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Neuronal spike trains are used by the nervous system to encode and transmit
information. Euclidean distance-basedmethods (EDBMs) have been applied to quantify
the similarity between temporally-discretized spike trains and model responses. In this
study, using the same discretization procedure, we developed and applied a joint
probability-based method (JPBM) to classify individual spike trains of slowly adapting
pulmonary stretch receptors (SARs). The activity of individual SARs was recorded in
anaesthetized, paralysed adult male rabbits, which were artificially-ventilated at
constant rate and one of three different volumes. Two-thirds of the responses to the 600
stimuli presented at each volume were used to construct three response models (one for
each stimulus volume) consisting of a series of time bins, each with spike probabilities.
The remaining one-third of the responses where used as test responses to be classified
into one of the three model responses. This was done by computing the joint probability
of observing the same series of events (spikes or no spikes, dictated by the test response)
in a given model and determining which probability of the three was highest. The JPBM
generally produced better classification accuracy than the EDBM, and both performed
well above chance. Both methods were similarly affected by variations in discretization
parameters, response epoch duration, and two different response alignment strategies.
Increasing bin widths increased classification accuracy, which also improved with
increased observation time, but primarily during periods of increasing lung inflation.
Thus, the JPBM is a simple and effective method performing spike train classification.
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1. Introduction

Neural spike trains are the internal language used by the nervous system to transmit

information. Spike patterns may carry information-based on the timing of action

potentials, or the sequence of interspike intervals (ISIs), only if these patterns repeat

more often than they would by chance given the same average firing rate or ISI

distribution [12]. Many methods have been proposed to analyse spike patterns. For

example, predefined templates with small variance tolerances were used to discover

favoured patterns in neuronal firing activity [4], and are useful in evaluating the

statistical significance of a pattern’s temporal accuracy [15]. Zipser and collaborators

[19] used patterns of firing rate rather than patterns of spike times to solve the difficulty

posed by spike time tolerances. Some studies modelled the spike train by convoluting

spike trains with Gaussian kernel [5,14] or exponential kernel [16], and produced

relatively simple, closed equations describing neuronal activity patterns imparted by the

features of the Gaussian or exponential functions. Another approach used to quantify
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spike train similarity, cost-function distance [17,18], ascribes a cost to elementary

transform operations of deleting, inserting and time-shifting spikes, thereby assigning a

similarity metric (distance) between any two spike trains. Other strategies associated

with analysing the temporal patterns involve evaluating local similarity in short segments

of spike trains [1] and the ISI pattern [11]. These are based on the spike series

represented by precise times, while other analyses use a coarser binning procedure.

Quantifying spike trains into bins and comparing the Euclidean distance among spike

trains in n-dimensional vector space has also been used to resolve the temporal structure

of responses [7–9]. This general procedure is also used to create peri-stimulus time

histograms, another means by which to average and compare spike train responses.

In addition to the above methods, classification has also been performed by artificial

neural networks (ANNs) and statistical methods such as linear discriminant analysis

(LDA), linear vector quantization (LVQ), principal component analysis (PCA) and

independent component analysis (see Ref. [6] for review). Foffani and Moxon [6]

concluded that the PSTH-generated, Euclidean distance-based method (EDBM) is an

efficient alternative to LDA and ANNs when studying ensembles of spike train responses

to discrete sensory stimuli. In a recent study, we analysed the performance of response

classification using a ‘sparse’ PSTH-based response representation and found that it did

not significantly reduce performance while offering marked computational savings [3].

Osan and colleagues [10] compared the effectiveness of different statistical methods in

pattern classification, including multiple discriminant analysis (MDA), PCA, ANN and

multivariate Gaussian distributions (MGD). They concluded that typical performance

ranking of these methods on under-sampled neural data of large dimension is

MDA . PCA . ANN . MGD.

In this study we developed and applied a joint probability-based method (JPBM) of

classifying individual slowly adapting pulmonary stretch receptor (SAR) spike train

responses evoked by three lung inflation stimuli that differed only in amplitude. Applying

the same temporal binning procedure, we compared classification performance between

our JPBM and the conventional EDBM. Neither EDBM nor JPBM make a priori

assumptions regarding the nature of the responses. Unlike other methods (e.g. ‘cost

function’-based methods), neither the JPBM nor the EDBM use subjective weighting to

determine similarity, thereby avoiding user-determined biases. The JPBMwas constructed

by calculating the probability of observing many consecutive individual spike/non-spike

events, in which a ‘test’ spike train to be classified serves as a probability filter to select the

best (i.e. the one with the maximal joint probability) of three model patterns generated in

response to three different stimuli. The Euclidean distance between an individual spike

train and the same three model responses were calculated, and the classification accuracy

for both methods was compared after systematic variation in analysis parameters,

including discretization bin width, response alignment method, and duration of the

response/model used. This allowed for direct comparison of the JPBM and EDBM over a

range of parameter values.

