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Short of a liver biopsy, hepatic disease and drug-induced liver injury are diagnosed and
classified from clinical findings, especially laboratory results. It was hypothesized that
a healthy hepatic dynamic equilibrium might be modelled by an Ornstein–Uhlenbeck
(OU) stochastic process, which might lead to more sensitive and specific diagnostic
criteria. Using pooled data from healthy volunteers in pharmaceutical clinical trials,
this model was applied using maximum likelihood (ML) methods. It was found that the
exponent of the autocorrelation function was proportional to the square root of time
rather than time itself, as predicted by the OU model. This finding suggests a stronger
autocorrelation than expected and may have important implications regarding the use
of laboratory testing in clinical diagnosis, in clinical trial design, and in monitoring
drug safety. Besides rejecting the OU hypothesis for liver test homeostasis, this paper
presents ML estimates for the multivariate Gaussian distribution for healthy adult
males. This work forms the basis for a new approach to mathematical modelling to
improve both the sensitivity and specificity of clinical measurements over time.
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1. Introduction

From a clinical standpoint, computational biology has had little impact. As others build

systems biology from the bottom up, it seems that systemic models viewed from the top

down are also necessary, or, at least, significantly contributory. Quantitative clinical

research is needed to make important advances in medical science. The methods presented

below are an attempt to stimulate such research.

For about a century [5], clinical chemistry methods [7] have been applied to blood

samples obtained routinely in the course of medical care. Originally the chemical analytes,

chemical components of the blood sample, were assayed one at a time in a very manual, time-

consuming manner. In the 1950s, the autoanalyser was invented [9], which would perform

the chemical analysis of many samples serially, reducing the labour requirements by an order

of magnitude. The second generation of analysers connected these autoanalysers in parallel

with each channel testing different components of the same blood sample, returning a fixed-

ISSN 1748-670X print/ISSN 1748-6718 online

q 2010 Taylor & Francis

DOI: 10.1080/17486700802653925

http://www.informaworld.com

* Corresponding author. Email: craig.trost@AnalyticDynamics.com

Computational and Mathematical Methods in Medicine

Vol. 11, No. 1, March 2010, 27–47



length vector of values. As a result, in the early 1970s, physicians were obtaining as many as

20 analyte results for each blood sample drawn. The analysers were further extended to select

a variable number of tests per sample in real time. Now handheld, point-of-care analysers are

becoming more popular. These technologies have produced a plethora of clinical data

without the corresponding quantitative science needed for efficient utilization of the output.

In order for the physician to determine the presence of disease, a statistical definition of

normal was adopted [15]. This definition is essentially the boundaries of the central 95% of

a Gaussian distribution determined by analysing blood samples from a reference

population, usually healthy normal people, with occasional stratification by gender and

age as needed. Although it is hoped that the biological distribution of the reference

population is somewhat invariant, the different chemical methods and analyser

characteristics add noise and possibly bias components that are specific to the analyser

used. In addition, environmental conditions as well as sample collection, handling, and

storage conditions affect variability. Some analytes also have biological diurnal, seasonal,

and environmental variation. The non-biological sources of variation will not be addressed

in this paper because of the complexity. It is reasonable to assume during the early stages

of this method development that the primary component of the biological variation is

much larger than the analytical and other sources of variation for most analytes.

A significant problem that remains in clinical practice is that reference regions are still

treated as univariate, static objects. The rectangular intersection of those reference

intervals does not correspond to a probability space, at least not in any kind of regular

manner that makes sense biologically. This problem as well as methods for constructing

static multivariate reference regions was reviewed elsewhere [26].

The liver is an organ that synthesizes many important chemicals for the body and that

metabolizes toxic chemicals to be excreted in the urine and faeces. It is an organ that

regenerates itself when part of it is removed or damaged. Nutrients and other ingested

substances pass directly from the intestine through the portal vein to the liver before the

rest of the body has access to them. From a protective viewpoint, this is good because

toxins can be removed before they circulate and damage the other organs. It is bad in at

least two ways. If too much toxin is ingested, it can irreversibly destroy the liver resulting

in a liver transplant or death. It also neutralizes many drugs, which necessitates the use of

other routes of administration, usually less acceptable to the patient, and possibly more

expensive, than swallowing a pill.

