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We used what we called extended Fan’s sub-equation method and a new compound Riccati
equations rational expansion method to construct the exact travelling wave solutions of the
Davey-Stewartson (DS) equations. The basic idea of the proposed extended Fan’s subequation
method is to take fulls advantage of the general elliptic equations, involving five parameters,
which have many new solutions and whose degeneracies lead to special subequations involving
three parameters like Riccati equation, first-kind elliptic equation, auxiliary ordinary equation and
generalized Riccati equation. Many new exact solutions of the Davey-Stewartson (DS) equations
including more general soliton solutions, triangular solutions, and double-periodic solutions are
constructed by symbolic computation.

1. Introduction

The investigation of the exact travelling wave solutions for nonlinear partial differential
equations plays an important role in the study of nonlinear physical phenomena. These exact
solutions when they exist can help the physicists to well understand the mechanism of the
complicated physical phenomena and dynamically processes modeled by these NLPDEs. In
recent years, large amounts of effort have been directed towards finding exact solutions.
Many powerful method have been proposed, such as Darboux transformation [1], Hirota
bilinear method [2], Lie group method [3], homogeneous balance method [4], tanh method.
In this paper, we construct the exact travelling wave solutions for the Davey-Stewartson (DS)
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equations for the function g = gq(x, y,t) which are given by [5]

1
ige + 50 (4xx + 0%y,) + A|a|*q - $x4 = 0,
(1.1)

Prx = by -21(Jq*) =0, A1, o*+11.

The case 0 = 1 is called the DSI equation, while o = i is the DSII equation. The parameter
A characterizes the focusing or defocusing case. The Davey-Stewartson I and II are two well-
known examples of integrable equations in two-dimensional space, which arise as higher-
dimensional generalizations of the nonlinear shrodinger (NLS) equation, from the point of
physical view as well as from the study in [6]. Indeed, they appear in many applications, for
example, in the description of gravity-capillarity surface wave packets and in the limit of the
shallow water.

Davey and Stewartson first derived their model in the context of water waves, just
purely physical considerations. In the context, g(x, y,t) is the amplitude of a surface wave
packet, while ¢(x, y) is the velocity potential of the mean flow interacting with the surface
wave [6].

The extended tanh-function method, the modified extended tanh-function method,
and the F-expansion method belong to a class of methods called subequation methods for
which they appear some basic relationships among the complicated NLPDEs under study
and some simple solvable nonlinear ordinary equations. Thus by these subequation methods
we seek for the solutions of the nonlinear partial differential equations in consideration as a
polynomial in one variable satisfying equations (named subequation), for example, Riccati
equation ¢’ = A + ¢?, auxiliary ordinary equation ¢? = By? + C¢> + Dg* [7], first kind elliptic
equation @2 = A + By? + Dg*, generalized Riccati equation ¢’ = 7 + pp + q* [8], and so on.
Fan [9] developed a new algebraic method, belonging to the class of subequation methods, to
seek for more new solutions of nonlinear partial differential equations that can be expressed
as a polynomial in an elementary function which satisfies a more general subequation than
other subequations like Riccati equation, first-kind elliptic equation, and generalized Riccati
equation. Recently Yomba [10] and Soliman and Abdou [11] extended Fan’s method to show
that the general elliptic equation can be degenerated in some special conditions to Riccati
equation, first-kind elliptic equation, and generalized Riccati equation. We will consider a
general elliptic equation in the formal will through

(dtP(é)

2
P2 = ap® e’ +ar'® + '@ (1.2)

In addition, we apply a new compound Riccati equations rational expansion method
[12] to the Davey-Stewartson (DS) equations and construct new complexion solutions. The
rest of this paper is organized as follows. In Section 2, we simply provide the mathematical
framework of Fan’s subequation method. In Section 3, we apply the new presented method
to the Davey-Stewartson (DS) equations. In Section 4, we briefly describe the new CRERE
method. In Section 5, we obtain new complexion solutions of the Davey-Stewartson (DS)
equations. In Section 6 and finally, some conclusions are given.
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2. The Extended Fan Subequation Method

In the following we shall outline the main steps of our method.
For given nonlinear partial differential equations with independent variables x = (xy =
t,x1,%2,...,x1) and dependent variable u,

F(u, ut,uxi,ux,.x].,...> =0, (2.1)

where F is in general a polynomial function of its argument, and the subscripts denote the
partial derivatives. We first consider its travelling wave solutions

I
u=u@), &= kx, (22)
-0

where k; (i =0,...,I) are all arbitrary constants. Substituting (2.2) into (2.1), we get
F(uu',u",...) =0. (2.3)

Then u(¢) is expanded into a polynomial in ¢(¢) as
@) = X,aj9’ @), (24)
j=0

where a; are constants to be determined later and ¢(¢) satisfies (1.2). In order to determine
u(¢) explicitly, one may take the following steps.

Step 1. Determine n by balancing the linear term of the highest order with the nonlinear term
in (2.3).