2. Materials and methods

Data were collected in vivo from five adult male New Zealand White (1.9–3.0 kg)

rabbits. Anaesthesia and surgical preparation procedures were identical to those described

in Refs. [3,13]. All procedures were approved by the University of Delaware’s Institu-

tional Animal Care and Use Committee, and conformed to the standards set in the Animal

Welfare Act.
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2.1 Stimulus and recording techniques

Duringmechanical ventilation (Harvard Bioscience, Holliston,MA, USA), tracheal inflation

pressure (TP) was recorded at the inspiratory sidearm of the Y-shaped tracheal tube and used

as a measure of lung distension. The electrical activity of individual SARs was recorded

extracellularly within the nodose ganglion using tungsten electrodes (Z , 1MV at 1 kHz;

FHC, Inc., Bowdoinham, ME, USA). Electrodes were inserted into the nodose ganglion

manually without removal of the connective tissue capsule. The lead wire (between the

electrode shaft to the pin connecting it to the headstage) was coiled into a spring to obtain a

‘floating’ electrode configuration [2,13]. A micromanipulator mounted on a stereotaxic

frame was used to make fine adjustment of the electrode tip position if necessary. SARs were

identified by their faithful responses to manipulations in TP and categorized as either low or

high threshold, depending on the presence or absence of tonic activity (i.e. between lung

inflations). Continuous recordings of individual SARs were maintained for .1 h, during

which inflation volume was set to the three different values (9, 12 or 15ml). Each volume

was presented for .20min, and data collection commenced after a 5min buffer time

following a switch to a new volume. TP and extracellular unit activity were collected at

10,000 samples/s and stored on the hard drive of a Pentium-based PC via a data acquisition

system (PowerLab 16 and Chartw version 5.3, ADInstruments, Colorado Springs, CO, USA).

Since relatively large (.4:1) SNRs were achieved, spike detection (0.1ms resolution)

was performed with the use of conventional software (Spike2 v. 4.22, Cambridge

Electronic Design Ltd, Cambridge, UK) using a simple threshold function. Pattern

analysis and classification computations were performed by custom written M-files for

MATLABw (version 6.5, The MathWorks Inc., Natick, MA, USA). Some analysis was

performed using Microsoftw Excel (version 10, the Microsoft Corp.). Figures were plotted

with Originw (version 7.5, The OriginLab Corp., Northampton, MA, USA). All were

executed on a conventional Pentium 4 PC (Windowsw XP professional).

2.2 Spike alignment

Two different strategies were used to align spike trains: stimulus-based and

response-based. The former is based on the TP stimulus waveform. Once the inflations

are aligned, their corresponding spike trains are aligned by virtue of their fixed relationship

to the TP waveform. Since SARs fire in response to periodic lung inflations, it is

reasonable to assume that the same SAR begins firing at approximately the same TP

threshold in response to the same stimulus. Thus, the second method was used to align

responses to the first spike in the series, as done in previous studies [2,3].

2.3 Spike classification methods

2.3.1 Joint probability-based classification

Individual SAR responses were transformed into binary sequences by discretizing time

into uniform bins and assigning values of 1 or 0 to bins that either did, or did not, contain a

spike, respectively. Ventilation volume was selected as the stimulus variable. For each

stimulus condition (9, 12 or 15ml), 600 lung inflations were presented (15min £ 40

breaths/min, 50% duty cycle). Of these, two-thirds were randomly chosen and used to

construct a canonical model ‘response’ of the SAR to a given stimulus, while the remaining

one-third were used as responses to be classified (hereafter referred to as ‘test responses’).

A model response was constructed by calculating the probability of observing a spike in

each bin starting from just after the onset of the breath through the end of the breath
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(see Performance evaluation, below). This sequence of probabilities defines the cell’s

average firing response pattern for a given stimulus. In order to perform classification, an

average response pattern (model) was created for each of the three stimuli.

