/2(∫

Ωε

|uε − u|2dx
)1/2

≤
(∫

Ω
η2dx

)1/2(∫

Ω
|uε − u|2dx

)1/2

because Ωε ⊂ Ω

= ‖uε − u‖L2(Ω)

∥
∥η

∥
∥
L2(Ω).

(5.6)

As ||uε − u||L2(Ω) ≤ ||uε − u||V = O(f(ε)) (cf. Lemma 4.1), it follows that
∫
Ωε
(uε − u)ηdx → 0

with f(ε).
Estimation of II:

∣∣∣∣∣

∫

Ωε

(
|∇uε|p−2∇uε − |∇u|p−2∇u

)
∇wdx

∣∣∣∣∣
≤
∫

Ω

∣∣∣
(
|∇uε|p−2∇uε − |∇u|p−2∇u

)
∇w

∣∣∣dx. (5.7)

Let ε = 1/n and gn = (|∇un|p−2∇un − |∇u|p−2∇u)∇w, then gn converges almost every where
to zero, by using Lemma 4.1. Writing

∫

Ω
gndx =

∫

A0

gndx +
∫

Ac
0

gndx ≤ lim
n→+∞

sup
x∈A0

∣∣gn
∣∣ +

∫

Ac
0=Ω\A0

gndx. (5.8)

if Ω \A0 is negligible, then
∫
Ω\A0

gndx = 0, and by using Egoroff’s theorem, we obtain that II
goes to zero.

Otherwise, we iterate the operation until k0, such that Ω \ (⋃k0
i=0 Ai) be a set of zero

measure. Then we get

∫

Ω
gndx =

∫

∪k0
i=0Ai

gndx +
∫

Ω\(∪k0
i=0Ai)

gndx. (5.9)

As Ω \ (⋃k0
i=0 Ai) is a set of zero measure, the second part of this equation is equal to zero,

and we conclude by using Egoroff’s theorem that
∫
Ωgndx goes to zero, because

⋃k0
i=0 Ai is

measurable. It follows that II goes to zero. We set now

f(ε)δa
(
u, η

)
= −

∫

ωε

(
uη + |∇u|p−1∇u∇η

)
dx (5.10)

and we obtain the desired estimation.
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5.2. Variation of the Linear Form

Proposition 5.3. The variation of the linear form lε is given by

lε
(
η
) − l0

(
η
) − f(ε)δl(η) = 0, (5.11)

where

f(ε)δl
(
u, η

)
= −

∫

ωε

vηdx, ∀η ∈ Vε. (5.12)

5.3. Variation of the Cost Function

In this section, we will prove that the cost function satisfies the necessary condition for
applying the Theorem 3.1 (hypothesis (H-4)).

Proposition 5.4. Let J0(u) be the Mumford-Shah functional

J(u) = α
∫

Ω
|∇u|2dx + β

∫

Ω
|u − v|2dx, (5.13)

J has the following asymptotic expansion:

Jε(uε) − J0(u0) = DJε(u0)(uε − u0) + f(ε)δJ(u0) + o
(
f(ε)

)
. (5.14)

Proof. It holds that

Jε(uε) − J(u0) =
∫

Ωε

α|∇uε|2dx +
∫

Ωε

β|uε − v|2dx

−
(∫

Ω
α|u0|2dx +

∫

Ω
β|u0 − v|2dx

)

=
∫

Ωε

α
(
|∇uε|2 − |∇u0|2

)
dx +

∫

Ωε

β
(
|uε − v|2 − |u0 − v|2

)
dx

−
(∫

ωε

α|∇u0|2dx +
∫

ωε

β|u0 − v|2dx
)

,

∫

Ωε

α
(
|∇uε|2 − |∇u0|2

)
dx =

∫

Ωε

α
(
|∇(uε − u0)|2

)
dx + 2α

∫

Ωε

∇u0 · ∇(uε − u0)dx.