Step 2. Substituting (2.4) with (1.2) into (2.3) and collecting all coefficients of
(pk(\/(Eﬁzo cp(pP)v) (»=0,1; k=0,1,2,...), then, setting these coefficients, to zero we get a

set of algebraic equations with respect to a; (j =0,1,...,n) and k;

Step 3. Solve the system of algebraic equations to obtain a; and k;. Inserting these results into
(2.4), we thus obtained the general form of travelling wave solutions.

Step 4. By using the results obtained in the above steps, we can derive a series of
fundamental solutions to (1.2) depending on the different values chosen for ¢y, c1, ¢z, c3,
and ¢4 [7, 8, 10]. The superscripts I,11,111,1V, and V determine the group of the solution
while the subscript | determines the rank of the solution. Those solutions are listed as
follows.
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Case 1. In some special cases, when ¢y #0, c1 #0, c2 #0, c3 #0, and ¢4 #0, there may exist three
parameters 7, p, and g such that

2
(d(f,(;) ) = o +a1p(@) + 2 (@) + c39°(@) + 1p* (@) = (7 +pp() + ¢ (g))z (2.5)

Equation (2.5) is satisfied only if the following relations hold:

co =717, c1=2rp, ¢ =2rq+ pz, c3 =2pq, Cy = qz. (2.6)

For example, if the conditions (1.2)—(2.5) are satisfied, the following solutions are obtained

(8]
Type 1. When p? — 4gr > 0 and pq #0 (qr #0),

~

7

I _ 1 2
(pl——g p +\/p? — 4qr tanh

7

1
I_ £/
P, = "2 p +1/p* —4qr coth

(pé——% P+Mtanh< P2—4qr§)iisech< P2—4‘V§>]/

p_ 1 ; < > ( )]

= |p+ — 4gr coth 2 _4gré ) +csch 2 —4gré )|,
A " -

p* —4qr p* —4qr
(Pé=_4lq 2p +1/p? — 4qr tanh Té +cot h Tg’, ,

L1 [ \/(A2 + B?) (p* —4qr) - A\/p2 —4qr cosh<\ /p? - 4qr§> ]
s E h_P ’ Asinh< p? - 4qr§> +B ] ,
1 [ \/(B2 - A?)(p? - 4qr) + A\/p2 —4qr sinh< p? - 4qr§> ]
97 = 29| 7P" ’
i A cosh( p? - 4qr§> +B |
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where A, B are two nonzero real constants and satisfy B> — A > 0;

. 2r cosh((\/p? - 44r/2)¢)
\p? — 4qrsinh((\/p? ~ 4gr/2)¢) - peosh((y/p? - 4qr/2)¢)’

(4 2)e)
(45— r72)8) -\t ((y s /2))

. 2r cosh<\ /p? — 4qr§>
fo Msinh( p> - 4qr§> - pcosh< p? - 4qr§> + i\/m’

2r sinh( p? - 4qr§>

I =
u -p sinh<\/p2 - 4qr§> + \/pz —4qr cosh( p? - 4qr§> +1/p? - 4qr,

4rcosh<< p2—4qr/4>§>sinh<< p2—4qr/4>§>
—2pcosh<( p2—4qr/4>§)sinh<< p2—4qr/4>§>+Ql,

where 2 denotes 21/p2 — 4qr cosh?((\/p? — 4qr/4)&) — \/p? — 4qr.

Type 2. When p? — 4qr < 0 and pq#0 (gr #0)

1 4r P
P15 = 24|77t 4qr P\ —5—¢
P 1 4qr p?
Y=g |PH 4qr p* cot ¢

p +1\/4qr - p? tan( 4qr—p2§>:l:1sec< 4qr - >]
1
- \/dar — p? _p2

27 p+1\/4qr —p cot< 4qr pg) ( 4qr — p? >]

\/4qr — p? 4qr — p?
¢y = %} [2p+ \/4qr - p? tan< 1 §> cot< ||

(2.8)

12~

(P15 Zq

I _
P16 =
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L1 [ :t\/(A2 - B?)(4qr - p?) - A\/4qr -p? cos<\/4qr - p2§> ]
P15 = 2q Pt . ’
A s1n< 4qr — p2§> +B

1 [ :I:\/(A2 - B?)(4qr - p?) —A\/4qr—p2 sin<\/4qr—p2§>-

I = — | —p —
o 2q g Acos( 4qr - p2§> +B
(2.9)
where A, B are two nonzero real constants and satisfy A> - B2 > 0;
. Zrcos<<\/4qr p2/2>§>
a0 \/4qr - p? sin((y [4qr - p2/2) > + pcos((\ [4qr - p2/2> >
. 2rsm<<\/4qr p2/2)§>
o -p sin((x [4qr — p2/2> > +1/4qr - p cos((w [4qr — p2/2> )
L 2r COS(\ [4qr — P2§> (2.10)
- \/4qr - p? sin(\/élqr - p2§> +p cos<\ [4qr - §> +1/4qr - 2’ .
oL 2r sin< 4qr - p2§>

—psin(4/4gr - p¢) +1/4qr - p? cos (1 /4qr - p¢) =\ [4qr - p? '
4rcos((\/4qr - p/4)%) si né( 4qr - p*/4)8)

~2pcos((y/4qr - p>/4)¢) sin((\/4qr - p*/4)¢ )+s3'

24 =

where 9B denotes 24/4qr — p? cosh®((\/4qr — p?/4)¢) — \/4qr — p*.