The state of the liver can be determined by sampling it directly with a biopsy needle or

during abdominal surgery. Both are unpleasant for the patient and have major risks, including

death. Therefore, the state of the liver is usually indirectly determined by the molecules it

leaks into the blood. For many chemicals, this leakage is in a steady state, or homeostasis,

which is really a dynamic steady state, i.e., fluctuating regularly in time. There are numerous

chemicals that are used as surrogate measures of the liver state; many are enzymes, which are

protein catalysts in biochemical reactions. It has become customary in drug development, but

probably not optimal in any mathematical sense, to measure the serum enzyme activities of

alanine aminotransferase (ALT), aspartate aminotransferase (AST), g-glutamyltransferase

(GGT), lactate dehydrogenase (LD), and alkaline phosphatase (ALP) and the serum

concentrations of total bilirubin (TB), total protein (TP), and albumin (Alb). These are also

typical analytes used by practising clinicians for assessing liver and other diseases. The

distribution of these chemicals in other tissues is known to some extent [7] and none are

specific to the liver, contrary to popular belief among clinicians.

Previous work described the importance of finding better methods for drug-induced

liver injury (DILI) and suggested that the dynamic patterns of liver-test vectors may
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convey additional diagnostic information beyond the current clinical practice [27]. This

report describes an approach to constructing a scientific and quantitative framework to

support those findings using these blood analytes and their dynamics as measured from

clinical blood samples to assess the homeostatic state of the liver. The primary hypothesis

is that the entire 8-tuple of these measurements, or a subset thereof, can be represented in a

vector space as a Brownian particle [8,11,22] on a spring and that a disease or drug effect

on the liver will be reflected by departures from a multivariate Ornstein–Uhlenbeck (OU)

process [12,28] used to define homeostasis. This report addresses the homeostasis part of

the problem but not the patterns of deviation from homeostasis (pathodynamics).

In the clinic, blood tests are invasive, somewhat expensive, and time consuming.

Management of the data is also expensive. Therefore, the physician only wants to obtain

samples as often as necessary. This constraint also applies to drug development. How does

this translate mathematically? Samples may be obtained only at random time intervals or

widely spaced, scheduled times. Only a subset of analyte measurements may be acquired at

a given time because a measurement problem occurs or because some analytes may be

deemed by the physician or the study protocol as unnecessary and therefore a waste of

money. It is rare to have more than a few time points during a given year. This makes it

difficult to use the existing computational methods of regularly spaced stochastic processes

(time series) measured frequently or continuously and in large numbers on a single sample

path such as those in geophysics [20], economics [6], signal processing [4], and

mathematical finance [13,18]. The problem is more analogous to studying the distribution of

an ensemble of sample paths of non-interacting particles [22]. Clinical medicine also

ignores the formal cross-correlation and auto-correlation structures of the data but uses

these haphazardly through intensive training and memorization of patterns. The approach in

this paper aims to address all of these issues in a single maximum-likelihood OU model.

2. Methods

2.1 The OU process

The multivariate mean-reverting OU process can be represented by the stochastic

differential equation (SDE) using Itô calculus [8,11,19]

dXt ¼ 2zðXt 2 mÞ dt þ s dBt; ð1Þ

where X t is a p £ 1 continuous stochastic process vector, B t is a q-dimensional Brownian

motion, or Wiener, process, z is a p £ p positive definite symmetric drift matrix, m is a p £ 1

constant location vector, and s is a p £ q constant diffusion matrix. The solution to this

equation is

Xt ¼ e2ztX0 þ ðIp 2 e2ztÞmþ e2zt

ðt
0

e2zus dBu; ð2Þ

where the initial state X 0 is Gaussian with mean m and cross-covariance a and

e2zt ¼
X1
k¼0

1

k!
ð2tÞkzk ð3Þ

is a p £ p matrix. From this it can be shown that X t is a stationary Gaussian stochastic

process of bounded variation with mean E½Xt� ¼ m and, for large s # t, auto-covariance

Cov½Xs;Xt� ¼ ae2zt ð4Þ
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for t ¼ t2 s. This implies that the joint probability density function for two time points

separated by t time units is

f ðX; tÞ ¼ ð2pÞ2pjCðtÞj
21=2

e2ð1=2ÞðX2MÞ0CðtÞ21ðX2MÞ; ð5Þ

where

X ¼
Xs

Xt

" #

are the measured random variables and

M ¼
m

m

" #

and

CðtÞ ¼
a ae2zt

e2zta a

" #

are unknown parameters of the distribution. For the SDE, m, a, and z are the unknown time-

invariant parameters of interest wheress0 ¼ zaþ az, a positive definite symmetric matrix,

is a measure of the Brownian motion scaling. Since the cross-covariances were not the focus

of interest of this paper, no attempt was made to estimate a unique, biologically meaningful

s. If p ¼ q and the orthonormal rotation matrix that diagonalizes z is identical to the one that

diagonalizes a, then it can be shown that s ¼ ð2zaÞ1=2 ¼ ð2azÞ1=2.