(5.15)
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Due to the fact that uε = u0|Ωε , it suffices to evaluate the difference Jε − J0 in Dε where Dε =
B(x0, R) \ ωε, and ωε ⊂ B(x0, R) ⊂ Ω. Taking Lemma 4.1, we have ‖uε − u0‖V = o(f(ε)), one
only needs to prove that

∫

Dε

|∇(uε − u0)|2dx = o
(
f(ε)

)
,

∫

Dε

|∇(uε − u0)|2dx ≤
∫

B(x0,R)
|∇(uε − u0)|2dx

≤ (meas(B(x0, R))
(p−2)/p‖∇(uε − u0)‖2

Lp(Ω)

≤ (meas(B(x0, R))
(p−2)/p‖(uε − u0)‖2

V.

(5.16)

The same arguments as above yield

∫

Dε

β
(
|uε − v|2 − |u0 − v|2

)
dx =

∫

Dε

β|uε − u0|2dx +
∫

Dε

2β(v − u0)(uε − u0)dx, (5.17)

∫

Dε

β|uε − u0|2dx ≤
∫

Ω
β|uε − u0|2dx ≤ βmeas(Ω)‖uε − u0‖V. (5.18)

Lemma 4.1 proves that ‖uε − u0‖V = o(f(ε)), this implies that

∫

Dε

β|uε − u0|2dx = o
(
f(ε)

)
. (5.19)

Let us set

DJ(u0)η =
∫

Dε

2β(v − u0)ηdx + 2α
∫

Dε

∇u0 · ∇ηdx; ∀η ∈ Vε, (5.20)

then we obtain

Jε(uε) − J0(u0) = DJ(u0)(uε − u0) + f(ε)δJ(u0) + o
(
f(ε)

)
(5.21)

with

f(ε)δJ(u0) = −
[∫

ωε

α|∇u0|2dx +
∫

ωε

β|u0 − v|2dx
]

. (5.22)

Hence, the hypothesis ((H-1))–((H-4)) are satisfied, and it follows from the
Theorem 3.1 that

j(ε) = j(0) + f(ε)g(x0) + o
(
f(ε)

)
, (5.23)



Boundary Value Problems 17

50

100

150

200

250

300

350

100 200 300 400 500

Original image

(a)

50

100

150

200

250

300

350

100 200 300 400 500

Level sets of the image

(b)

50

100

150

200

250

300

350

100 200 300 400 500

Image with noise

(c)

50

100

150

200

250

300

350

100 200 300 400 500

First iteration

(d)

50

100

150

200

250

300

350

100 200 300 400 500

Second iteration

(e)

Figure 1: First example.

where

g(x0) = δa
(
u0, η0

)
+ δJ(u0) − δl

(
η0
)
, (5.24)

which finishes the proof of Theorem 4.2.

6. Numerical Results

Remark 6.1. In the particular case where p = 2 and ω = B(x0, 1), the problem becomes

min J(u), J(u) =
∫

Ω
α|∇u|2dx +

∫

Ω
|u − v|2dx, (6.1)
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Figure 2: Second example.

where u is the solution of

u −Δu = v in Ω,

∂u

∂ν
= 0 on ∂Ω.

(6.2)

The topological gradient is given by

g(x0) = −2π
(
α|∇u(x0)|2 + α∇u(x0) · ∇η(x0) + β|u(x0) − v(x0)|2

)
, (6.3)

where η is the solution of the adjoint problem

η −Δη = −DJ(u) in Ω,

∂η

∂ν
= 0 on ∂Ω.

(6.4)
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Figure 3: Third example.

6.1. Algorithm

(1) input: image with noise;

(2) compute u and w (direct state and adjoint state) by finite element method;

(3) compute the topological gradient g;

(4) drill a hole where g is “most” negative;

(5) define u = ε in the hole;

(6) if “stopping criteria” is not satisfied, goto 2 else stop.

6.2. Numerical Examples

In the numerical application, we set α = β = 1, and we add the noise in the image as follows:
let X an n×m random matrix, where elements are in [0, 10], and n×m is the dimension of the
matrix. The noisy image is obtained by adding X to the original image by adequate MATLAB
functions.
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