Case 2. Case 1 includes another special case when ¢; = 0 and ¢; #0, ¢ #0,c3 #0, and ¢4 #0.
There may exist three parameters 7, p, and g such that

d 2
( (Zg)) = o+ c19(8) + c3¢° (@) + cag @) = (7 +pop(@) + q(,,z(g))z, 2.11)

Equation (2.2) requires for its existence the following relations:

co=1% ¢ =2rp, ¢ =2pq, ca=q. (212)
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The following constraint should exist between r, p, and g parameters:
p*=-2rq, rq<O. (2.13)

For example, if the conditions (1.2), (2.5), (2.12), and (2.13) are satisfied, the following
solutions are obtained.

Type 1. When gr < 0 and (qr £0),
- __[ 1 /~2qr + Wtanh<\/_267§>:|
- __[ +/-2qr + Wcoth<\/_267§>:|
[ \/-2qr + Wmh( —6qr§) izsech(@@)]
ol = —— [ \/-2qr + Mcoth( —6qr§> :I:csch<\/—6?§>]

(2.14)
ol = —% I::I:2\ [=2qr +/-6qr tanh(—‘ —46qr §> + coth< —46qr§>:|,
A%+ B?)(-6 A\/-6 h(+/-6
i % v Vi ) (~6qr) — Ay/=6qr cosh(v/~6q7¢) | /
q Asinh(y/-6qré) + B
41 \/(B2 A?)(—6gr) + A\/—bgr smh(\/—6qr§)
97 = oo [FV-2qr - ,
q Acosh(y/-6gré) + B
where A, B are two nonzero real constants and satisfy B2 - A%>(;
ol = 2r cosh((1/-6qr/2)¢)
\/=6grsinh((\/=6qr/2)¢) F v/=2qr cosh((\/=6qr/2)¢)’
" —2rsinh((1/-6qr/2)¢)
LC— —2grsinh((1/=6qr/2)¢&) — \/=6qr cosh((\/=6qr/2)¢)’
ol = 2r cosh(/-64r¢) (2.15)
10 \/=6qr sinh(\/=6qr¢) F \/-2qr cosh(+/=6qr¢) + ir/—6qr" '
2r sinh(y/-6qr¢)

I _
P17 y/P2qr sinh(y/=6qr%) + /=6ar cosh(\/=6are) v/ 6q7

ol = 4r cosh((1/-6qr/4)¢) sinh((1/-6qr/4)¢)
27 £24/=2gr cosh((1/=6qr/4)¢) sinh((1/=6q7/4)¢) + ¢’
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where € denotes 24/—6gr coshZ((\/—6qr/4)§) — 4/—6gr. Thus for (2.5), (2.11), the general

elliptic equation is reduced to the generalized Riccati Equation [8].

Case 3. When ¢y = ¢; = 0, the general elliptic equation is reduced to the auxiliary ordinary
equation [7]

<d</’(§)

2
P9) @+t © vt 2.16)

For example, if the condition (2.16) is satisfied, the following solutions are obtained.

Type 1. If ca =1, c3 = —2c/a, and ¢4 = (c* — b?)/a?, (2.16) has the solution

mr . asechd

=—> 2.17
! b+ cseché 217)

Type 2. If c; =1, c3 = -2c¢/a, and ¢4 = (¢* + b*)/a?, (2.16) has the solution
1 acschg (2.18)

2 b+ccschd
Type 3. If ca =4, ¢z =—(4(2b+d))/a, and c4 = (c? + 4b* + 4bd) / a*, (2.16) has the solution

I asec h?¢

= . 2.19
LE bsech?¢ + ctanh¢ +d 219)

Type 4. If co =4, c3 = (4(d —2b))/a, and cs = (¢* + 4b* — 4bd) / a%, (2.16) has the solution

I acsch?¢ "o
= . .20
¥ bcsch?¢ + ccothg +d (2.20)
Type 5. If c; = a?, c3 = 2ab, and ¢4 = b?, (2.16) has the solution
Pl = —ac
5 b(c + cosh(a¢) — sinh(ag))’
2.21)

1 a(cosh(a¢) + sinh(a¢))

6 7 b(c +cosh(aé) +sinh(a¢))’
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Type 6. If co = -1, c3 =2c/a, and cs = —(c? - b*)/a?, (2.16) has the solution

11 _ asec¢é
¥7 b+csecg’ 22)
2.22
i _acsed
8 b+ccscé’

Type 7. If co = =4, c3 =4(2b+d)/a, and cs = —(~c* + 4b? + 4bd) / a?, (2.16) has the solution

o asec?¢
¥ = bsec?¢+ctan ¢+d’
(2.23)
I acsc?g
P10 = besc2E+ccotéi+d’
where a,b, ¢, and d are arbitrary constants.
Type 8. If ¢, > 0,
cacz sec h?((1/€2/2)¢)
P = 7 (2.24)
c; — c2c4(1 = tanh((y/c2/2)¢))
When ¢; = c3 = 0, the general elliptic equation is reduced to the elliptic equation
d 2
(L) - ar+ @ +an'@. 2.25)
Equation (2.25) includes the Riccati equation
dp@)\’ 202
R A ZA I 2.2
(%) - (a+v@)’ (226)

where ¢y = A%, ¢; = 2A, ¢4 = 1, and solutions of (2.26) can be deduced from those of (2.25)
in the specific case where the modulus m of the Jacobi elliptic functions is drived to 1 and 0.