Consider an individual spike train digitized into a binary representation with the same

number of bins as the model responses. If it was produced in response to one of the three

stimuli, it should be more similar to the model response for that stimulus than either of the

other two. In order to ascertain which model was most similar to a given test response,

individual test responses (of which 200 were generated from each stimulus) consisting of

binary representations were used to ‘filter’ the three model responses as follows.

The probability, P(Ek), of observing a particular event, E, in bin kwas read out for each bin

in the model responses. The event, either the presence or absence of a spike in the test

response, was used to determine which probability to use from bin k in a given model. For

example, if the kth bin in the test response did not contain a spike, and the probability of

observing a spike in the same bin of the model response in question was 0.472, then the

probability of observing the same event (i.e. no spike) in that model would be 0.528, and

that value would be used for P(Ek,Mi
) in Equation (1). In the cases where the probability of

observing a spike was 0 in a particular bin, a nominal value of 0.0005 was used to avoid

zero multiplication (see below). Bins are assumed to be independent based on the fact that

ISIs less than axonal refractory periods were never observed. Therefore the joint

probability of observing the same event in a test andmodel response, defined by the product

of the probabilities over all bins, provides a measure of likelihood that the test response and

model were evoked by the same stimulus, as long as they are composed of the same number

of bins and aligned accordingly. This probability is described by the following expression:

PðTjMiÞ /
Yn
k¼1

PðEk;Mi
Þ; ð1Þ

where T denotes the test spike train response,Mi denotes one of the three model responses,

k represents the specific bin, and n is the number of bins used to perform the calculation.

Three products (i.e. ‘joint’ probabilities, referring to probability of observing identical

model and test response events over all bins) were generated with respect to a given test

response, one associated with each model response. The largest product of the three

indicates the maximal likelihood that the response was evoked by that stimulus (i.e. that the

test response belongs to that response class).

2.3.2 Euclidean distance-based classification

In order to evaluate the JPBM, we also classified test responses using the EDBM. The same

model responses were used as those in the JPBM, and the specific test responses were

the same as those used in the JPBM. Each model response can be viewed as a point in an

n-dimension space, where n is the number of bins, and each bin contains the spike

probability over all 400 responses used to generate it. A test response was defined by a

binary string of the same length in which 0 indicated no spike and 1 indicated a spike. Test

responses were placed into the n-dimensional space, and compared directly to each of the

three model responses by calculating the Euclidean distance, d, between the test and three

model responses. The Euclidean distance is defined as:

dðM 2 TÞ ¼ kM 2 Tk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðMi 2 TiÞ
2

s
: ð2Þ

For each individual test spike train, T, and model response,M, the Euclidean distance,

d(M 2 T), was computed in n dimensions. The spike train was simply classified into the
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specific stimulus category to which it is closest in vector space. Notice that although

models are defined by probabilities and therefore occupy intermediate values in n-space,

individual test responses must occupy vertexes in this same n-space because of the digital

contents of their bins. Figure 1 illustrates both classification methods.

2.4 Analysis parameters

Two specific analysis parameters were varied systematically: discretization bin width and

observation time (duration). The bin width was varied between 1ms and just less than the

minimum ISI recorded for a given SAR, in increments of 1ms. Theminimum ISI (i.e. highest

instantaneous firing rate) was invariably recorded during inflations with 15ml. When

displaying results from multiple SARs in one plot, all bin widths are normalized by their

minimum ISIs. The observation time (number of bins £ bin width) was varied in increments

of 5ms or 1 bin, whichever was larger, spanning some fraction of the entire response,

beginning just after the first spike (response-aligned method) or just after the onset of lung

inflation (stimulus-aligned method). Both alignment strategies were used in both

classification methods to compare their effect on classification accuracy.

2.5 Performance evaluation

One specific performance metric was chosen to evaluate the performance of the JPBM and

the EDBM: maximum accuracy. Maximum accuracy denotes the fraction of correct

assignments of 600 test responses (200 drawn from each of the three stimuli) to the stimuli

that evoked them. The ‘maximum’ qualifier indicates that the maximum value, over all

observation times examined, was reported for a given bin width and stimulus condition.

This observation time may have varied from one bin width to the next for the same SAR.