Statistical sampling schemes for X t on the interval 0 # t # T , 1 are well behaved

in most applications. The stationary stochastic processes allow the estimation of unknown

parameters from a single sample path by observing continuous data, by observing discrete

samples with fixed time spacing from the sample path for large T, or by observing a large

number of time points within the fixed interval. None of these are practical for clinical data

sample paths, which are always discretely sampled, usually at a few widely spaced

irregular times and for small or fixed T. Until the parameters are sufficiently well

estimated, the number of patients observed (n), which are stochastically independent

sample paths, must be large enough to achieve good convergence of the estimation

sequences and the optimality properties that result.

2.2 Modelling serum analyte dynamics

The most straightforward and commonly accepted method for estimating the unknown

parameters of a multivariate Gaussian probability density is the maximum-likelihood

estimation (MLE) method [25]. It also produces estimators that are asymptotically

Gaussian, unbiased, and minimum variance for large n. However, it may not have these

properties in small samples. For simplicity, we assumed that z is symmetric positive

definite and p ¼ q. This was done because of the sparseness of the data and to simplify the

computations. Therefore each time pair was assumed to be independent, which may

artificially deflate the variance. The likelihood function for a random sample of n
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individuals measured at time s and then at time sþ t is

Lða; z;m; tÞ ¼
Yn
i¼1

Ymi

j¼1

f ðXij; tÞ; ð6Þ

where Xij is a complete p-vector of measurements from the ith individual at the jth time

interval t. For t ¼ 1; 2; . . . ; 30 estimation using this objective function can be simplified

by maximizing the logarithm of L such that the derivatives of

logL ¼2
Xn
i¼1

mi

 !
p log ð2pÞ2

1

2

Xn
i¼1

mi

 !
log jCðtÞj

2
1

2

Xn
i¼1

Xmi

j¼1

ðXij 2MÞ0CðtÞ21ðXij 2MÞ
ð7Þ

are zero. Since the objective function is nonlinear in the parameter space, Newton’s

method was applied. The stratification by t allowed the examination of the assumption that

the parameters are invariant with respect to t. Unfortunately, there were not enough

observations to check if the parameters are invariant to observation time t. This last

constraint was not considered to be too serious since the OU process in steady state only

depends on t. Programming for the MLE models was done using Matlab [16] code

(Supplemental Files MATLAB).

2.3 Verification of the MLE code using sample statistics

Because of the complexity of the MLE code, sample statistics that converge in large

samples to the same constants as the MLE estimates were used. Estimates for the means

and covariances were computed on a component-wise and pair-wise basis, respectively,

because of incomplete observation vectors. The overall means m and cross-covariances a

were estimated using

�Xk ¼
1

Nk

Xn
i¼1

Xm
j¼1

dkiðtjÞXiðtjÞ ð8Þ

and

akl ¼
1

Nkl 2 1

Xn
i¼1

Xm
j¼1

dkiðtjÞdliðtjÞ
h
XkiðtjÞ2 �Xk

ih
XliðtjÞ2 �Xl

i
ð9Þ

respectively, where m is the number of distinct times in the union for all measurement

times, the indicator function dkiðtjÞ ¼ 1 if the kth component was measured at the jth time

point tj for the ith individual or dkiðtjÞ ¼ 0 if not measured,

Nk ¼
Xn
i¼1

Xm
j¼1

dkiðtjÞ ð10Þ

and

Nkl ¼
Xn
i¼1

Xm
j¼1

dkiðtjÞdliðtjÞ: ð11Þ
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The auto-covariances were estimated for each t to match the MLE’s using

bklðtÞ ¼
1

Nkl

Xn
i¼1

Xm
j¼1

dkiðtjÞdliðtj þ tÞ½XkiðtjÞ2 �XkðtjÞ�½Xliðtj þ tÞ2 �Xlðtj þ tÞ�; ð12Þ

modifying Nkl accordingly, and then computing the matrix equation

zðtÞ ¼
2 log ða21bðtÞÞ

t
; ð13Þ

where the log function here is the inverse of the function in Equation (3).

The standard errors for these estimators were calculated using the bootstrap method

[25]. Random samples of size 1000 were chosen with replacement. Each sample was

replicated 1000 times.

2.4 Analysis of clinical trial data

The clinical laboratory data used for modelling were obtained by pooling results from

hundreds of drug development clinical trials (see Supplemental Files DATA). Each

laboratory test was converted to have a standard unit and name. Untreated and placebo-

treated healthy normal subjects’ data were extracted and obvious outliers were removed,

especially those that were incompatible with life and those that were inconsistent within a

subject over time. After the data were prepared, a subset of males between the ages of 20

and 40 years was extracted for analysis. This subset was chosen to remove the effects of

biological development and aging and because there were not enough females to do a

separate analysis. It is expected that these other subpopulations will have different

parameter values.