Case 4. Assume that the conditions of verification of (2.26) are fulfilled, then the general
solutions are just the single solution and the combined nondegenerative Jacobi elliptic
functions. The relations between the values of (¢, ¢3, c4) and the corresponding Jacobi elliptic
function solution of the NODE (2.25) are given in Table 1.

where the modulus m of the Jacobi elliptic function satisfies (0 < m < 1).

The Jacobi elliptic function degenerates as hyperbolic functions when m — 1 (see
Table 2).

The Jacobi elliptic function degenerates as hyperbolic functions when m — 0 (see
Table 3).
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Table 1
%4 Co 2 C4
sn¢;cdé=cné/dn¢ 1 -(m?+1) m?
cng 1-m? 2m? -1 -m?
dn¢ m? -1 2 —m? -1
ns¢=1/sn¢;dcg =dné/cn¢é m? —(m?+1) 1
ncé=1/cn¢ -m? 2m? -1 1-m?
nd¢=1/dn¢ -1 2 - m? m? -1
cs¢=cn¢/sn¢ 1-m? 2 —m? 1
scé=1/cs 1 2 -m? 1-m?
sd ¢=sn¢/dn¢ 1 2m? -1 m*(m? - 1)
ds¢=1/sd ¢ m?(m? - 1) 2m? -1 1
mené+dné —(1-m?)2/4 (1+m?)/2 -1/4
ns¢+csé 1/4 (1-2m?)/2 1/4
ncé+scg (1-m?) /4 (1+m?)/2 (1-m?)/4
nsé+ds¢ m*/4 (m?-2)/2 1/4
snéticng;dn¢/(v1—m?sng +cng) m?/4 (m*-2)/2 m? /4
msné+idng;sné/(1+ceng) 1/4 (1-2m?)/2 1/4
sn¢/(1+dng) 1/4 (m?-2)/2 m?/4
dn¢/(1+msng) (m*-1)/4 (m?>+1)/2 (m?-1)/4
cné/(1+sn¢) (1-m?)/4 (m?>+1)/2 (1-m?) /4
sn¢/(dné+cng) 1/4 (m?+1)/2 (1-m?)/4
eng/(V1-m?+dng) 1/4 (m?-2)/2 m* /4

Table 2
sn¢ g scé sd ¢ cd¢
tanh ¢ sech ¢ sech ¢ sinh ¢ sinh ¢ 1
ns¢ ncé cs¢é ds¢ dc¢
coth¢ cosh ¢ cosh¢ csch¢ csch ¢ 1

Table 3
sn¢ ¢ scé sd ¢ cd¢
sin ¢ cos¢ tan ¢ sin ¢ cos ¢
ns¢ ncg csé ds¢ dc¢é
cscé secé cot¢ cscé sec¢
Case 5. When ¢4 = ¢ = 0, the general elliptic equation is reduced to the following;:

2
) —arap® s er’®. (227)
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For example, if the condition (2.27) holds, the solution is of Weierstrass elliptic doubly
periodic type

h
(PY = 19'<\/Ti3§r 2, g3>/ h3 > 01 (228)

where g = —4c1/c3; g3 = —4co/ cs.

Case 6. Whencp=c1 =c; =c¢3 =0,and ¢4 =1, and ¢3 #0, the general elliptic equation admits
solution

p(¢) = ;1(:- (2.29)

Case 7. when ¢y = ¢ = ¢4 = 0 and ¢; = 1, the general elliptic equation have solution

¢(g) = Ecsc W% () + Ec:sc: h(¢) coth(¢), (2.30)
C3 C3

3. Exact Solutions of the Davey-Stewartson (DS) Equations

Now, we will construct the exact solutions to (DS) equations (1.1). Let us assume the
travelling wave solutions of (1.1) in the form

q(x,y.1) =eu@®),  P(xyt) =0@),
E=ax+ Py +7yt, 0=kx+cy+rt,

(3.1)

where u(¢),v(¢) are real functions, and the constants a, 3, y,k,c,t are real which can be
determined later. Substituting (3.1) into (1.1), we find that y = —0?(ak + fic), and u, v satisfy
the following coupled ordinary differential system:

o’ (zxz + 02ﬂ2>u” - 2auv’ + 2\’ - <2r +0°k* + 0'4c2>u =0, (3.2)

<a2 - 02ﬁ2>v" - 2)ux<u2>, =0, (3.3)

where “the prime” denotes to d/d¢.
Integrating (3.3) w.r.t. ¢ and solving for v'(¢), we get

, 2\a
v'(¢) = muz +Cy, (3.4)

where C; is an integration constant. Substituting (3.4) into (3.2), we get

klu” + k2u3 + k4u =0, (35)
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where
ki = 0? (zx2 + 0'2[32>,

4 a?
(a2 - 0?p?)’ (3.6)
ks =0,

ky=21-

ks = —<20cc1 +2r + 02k* + 02c2>.