Thus, the maximum accuracy identifies the best classification performance that can be

achieved for a given SAR using a specific bin width and alignment strategy and within a

single stimulus condition (9, 12 or 15ml). Maximum accuracy values are provided for test

spike trains evoked by separate stimulus values within an SAR, as well as for total

performance in that neuron over all stimuli. This latter value, the ‘overall maximum

classification accuracy’ is also reported (e.g. Figure 2(d)). For each bin width, this value is

derived by averaging the three observation time–accuracy curves for each SAR at that bin

width, then choosing the maximum value in this average. In addition, high- vs. low-

threshold SARs were denoted in the Results.

3. Results

Data were collected from eight SARs of which six were classified as high threshold and

two as low threshold. The minimum ISIs among the high threshold SARs ranged from 13.3

to 22.5ms, wherea those from the low threshold SARs were 7.5 and 12.6ms, and these set

the limit for maximum bin width for each cell. Figure 2 shows the relationship of

maximum classification accuracy as a function of bin width using the JPBM and both

alignment strategies for a typical high threshold SAR, where bin size is normalized by its

minimum ISI for each neuron. Figure 2 illustrates the general finding (in all SARs) that

maximal classification accuracy tends to increase with bin size up to the neuron’s

corresponding minimum ISI, although minor fluctuations are evident. Maximal

classification accuracy as a function of bin width using the EDBM and both alignment

strategies for all SARs was also computed, and the same relationship was evident (data not

shown). The JPBM performs better than chance (0.333 . . . ) at all bin widths and stimuli

analysed. To compare the results derived from the JPBM with those derived from the
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Figure 1. Illustration of JPBM and EDBM. (a) Model responses aligned by stimulus onset for 9, 12
and 15ml stimuli. Waveforms show average TP inflation pressure and correspond to right-hand y-
axes. Aligned underneath these histograms are a single test response (raw recording, ‘test response’)
and its associated digital representation (‘test’). Beneath this are the probabilities of observing the
same events in the three models as in the test response, and their final products. Note that the response
is classified as belonging to the 15ml model (check mark). (b) Graphical illustration of the EDBM,
restricted to n ¼ 3 dimensions for clarity. Each dimension provides the probability, P, of observing a
spike in each bin. The locations of three hypothetical models (M1,M2,M3) and a single hypothetical
response (at [0,1,0]) are given. Euclidean distances (d1, d2, d3) to each model from the test response
are calculated, and in this case the response would be classified as belonging to model 1.
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EDBM, the differences between the overall maximal classification accuracies produced by

these two methods is given in Figure 3. Since most differences are positive, the

classification accuracy using the JPBM is better than that of the EDBM in almost all SARs

tested except for one high threshold and one low threshold SAR. There is no statistically-

significant trend in the difference between different classification methods as a function of

the bin width, implying that the general superiority of the JPBM method is not dependent

on temporal resolution or alignment strategy. Over all SARs, the overall maximum

accuracy for the JPBM method averaged 0.745 and 0.754 for the stimulus- and

Figure 2. Maximum classification accuracy for a typical high threshold SAR using JPBM.
Classification accuracy is given as a function of normalized bin width for 9ml (a), 12ml (b), 15ml
(c) and overall (d) stimuli. Solid and broken traces are results from stimulus-and response-based
alignments, respectively. Axes labels apply to all plots.

Figure 3. Comparison between JPBM and EDBM in overall maximal classification accuracy for all
SARs using both alignment strategies. The differences in accuracy between the two methods
(JPBM–EDBM) are shown for high threshold (solid traces) and low threshold (broken traces) SARs
using stimulus-based (a) and response-based (b) alignment.
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response-based alignments, respectively, and these were not statistically-significantly

different (P . 0.25).

The effect of the number of bins (i.e. observation time) used in classifying spike trains

on accuracy was also analysed. The results from one high threshold SAR using the JPBM

and stimulus-based alignment are shown in Figure 4. Figure 4(a) (9ml inflation) shows a

relatively monotonic increase in accuracy as more bins (longer observation times) are used

in the analysis, with accuracy increasing quickly up to 400ms. Other features are evident

in the observation time–accuracy relationships for 12 and 15ml stimuli. Regardless of the

details, one trend is consistent: the positive effect of increasing observation time on

classification accuracy is strongest when bin width is just below the minimum ISI (13ms

for the SAR in Figure 4).

The accuracy data for all SARs using the JPBM and stimulus-based alignment revealed

a similar trend. Maximum classification accuracies as a function of observation time, using

bin widths just below the minimum ISI for all SARs, are plotted in Figure 5. The JPBM

reveals that classification accuracy increases dramatically from the rising edge to TP peak,

while passive deflation (after ,600ms) contributes only modest improvements in

accuracy compared to periods of active inflation. The EDBM, using the same bin width and

alignment strategy, produces qualitatively identical results (data not shown).