The 80 unknown parameters of the multivariate OU model in Equation (1) were

estimated using MLE methods [2,25]. Since the OU model depends only on time

differences (t) between observations, the analysis was stratified by t [ {1; 2; . . . ; 30} in

days to evaluate how the estimates varied with t. It was not possible to stratify by the raw

time because of insufficient sample sizes, although this effect would not be expected in an

unsynchronized sample. Preliminary MLE analyses suggested that replacing t with
ffiffiffi
t

p
in

Equation (5) leads to time-invariant parameters; this was termed the modified OU model.

2.5 Numerical methods

Because of the constraints of clinical data, new software had to be developed to obtain

estimates of the unknown parameters in the OU model. Since this Matlab code was written

only to handle complete vectors, the sample size necessarily decreased as the dimension

increased. Ideally, an 8-dimensional analysis should have been sufficient to estimate all

the parameters of the full model. However, because of the dimension versus sample-size

problem, the analyses were stratified by dimension and the estimates for all possible

combinations of analytes for the given dimension were averaged to get a mean parameter

estimate. This involved running 30·(28 2 1) ¼ 7,650 models. Some did not converge,

primarily due to insufficient sample size. The rule that the sample size had to be greater

than 10p was implemented to improve the modelling behaviour. Sample statistics, which

are model-free and distribution-free, for the means and covariances from Equations (8)

and (9) based on the first two sample moments were used to check the MLE results. The

final descriptive statistical analyses of the results were performed using R [21].
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For the full set of models, processing time for a single processor was on the order of

weeks. A grid of over 200 nodes reduced the computing time to a few days, depending on

resource contention.

3. Results

3.1 Descriptive statistics

Although the sample included data from about 5000 subjects, only about 2000 had one or

more follow-up visits and the number in each stratum was on the order of hundreds. The

frequency distribution of the number of subjects (n) relative to day 0 is shown in Figure 1.

The frequencies decline exponentially, making it difficult to get precise estimates over

long periods of time and demonstrating the need for special approaches to estimating the

parameters. The frequency of measurements by time interval was somewhat flatter but

only had larger numbers in the intervals of 1–14 days. Figure 2 shows the frequencies for

ALT, which is typical of the other analytes. However, intervals up to 30 days were kept to

salvage some additional information. The histograms for all individual analytes are shown

in Supplemental File Figures S3.1–3.9 online. The numbers were significantly reduced

when analytes were combined.

The parameters were statistically evaluated in detail for dimensions p ¼ 1 (the

degenerate case used clinically), p ¼ 2 (the simplest multivariate case), and p ¼ 6 (the

largest dimension with reasonable numbers of subjects). Again ALT is used as a typical

example of the findings. Figure 3(a) shows that the mean is time-invariant relative to the

first observation time and Figure 3(b) shows the same property for the interval times.

Figures 4(a) and (b) show the same for the cross-covariances, respectively. The results for

the all means and cross-covariances were clearly invariant with respect to t (Supplemental

Files Figures S1–S3).

Figure 1. Frequency of subjects by time of observation.
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Figure 2. Frequency of measurements for ALT.

Figure 3. Sample means for ALT by (a) time of observation and (b) time between observations.
The raw data are indicated by points, the means by solid circles, the 95% confidence intervals by
open triangles, the overall mean by the solid line and the overall central 95% region by the dash lines.
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Figure 4. Sample cross-covariance for ALT by (a) time of observation and (b) time between
observations. The estimates are indicated by solid circles, the 95% confidence intervals by open
triangles, the overall estimate by the solid line and the overall central 95% region by the dash lines.

Figure 5. Sample auto-covariance for ALT by time between observations. The estimates are
indicated by solid circles and the 95% confidence intervals by open triangles.
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The sample estimates for the auto-covariance showed an unexpected behaviour.

Although the auto-covariance was clearly not zero for ALT (Figure 5), it appeared to be

flatter than an exponential decay. This time-varying behaviour for z was studied in the

MLE framework because the estimates were more stable, unlike Figure 5.