Balancing the highest-order derivative term (1) with nonlinear term (u°) in (3.5) gives
leading n = 1. We thus suppose that (3.5) has the following formal solutions:

u(é) = ao + a19(¢), (3.7)

where ay, a; are to be determined later; substituting (3.7) along with (1.2) into (3.5) yields a
polynomial equation in ¢. Setting to zero their coefficients yields the following set of algebraic
equations:

1
§a1C1k1 + agkz + a0k4 =0,
tl1C2k1 + 3[13(11’(2 + a1k4 =0,
(3.8)

201C3k1 + 3[1011%](2 = 0,

2[11C4k1 + a%kz =0.

Substituting (3.6) into (3.8) and solving with respect to ag, a1, a,p,k,c,r, we obtain the

following solutions:
1,/-cpot [-2c4p?c*
ap = = 7 a = 7
2 2)LC4 A
1 1
— 3252 = 1252 - Z 25 — 3252
a=F\/-p?0?, r= 2ko i + C1\/-p?0?,

where f, k, c are arbitrary real constants, and ay, a;, a, r are real constants so we choose the
case 0 = 1.
The exact travelling wave solutions of the DSII equations (1.1) are given by

(3.9)

q(x,y,t) = (a0 + mp(2)),
2\a (3.10)

T2+ p

(])(x,y, t) = f[rl(ao + aup(é))z + Cl]dg, T
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where
1 [ -1
ap = E‘BCS m/
_ —2¢4 (3.11)
a =p 5 cud <0 or ¢4 <0,
1., 1,
¢=P[Fx+y+ (Fk+o)t], O=kx+cy+ Ek - 5¢ +pC1 ),

and ¢; (i = 0,1,2,3,4) are arbitrary constants. We may have many kinds of solutions

depending on the special values for c;.

Case 1. If cg = 12, c1 = 2rp, co = 2rq + p*, c3 = 2pq, and cs = ¢, then ¢ is one of the
24¢] (1=1,2,...,24) containing 22¢/ that are real and 2¢, that are complex. For example, if
we select (= 1,15), then one could write down explicitly the following soliton solutions:

q1(x,y,t) — pif [ao - ;—;(;9 +ﬂ0tanh<%§>>],

P1(x,y,t) = 111 [<4C1q +r1<(a1p 2a0q) +a2p )

ag + _( p+ph (tanﬁ1§ + secﬂlé)

R(x,y,t) = € (3.12)

h)

+4ai (a1p — 2a0q) 1 In (cosh( §>> Za%rlﬁotanh<%§>]
|
)t

1
$a(x,y,t) :C1§+4q [ <4aoq —4apa1pq - 4a1q

+4a1r (a1p - 2a0q)ln<cosﬁ§¢smﬂl>

sin((p1/2)¢) ]
(cos((B1/2)¢) Fsin((1/2)¢)) |’

+ 4&%1‘1[51

where
Po=7\/P*—4pq,  P1=1\/4pq-p*

ap = pﬂ\/7 qﬁ\/_;z, 1 <0, (3.13)

§=pFx+y+(Fk+o)], 6=kx+cy+< kz——c :l:ﬁC1)
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Case 2. If cg = 1%, c1 = 2rp, c2 = 0, ¢z = 2pq, cs = ¢*, p* = —2rq, then ¢ is one of the
12¢] (I = 1,2,...,12) contain 10¢| are real and 2¢ are complex. For example, if we select
(I =1,4), then one may write down explicitly the following soliton solutions:

g3 (x,y,t) = e [ao——<ﬁ2 +ﬂ3tanh<ﬁ3 ))],

P3(x,y,t) = [<4C1q +1 <4a0q —4aparqp; - 8a1qr>>§

+harri (—2a0q + a1 ) ln<cosh<%§>) Zalﬁﬂstanh<'6 & >]

4 (x,,t) = &° [ao - —<ﬁ2 + s (mh(ﬂ g) + csch(%é)))], (3.14)

Pa(x,y,t) = [<4C1q +1 <4a0q —4apa1qps - 8a1qr>>§

+4air (-2a0q + a12) In (sinh(%é)) - 2a%rBs coth(%é)] ,

where
P2 =1/-2qr, B3 =1/—6qr,

[-1 /-2
ap =pp Sy M= qp T A<0 (3.15)

¢=plrx+y+ Gk+ot], 6=kx+cy+< kz_lc :I:ﬂCl)

Case 3. If ¢y = ¢1 = 0, and ¢y, ¢3, ¢4 are arbitrary constants, then ¢ is one of the 10(plI (1=
1,2,...,10) as follows.