4. Discussion

In this study, we employed the JPBM to classify individual SAR spike train responses using

two different alignment strategies. We also compared it with the conventional EDBM.

Figure 4. Effect of bin size and epoch length on classification accuracy using JPBM and stimulus-
based alignment. Classification accuracy (z-axes) as a function of normalized bin width and
observation time (‘time’) for 9ml (a), 12ml (b), 15ml (c) and all (d) stimuli for an individual high
threshold SAR are provided. Results for the first 200ms, corresponding to TP below the firing
threshold, are not shown. For reference, the time course of the TP stimulus waveform (bold traces;
(a)–(c)) is provided at the ‘zero’ ms bin width position. Axes labels in (d) apply to all plots.
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Neither method assumes any response pattern (distributions) a priori. In general, the JPBM

outperformed the EDBM on our SAR test dataset. Nevertheless, it is surprising that the

maximum accuracy curves are similar in shape given the fact that their metrics are based on

fundamentally different computations. Moreover, it is surprising that the two alignment

strategies do not produce (statistically) significantly different results in these two methods.

This implies that there is an internal consistency of the response sets to a given stimulus and

that no systematic bias is present in the two analytical methods. The similarity of results

produced by the two alignment methods is in accord with physiological requirements that

the response reflects the stimulus features, since information about the stimulus amplitude

and time course, rather than about a canonical model response, must ultimately be

transmitted to the central nervous system by a given SAR spike train.

In general, increasing temporal resolution (i.e. decreasing bin widths) reduces

classification accuracy regardless of which combination of method and alignment strategy

is applied. Both methods show better performance when the bin size approaches the

minimum ISI in the testing data. Theoretically, increasing temporal precision below that

needed to classify response bins as having zero or one spike (i.e. a digital representation)

may provide a more precise representation of response patterns, but this also increases the

uncertainty associated with events in a particular bin. Thus, excessively high temporal

resolution produces aberrant spike time jitter, resulting in higher classification error rates.

This observation implies that dividing the silent epochs into many bins reduces

classification capability while increasing computational burden of these methods.

Figure 5. JPBM-derived maximum accuracy as a function of observation time for all SARs.
Accuracy values (left y-axes) are provided using stimulus-based alignment at bin widths just below
the minimum ISI for six high threshold SARs (solid traces) and two low threshold SARs (dash
traces) for test responses taken from 9ml, 12ml, 15ml, and overall data sets ((a)–(d), respectively).
Tracheal pressure waveforms (thick short dash traces, right y-axes) for representative stimuli in
(a)–(c) are included in each plot to show the lung distention time course. Axes labels in (c) apply to
all plots.
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From the results presented,we conclude that the SAR response to the rising edge and peak

of lung inflation contributes more information than passive deflation, since accuracy is only

modestly improved during the latter epochs of the stimuli, if at all (Figures 4 and 5). This

implies that information transmittedbySARpatterns isnot uniformoverdifferent stagesof the

respiratory cycle. That is, active inflation produces responses that are more informative about

lung distension amplitude, as the rate of rise in classification accuracy is the greatest then.

Finally, we note that worst classification performance was always worst for responses

to 12ml inflations (Figure 2(b)). This is because individual responses that deviated in either

‘higher’ or ‘lower’ from the 12ml model in parameter space could be mistakenly classified

as 15 or 9ml, respectively, while the individual responses that were ‘above’ or ‘below’ the

15 or 9ml models were still closest to those response models, and thus classified correctly.

Thus, ceiling and floor effects were evident in this example of the classification problem,

and indeed all applications where different stimuli are located in a continuum.

5. Conclusion

We developed and applied the JPBM to classify individual SAR responses into one of

three different response categories evoked by one of three different stimuli. We tested its

performance and compared it with the conventional EDBM. It performed better than the

EDBM, with overall accuracy better than 70% for all SARs in our triad test. We explored

the effects of varying temporal resolution, different alignment strategies, and length of

responses on classification accuracy. We found that there is no statistically significant

difference between the stimulus-based alignment and the response-based alignment when

applying either the JPBM or EDBM to our dataset. We found that the increasing bin width

from 1ms to the minimal ISI increased classification accuracy. Finally, we also found that

accuracy improves with increased observation time, but principally during active periods

of lung inflation.
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