3.2 Maximum likelihood estimates (MLE)

The evaluation of the components of z and ss0 with respect to t showed a relationship that

was described by the regression zij ¼ kij=
ffiffiffi
t

p
as demonstrated in Figures 6 and 7,

respectively, for ALT. The complete set of estimates is plotted over time in the

Supplementary File Figure S1. The MLE model for Equation (7) was modified and rerun

substituting
ffiffiffi
t

p
for t in the Matlab code. After this modification, both z and ss0 were

essentially constant with the exception of t ¼ 1 (see Figures 8 and 9). It was suspected that

there was something unusual about this particular time point such as time intervals

significantly less than 24 h and these were dropped from further summary analyses. The

complete set of plots for the case using
ffiffiffi
t

p
is shown in the Supplemental File Figure S2. All

of the estimates form and awere essentially constant over time in both situations. It was also

found that this time modification did not work as well for TB (subscript 6).

The summary of the parameter estimation results using the sample statistics and

modified OU models are shown in Tables 1–4. Although many off-diagonal parameters

were near zero, many were not. Even if they were all zero, a multivariate model is still

required to control the probability of false positives [26].

3.3 Cross-correlation

Based on the MLE’s of the unknown parameters for p ¼ 6, a graphical representation of

the static relationship between the natural logarithms of ALT and AST demonstrates the

Figure 6. The MLE estimates of z for ALT by time between observations. The estimates are
indicated by solid circles, the 95% confidence intervals by open triangles, the overall mean by the
dash line, and the regression line using the square root of the interval by the solid line.
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cross-correlation between these two analytes (Figure 10). The inner rectangle is the union

of the two 95% reference intervals and the outer frame is approximately a 3-fold change in

those reference intervals in the raw-data space, both clinical standards. Results falling

anywhere on this entire graph would be considered as not clinically significant under

current practice. The ellipse is the joint 95% MLE reference region [26]. The striations

occurred because of the excessive rounding that is customary for clinical data presentation.

This has an unusually large effect on TB data. It can be easily observed that the data do not

fit the box. In higher dimensions, this defect is exacerbated.

3.4 Auto-correlation

A major advantage of using dynamic models is that they capture the time information between

measurements, usually reflected in the auto-covariance (auto-correlation) structure or

parameters, in this case z. In the OU model, the auto-covariance decays at an exponential rate.

This is a common assumption embedded in many software packages for longitudinal, or

Table 1. Sample and MLE estimates of m.

MLE

Analyte Sample p ¼ 1 p ¼ 2 p ¼ 6

ALT 2.98 2.98 2.98 2.93
AST 3.07 3.03 3.03 3.03
GGT 2.82 2.98 2.96 2.79
LD 5.07 5.14 5.12 5.03
ALP 4.32 4.31 4.31 4.32
TB 20.51 20.60 20.61 20.55
TP 7.26 7.31 7.31 7.26

Alb 4.44 4.41 4.41 4.43

Figure 7. The MLE estimates of ss0 for ALT by time between observations. The estimates are
indicated by solid circles, the 95% confidence intervals by open triangles, the overall mean by the
dash line, and the regression line using the square root of the interval by the solid line.
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time-series, data. In our modified OU model, the auto-covariance decays exponentially with

respect to the square root of time. This rate of decay is much slower. Based on a p ¼ 6 model

of simultaneous parameter estimates, the size of the 95% central marginal probability ellipse

in two dimensions grows slowly (Figure 11), although it moves to the asymptotic state along

the minor axis faster than along the major axis. Conversely, the ability to detect time changes

or deviations from the expected randomness is greatly enhanced because the region that

represents no statistical change is much smaller. The outer ellipse is the 95% reference

Table 2. Sample and MLE estimates of a.

Analyte ALT AST GGT LD ALP TB TP Alb

ALT
Sample 0.2256 0.1030 0.0725 0.0349 20.0068 0.0009 0.0167 0.0106
MLE p ¼ 1 0.2314
MLE p ¼ 2 0.2253 0.1215 0.0690 0.0532 20.0033 20.0170 0.0089 0.0189
MLE p ¼ 6 0.2312 0.1057 0.0656 0.0306 0.0015 20.0145 0.0174 0.0120

AST
Sample 0.1277 0.0193 0.0458 20.0080 0.0100 0.0208 0.0191
MLE p ¼ 1 0.1543
MLE p ¼ 2 0.1484 0.0186 0.0963 20.0153 0.0080 0.0176 0.0293
MLE p ¼ 6 0.1316 0.0170 0.0477 20.0048 0.0068 0.0145 0.0239

GGT
Sample 0.3195 0.0046 0.0103 20.0528 0.0309 20.0109
MLE p ¼ 1 0.2471
MLE p ¼ 2 0.2633 20.0006 0.0149 20.1125 0.0320 20.0116
MLE p ¼ 6 0.3537 0.0017 0.0183 20.0500 0.0425 20.0084