Type 1. If c; = 1, c3 = —2¢/a, and ¢4 = (c® — b*)/a?, then the travelling wave solutions are
given as follows:

e ajasec h(¢)
a5 ,t) = e a0+ TR,

a’a2bry sinh(g) 2aay (aarc - 2ay(b* - c*))n
(7~ A)(c + beosh(®) 7~ )"

1 (—b + C) é)
x tan (—mtanh )

¢s(x, y,t) = <C1 + aén)é +

(3.16)
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-1 bZ)
= b\ 5572 By
20(c% - b2) 617

¢=PFx+y+ (Fk+o)t], 0= kx+cy+< kz——c :I:ﬂcl)

where

Type 2. If 2 = 1, c3 = —2¢/a, and ¢4 = (¢ + b*)/a?, then the travelling wave solutions are
given as follows:

. h
g6 (x,y,t) = €” [ao + %scch(é)) ,
2a’bry cosh(¢) 2aay (aaic +2ag(b* + ¢*))r
bo(xyt) = (Covain)d - oo o (1_b2 _602)3 - (318)
ctan-1(_(b=©) 4
! (S tanh )

where

a _—ﬂC _—1
0" 2032+ b2)’

Bo|-2(c+b?) (3.19)
i e

¢=PlFx+y+ (Fk+o)t], 9:kx+cy+<%k2—%c2iﬁcl),

Case 4. If c; = ¢3 = 0, and ¢y, ¢, ¢4 are arbitrary constants, then ¢ is one of the 16(/)11 (I =
1,2,...,16) containing 15(/)11 that are real and one ¢/ that is complex. For example, if we select
I =4, then ¢y = -1+ m?, =2-m? and ¢; = -1, and the travelling wave solutions are
rediscovered:

q7(x,y,t) = ardn(¢)e”,
(3.20)
¢7(x,y,t) = Cié + riapa; fdn (&)dg,

ag =0, alzﬁ\/g, )L>O,
(3.21)

§=pFx+y+(Fk+o), 6=kx+cy+< kz——c :l:ﬁC1)

where
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In the limit case, when m — 1, then (3.20) admits the soliton wave solutions

q7(x,y,t) = asech(¢)e®,

(3.22)
$7(x,y,t) = C1é + riapajtanh(g).
When m — 0, then (3.20) admits the soliton wave solutions
a7 (x,y,t) = a1€®,
(3.23)
7 (x,y,t) = (Cl + r1a0a%>§,
where
=0 = 2 A>0
apg =Y, ay = ﬂ )t/
¢=PlFx+y+ (Fk+o)t], (3.24)

0=kx+cy+ <%k2— %Czﬂ:ﬁC1>.

If we select [ = 6, then ¢y = m?, ¢, = —(1 + m?), ¢4 = 1, and the travelling wave solutions are
rediscovered:

g7(x,y,t) = ains(&)e'?,
(3.25)
¢7(x,y,t) = C1é + riapal fns2(§)d§,

where

ap =0, a1=ﬂv_72, A <0,
(3.26)

¢=P[Fx+y+ (Fk+o)t], G:kx+cy+<%k2—%c2iﬂcl),

In the limit case when m — 1, then (3.25) admits the soliton wave solutions

gs (x,y,t) = a1 sec h(§)e”,
¢s(x,y,t) = Cr1é + riaga; (¢ — coth(¢)).

(3.27)
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When m — 0, then (3.25) admits the soliton wave solutions

qs(x,y,t) = a1 cse(é)e”,
Ps(x,y,t) = C1¢ — riapal cot(g),

11020, alzﬁ _Tz, J\<0,
' (3.29)

¢=PlFx+y+ (Fhk+o)t], 9:kx+cy+<%k2—%c2ﬂ:ﬁcl>,

(3.28)

where

Case 5. If ¢ = ¢4 = 0, then ¢, c1, ¢3 are arbitrary constants. The system does not admit
solutions of this group.

Case 6. If co = c1 = c» = c3 =0, and ¢4 = 1, the travelling wave solutions of (1.1) are

L
qg(x’y’t)_i§+ce 7
) (3.30)
£ =g L
(;b9(x/y/ = L1 §+Cl
where
ap=0 a =p =2 A<0
0 — 7 1= )L/ 7
E=PBlFx+y+ (Fk+o)t], (3.31)

1 1
0=kx+cy+ (Ekz_ Ecziﬂcl).

Case 7. If cp = ¢1 = c4 = 0, and ¢» = 1, then c3 is arbitrary constant. The system does not
admit solutions of this group.

4. Summary of the New Compound Riccati Equations Rational
Expansion Method

The key steps of our method are as follows.

Step 1. For a given NLPDEs with some physical fields u; in three variables x, y, t,

1:)1' (ui/ Uit, Uix, uiy/ Uitt, Uixt, - - ) =0 (41)
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by using the wave transformation
¢=k(x+Ily—Ait), ui(x,y,t) =U(Q), (4.2)

where k,I, A are constants to be determined later. Then (4.1) is reduced to an ordinary
differential equation

Qu,u’,...) =o. (4.3)

Step 2. We introduce a solution of (4.3) in terms of finite rational formal expansion in the
following forms:

i Zr- i :(1? . M\ i N
U;(¢) =a0+z W=l ;2(‘/’ )7 (¢")

. (4.4)
= (9" + pag')’

7

where agl riyr M1, H2 (rin=0,1,...,j, n=1,2) are constants to be determined later and the new
variables ¢ = ¢(¢), ¢ = ¢ (¢) satisfy the Riccati equation.
That is,

d d
d—‘g = hy + hag?, d—‘g = hy + hay?, (4.5)

where hy, hy, h3, hy are arbitrary constants.

Step 3. The parameter m; can be found by balancing the highest nonlinear terms and the
highest-order partial derivative terms in (4.1) or (4.3).

Step 4. Substitute (4.3), (4.4) with (4.5) and then set all coefficients of ¢'¢/ [i = 1,2,..., j =
1,2,...] of the resulting system’s numerator to zero to get an overdetermined system of

nonlinear algebraic system with respect to \, aZl - (rin=0,1,..., j,n=1,2).

Step 5. Solving the overdetermined system of nonlinear algebraic equations by use of Maple

or Mathematica software, we would end up with the explicit expressions for A, alr]).1 r, (Tjn =
0,1,..., j,n=12).

Step 6. It is well known that the general solutions of the Riccati equation

dF
d_g =n+ T2F2 (4.6)

are the following.

(1) r = 1/2/ r = _1/2/

F(¢) =tanh(¢) isech(?),  F() = coth(¢) £ csch(d). (4.7)
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Q)ri=rn=+1/2,

F(¢) = sec(¢) £itan(¢), F (&) = csc(¢) £ cot(). (4.8)

(3) r = 1, Ty = —1,

F(¢) = tanh(¢), F(¢) = coth(¢). (4.9)
4)r=rn=1,
F(§) = tan(g). (4.10)
G)r=rn=-1,
F(§) = cot(g). (4.11)
(6) 1 =0, n#0,
1
F(¢) = i (4.12)

where ¢ = k(x +ly — \it), i = v/-1, and 1y is arbitrary constant.

5. Application of the New Compound Riccati Equations Rational
Expansion Method to the Davey-Stewartson (DS) Equations

By considering the wave transformations,

q(x,y,t) =u@) expid),  ¢(x,y,t) =v(),

(5.1)
¢=k(x+ly—MAt), 0 = kix + koy + kst.
Equation (1.1) reduces to the following ordinary differential equations:
02k2<1 + 02>u” - 2kuv' +2\u° - o? (k% +0%k? + 2k3>u =0, (5.2)
k(1-0?P)o" -21(2) =0, (5.3)

where “the prime” denotes to d/d¢.
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Integrating (5.3) w.r.t. ¢ and setting the constant of integration to zero, we obtain
k(l—cﬁﬂ)v'—ZAu2=o. (5.4)

By balancing the highest nonlinear terms and the highest-Order partial derivative terms in
(5.2) and (5.4), we suppose that (5.2) and (5.4) have the following solutions:

i b !
u(@) = ap + u,
my” + fop
(5.5)
ax" + byy'
=by+ ——,
vle) =t p9" + pog’

where ¢, ¢ satisfiy (4.5), with the aid of Mathematica software; substituting (5.5) along with
(4.5) into (5.2) and (5.4) yields a set of algebraic equations for ¢ig/ [i,j = 0,1,2,...] setting
the coefficients of these terms ¢'¢/ to zero yields a set of overdetermined algebraic equations
with respect to ag, a1, b1, b, az, b, 1, and A;.

By using the Maple software to solving the overdetermined algebraic equations, we
get the following results:

(5.6)

where a = (—pp + 4 /y% +4pipr) /2y and k, py, o, by, az, ba, ki, ka, ks are arbitrary constants.
So we obtain the following solutions of (1.1).

Family 1. Consider the following

(apr-1/apo) [2tanh(é) (sec (&) Fisec h(¢)tanh(¢)) +isec h(¢)]
p1[2tanh(¢) (sec h?(¢) Fisec h(é)tanh(¢)) £isec h(é)] + pa[csc h?(¢) + csc h(¢) coth(¢)]

u =a+

aps [csc h?(2) + csc h(g) coth(g)]
p1[2tanh(g) (sec h2(¢) Fisec h(¢)tanh(¢)) £isech(8)] + pa[csc h2(¢) + csc h(¢) coth(é)]”

q1(x,y,t) = uy exp[i(kix + koy + kat)],

az [2tanh(¢) (sec h?(¢) Fisec h(¢)tanh(¢)) +isec h(é)] + ba[esc h?(¢) + csc h(¢) coth(¢)]

p1[2tanh(g) (sec h2(¢) F isec h(¢)tanh(¢)) £isech(§)] + pa[csc h2(¢) + csc h(¢) coth(é)]
(5.7)

01=b0+
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Family 2. Consider the following

(apo-1/ apr) [2tanh(g) (sec h2(§) F isec h(¢)tanh(g)) +isech(Z)]
p1[2tanh(¢) (sec h2 (&) Fisec h(¢)tanh(¢)) £isec h(E)] + pa[csc h? (&) + csc h(€) coth(§)]

U =a+

aps [esc h?(8) + csc h(g) coth(§)]
¥ i [2tanh (2) (sec h2(¢) F i sec h(g)tanh(€)) i sec h(2)] + pa [csc K2 (2) + csc A(Z) coth ()]

g2 (x,y,t) = wpexp[i(kix + koy + kat)],

o = bt 22 [2tanh(g) (sec h?(8) Fisec h(¢)tanh(g)) £ isec h(Z)] — b [esc h? () + csc h(§) coth(§)]
) =

0 p1[2tanh(g) (sec h2(¢) Fisec h(¢)tanh(¢)) £isec h(&)] — pa[csc h2(¢) + csc h(¢) coth(é)]
(5.8)

where ¢ = k(x + (1/0)y — 0%(ki + cko)t), @ = (—po £ \[p3 + 4papo) /212 and k, pia, po, by,

az, by, ki, ky, k3 are arbitrary constants.