LD
Sample 0.1309 0.0015 0.0139 0.0047 0.0006
MLE p ¼ 1 0.2043
MLE p ¼ 2 0.1852 20.0260 0.0517 0.0135 0.0174
MLE p ¼ 6 0.1023 20.0022 0.0123 0.0040 0.0077

ALP
Sample 0.0987 20.0136 0.0130 0.0163
MLE p ¼ 1 0.1019
MLE p ¼ 2 0.0979 20.0157 0.0177 0.0169
MLE p ¼ 6 0.0890 20.0077 0.0135 0.0166

TB
Sample 0.2484 0.0339 0.0258
MLE p ¼ 1 0.4033
MLE p ¼ 2 0.3885 0.0295 0.0239
MLE p ¼ 6 0.2915 0.0263 0.0291

TP
Sample 0.2570 0.0870
MLE p ¼ 1 0.2364
MLE p ¼ 2 0.2338 0.0876
MLE p ¼ 6 0.2336 0.0752

Alb
Sample 0.1091
MLE p ¼ 1 0.1274
MLE p ¼ 2 0.1274
MLE p ¼ 6 0.1113
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boundary for a single measurement (Figure 11) and it is also the boundary for a second

measurement taken infinitely long after the first one is observed at the centre. For this analyte

pair, the ellipse effectively reaches the asymptotic boundary after about 180 days. It may be

faster or slower for other analyte combinations but without the homeostasis model, this

information cannot be used efficiently.

The numbers of days for the specified marginal ðp ¼ 6Þ decay are shown in Table 5 for

the 8 analytes. Somewhere in the range of 90% decay or higher, the observation vectors

Table 3. Sample and MLE estimates of z.

Analyte ALT AST GGT LD ALP TB TP Alb

ALT
Sample 0.2054 20.1777 20.0914 0.0220 20.0305 20.0373 0.0425 20.0171
MLE p ¼ 1 0.1108
MLE p ¼ 2 0.1192 20.0443 20.0206 20.0248 0.0066 20.0040 0.0192 0.0003
MLE p ¼ 6 0.1640 20.0731 20.0318 20.0104 20.0002 20.0073 0.0079 0.0072

AST
Sample 0.3398 0.0453 20.1090 0.0757 0.0456 20.0033 20.1044
MLE p ¼ 1 0.1142
MLE p ¼ 2 0.1479 0.0013 20.0195 0.0222 0.0051 0.0230 20.0144
MLE p ¼ 6 0.2415 0.0045 0.0355 0.0124 0.0101 0.0163 20.0045

GGT
Sample 0.1754 20.0069 20.0167 0.0709 20.0487 0.0621
MLE p ¼ 1 0.1039
MLE p ¼ 2 0.1185 20.0296 0.0024 0.0268 0.0130 0.0474
MLE p ¼ 6 0.1411 20.0140 0.0031 0.0317 20.0063 0.0220

LD
Sample 0.0303 0.0478 20.0344 0.0069 20.0038
MLE p ¼ 1 0.1119
MLE p ¼ 2 0.1615 0.0153 20.0059 20.0368 20.0097
MLE p ¼ 6 0.1921 20.0105 0.0141 0.0259 0.0229

ALP
Sample 0.0510 20.0116 0.0077 20.0319
MLE p ¼ 1 0.0409
MLE p ¼ 2 0.0441 0.0035 0.0158 0.0091
MLE p ¼ 6 0.0464 0.0032 0.0167 0.0056

TB
Sample 0.0740 20.0189 0.0408
MLE p ¼ 1 0.1145
MLE p ¼ 2 0.1219 0.0194 0.0248
MLE p ¼ 6 0.1952 0.0105 0.0066

TP
Sample 0.1409 0.0328
MLE p ¼ 1 0.2021
MLE p ¼ 2 0.2183 0.0798
MLE p ¼ 6 0.1986 0.0761

Alb
Sample 0.1004
MLE p ¼ 1 0.1645
MLE p ¼ 2 0.1661
MLE p ¼ 6 0.1708
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might be considered as stochastically independent, from a practical standpoint. Otherwise,

a dynamic, homeostasis model appears to be needed to make proper clinical decisions.

4. Discussion

These findings suggest that dynamic models of liver tests might improve the ability to

detect when the liver is transitioning away from homeostasis in the presence of variation

that is currently considered clinically insignificant. This can be achieved by using the time

Table 4. Sample and MLE estimates of ss0.