Family 3. Consider the following

B (apo-1/ apo) [2tanh(g) (sec h2(8) F isec h(¢)tanh(g)) +isec h(Z)]
e p1[2tanh(¢) (sec h2(¢) Fisec h(¢)tanh(¢)) £isec h(E)] + pa[csc (&)cot(E) £ csc?(¢)]

) apz [cse(§)cot(§) + esc®(§)]
i 2tanh(@) (sec 2(®) 7 Tsec h(@)tanh(@)) + isec h(@)] + palesc@)eot(®) & (@]’

g3(x,y,t) = uzexp[i(kix + koy + kat)],

a» [2tanh(Z) (sec h?(¢) F isec h(§)tanh(2)) +isec h(g)] + ba[csc(&)cot(§) + csc?(¢)]

p1[2tanh(g) (sec h2(&) Fisec h(¢)tanh(¢)) isec h(&)] + pa[csc(§)cot(E) £ csc2(§)]
(5.9)

'03=b0+

Family 4. Consider the following

(apo-1/ apr) [2 coth () (csc h? (&) + cot h(¢)esc h(§)) F esc h(2)]
;11 [2 coth(¢)(csc B2 (¢) £ cot h(&)esc h(E)) £isech(¢)] — pa[ csc h?(¢) + csc h(¢) coth(¢)]

ap; [csc h? (§) + esc h(é) coth(g)]
" p1[2 coth(é) (csc h2(¢) + cot h(é)esc h(é)) isec h(¢)] — pa[csc h2(8) + csc h(¢) coth(g)]”

ga(x,y,t) = ugexp[i(kix + koy + kst)],

az[2 coth(¢) (esc h?(§) + cot h(é)esc h(é)) Fesch(g)] — ba [esc h?(Z) + csc h(§) coth(§)]

pr[2 coth(é) (csc h?(g) + cot h(é)esc h(¢)) isec h(é)] — pa[csc h2(&) + csc h(g) coth(¢)]”
(5.10)

U4=b0+
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Family 5. Consider the following

(apo-1/aps) [2 coth(é) (esc h? (&) + cot h(é)esc h(é)) Fesch(g)]
p1[2 coth () (csc h2(¢) + coth(¢)esc h(é)) isech(é)] + po[sec(§) tan(é) £ sec?(¢)]

Us =a+

apa [sec($) tan(§) £ sec® (§)]
p1[2 coth(Z) (csc h2() = cot h(§)csc h(8)) xisech(Z)] + pa[sec(Z) tan(Z) = sec?(8)]”

gs(x,y,t) = usexp[i(kix + koy + kst)],

az[2 coth(¢) (esc h?(¢) + cot h(&)esc h(é)) F esc h()] + by [sec(¢) tan(Z) +sec?(¢)]

us=bo+ p1[2 coth(¢) (csc h2(¢) £ cot h(g)csc h(é)) £ isech(é)] + palcsc h2(E) + csc h(¢) coth(¢)]
(5.11)
Family 6. Consider the following
- (apo-1/ apz) [2 coth(é) (esc h? (§) £ cot h(é)csc h(é)) Fesch(2)]
o = p1[2 coth(¢) (csc h2 (&) + coth(¢)esc h(é)) £isech(é)] — pa[esc(é)cot($) £ csc(¢)]
.\ ap [esc(g)cot(é) £ csc?(é)]
p1[2 coth(¢) (csc h2(¢) + cot h(¢)csc h(g)) +isec h(8)] — pa[csc(é)cot(§) £ csc?(§)]” (5.12)

4o (x,y,t) = ug exp[i(kix + koy + kst)],

az[2 coth(¢) (esc h?(§) + cot h(¢)csc h(§)) F esch(¢)] — ba [csc(é)cot() + csc? ()]

v =bo+ u1[2 coth(¢)(csc h2(¢) + cot h(&)csc h(g)) £isech(é)] — palcsc(é)cot(é) £ csc2(¢)]

where { = k(x = (1/0)y - 0*(ki + ck)t), &« = (—po = \/p3 +4ppn)/2p1p>, and

k, p1, po, bo, az, b, ki, ky, k3 are arbitrary constants.

6. Conclusion

In this paper, we have used the extended Fan’s subequation method and a new compound
Riccati equations rational expansion method to construct the exact travelling wave solutions
and obtain many explicit solutions for the Davey-Stewartson equations.

We deduced a relation between the general elliptic equation involving five parameters
and other subequations involving three parameter, like Riccati equation, auxiliary ordinary
equation, first-kind elliptic equation, and generalized Riccati equation; many exact travelling
wave solutions and new complexion solutions including more general soliton solutions,
triangular solutions, double-periodic solutions, hyperbolic function solutions, and trigono-
metric function solutions are also given.
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