Analyte ALT AST GGT LD ALP TB TP Alb

ALT
Sample 0.0458 20.0091 20.0179 20.0049 20.0023 20.0038 0.0134 20.0082
MLE p ¼ 1 0.0505
MLE p ¼ 2 0.0504 0.0178 0.0087 0.0009 0.0015 20.0045 0.0117 0.0049
MLE p ¼ 6 0.0630 0.0144 0.0015 0.0042 0.0017 20.0032 0.0098 0.0060

AST
Sample 0.0375 0.0075 20.0151 0.0113 0.0098 0.0042 20.0160
MLE p ¼ 1 0.0346
MLE p ¼ 2 0.0376 0.0087 0.0128 0.0030 0.0043 0.0142 0.0044
MLE p ¼ 6 0.0461 0.0024 0.0169 0.0026 0.0081 0.0138 0.0078

GGT
Sample 0.0883 20.0005 20.0043 0.0244 20.0075 0.0161
MLE p ¼ 1 0.0541
MLE p ¼ 2 0.0622 20.0080 0.0043 0.0024 0.0143 0.0099
MLE p ¼ 6 0.0962 20.0072 0.0049 0.0071 0.0095 0.0082

LD
Sample 20.0013 0.0144 20.0118 0.0014 20.0065
MLE p ¼ 1 0.0528
MLE p ¼ 2 0.0589 0.0001 0.0036 20.0262 20.0032
MLE p ¼ 6 0.0316 0.0002 0.0075 0.0119 0.0062

ALP
Sample 0.0086 20.0030 0.0029 20.0010
MLE p ¼ 1 0.0082
MLE p ¼ 2 0.0079 20.0006 0.0093 0.0052
MLE p ¼ 6 0.0072 0.0011 0.0094 0.0057

TB
Sample 0.0303 0.0069 0.0141
MLE p ¼ 1 0.0658
MLE p ¼ 2 0.0644 0.0198 0.0147
MLE p ¼ 6 0.0814 0.0212 0.0130

TP
Sample 0.0754 0.0340
MLE p ¼ 1 0.0945
MLE p ¼ 2 0.1013 0.0550
MLE p ¼ 6 0.0969 0.0526

Alb
Sample 0.0230
MLE p ¼ 1 0.0415
MLE p ¼ 2 0.0426
MLE p ¼ 6 0.0419
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Figure 8. The MLE estimates of z for ALT by time between observations using
ffiffiffi
t

p
. The estimates

are indicated by solid circles, the 95% confidence intervals by open triangles, and the overall mean
by the dash line.

Figure 9. The MLE estimates of ss0 for ALT by time between observations using
ffiffiffi
t

p
. The

estimates are indicated by solid circles, the 95% confidence intervals by open triangles, and the
overall mean by the dash line.
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Figure 10. Clinical normality for the natural logarithms of AST and ALT. The box is the
intersection of the two individual 95% reference intervals. The ellipse is the joint 95% reference
region using the cross-correlation information. The graph frame is sized to enclose the region that is
considered clinically insignificant for these two analytes. Actual data are plotted using dots to
demonstrate the lack of fit when using the box for clinical decisions. The discretization of the data is
an artefact of clinical rounding error in data reporting.

Figure 11. Dynamic variation of the joint 95% reference region for the natural logarithms of AST
and ALT for two measurement times. It is assumed that the first measurement is at the centre of the
ellipse. The time interval t is in days.
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information (memory) between measurements in a modified OU model to detect

nonrandom movement or changes in stochastic behaviour. A candidate for the SDE for

liver homeostasis is

dXt ¼ 2t21=2zðXt 2 mÞ dt þ t21=4s dBt: ð14Þ

Unfortunately, this equation is not physically intuitive because the homeostatic force

appears to be relative to the amount of time between observations. The properties of this

equation are given in the Appendix. However, it will require further study to see if there is

a formulation that leads to a solution that is only a function of t.

Because DILI is so difficult to detect in clinical trials, it is important to find more

sensitive and specific ways to detect these signals [27]. This model provides a

mathematical framework for enhanced signal detection and classification and is consistent

with clinical observations in untreated healthy normal subjects. Even though stochastic

calculus is ubiquitous in finance and economics, it is largely untapped in the biological

sciences, especially in clinical medicine [1,3,10,14,17,23,24,29,30]. The use of a q-

dimensional ðq – pÞ Brownian motion process to describe the driving force of the

biological system could be very useful. The value of q is unknown and does not enter into

any of the calculations presented here. Many aspects of the whole biological organism

may not be measurable and thus are unknowable, especially when interactions with the

environment are included. It is conceivable that the summation of large numbers of

stochastic processes should lead to an observable Gaussian process, for which

some function of Brownian motion may be a reasonable representation. Because of

insufficient data, the goodness-of-fit of the Brownian motion assumption was not tested

statistically but the results from the model appear to be consistent with diffusion process

that is slower than Brownian motion.

The next step in modelling homeostasis is to develop an MLE model that uses all the

data simultaneously for all time intervals and for all combinations of incomplete vectors.

This work is currently underway but is much more difficult from a numerical analysis

standpoint. After this new software is ready, besides finding an appropriate diffusion

process, additional questions need to be explored. These include determining if the

population value of m is appropriate or if it needs to be individualized [23], if the

parameters vary by gender, age, and other demographic aspects, and if the variation due to

the analytical variation in laboratory methods can be separated from the biological

variation. The applicability of this approach may be useful in modelling relative liver

Table 5. Elapsed time in days to the indicated percentage decay in the marginal auto-correlation.

Auto-correlation decay (%)

Analyte 50 75 90 95

ALT 18 71 197 334
AST 8 33 91 154
GGT 24 97 266 451
LD 13 52 144 243
ALP 223 893 2463 4168
TB 13 50 139 236
TP 12 49 134 228
Alb 16 66 182 308
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homeostasis in chronic diseases such as diabetes so that changes due to DILI or another

disease can be detected efficiently even though the patient is abnormal at baseline. There is

nothing here that makes the approach restricted to liver biology. Similar homeostasis

models can be developed for other combinations of clinical measurements.

A clinician may wonder why so much attention is being paid to constructing a more

sensitive method for detecting ‘ordinary’ DILI when the medical problem is really finding

methods for detecting ‘idiosyncratic’ DILI with greater specificity. For the nonclinician

readers, the medical definition of idiosyncratic is something characterised as being

peculiar to the given individual, i.e., particular genetic and environmental factors make a

person peculiarly susceptible. For instance, idiosyncratic drug reactions are a problem for

drug development because they tend to be very rare with an incidence on the order of 1 in

10,000 or lower, and the drug is removed from the market or the development is stopped if

the reaction is serious and occurs in only a few patients. For truly idiosyncratic reactions,

this problem may be unsolvable both clinically and mathematically because the

combinations of factors can be very large and there may never be enough data to verify a

model or a laboratory test. The homeostasis model was pursued first for the following

reasons:

. As described in this paper and elsewhere [26], current methods of detecting

abnormalities are crude and do not use clinical measurements efficiently. A better or

more mathematical definition of normal is needed to form a foundation for

modelling specific pathological states.

. Better models of normal should lead to smaller regions, increasing sensitivity, and

therefore increase the size of the complement set, indirectly improving specificity

when the region for a particular abnormality is close to or intermingled with the

normal region.

. Medical statisticians tend to focus on the null hypothesis (normal) but clinicians are

interested in the various alternative hypotheses (pathological states), which are

generally not modelled by statisticians. Although the latter is the real aim of our line

of research, proper mathematical definitions of normal have not been used

previously, therefore detecting deviations from normal requires better definitions.

. The space between the normal region and the ‘clinically significant’ region,

commonly defined univariately as a three-fold change from the normal boundary

(Figure 10), is largely ignored in drug development and clinical practice. By using

the appropriate models of homeostasis and disease, we may find many more specific

patterns in this space that would otherwise be ignored. It is hypothesised that some

types of so-called idiosyncratic DILI are not really idiosyncratic but are relatively

common and undetected because of the current insensitive approach. Better

homeostasis models may lead to the discovery of these types of DILI and may lead

to predicting which patients are susceptible to idiosyncratic reactions, even though

the actual rare event may not be amenable to such modelling.

. A dynamic model of homeostasis whose variation can be considered largely as

biological randomness provides a standard for measuring changes in or deviations

from the normal random fluctuations even though the patient’s sample path may

never cross the normal boundary. It is hypothesised that changes in random

behaviour can be detected and modelled to predict specific types of DILI.

. The homeostasis model should be the simplest dynamic case for describing the

behaviour of clinical measurements. If models for this case are unknown or

unknowable, it is not likely that specific dynamic disease models can be
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constructed. This paper is meant to show that such a model exists for liver tests. It

may be possible now to generalise it to the various liver lesions.

. Multivariate properties of existing common laboratory tests may be less expensive,

more sensitive, and more specific than new biomarkers.

To some extent, the concept of clinical significance is used by clinicians as a device to

avoid unnecessary costs and procedures. It most likely came about when clinicians

discovered that statisticians could make the variance of a statistic arbitrarily small by

increasing the sample size in a study. Common statistical approaches not only filter out

measurement errors but also tend to remove much of the biological variability. Part of the

intent of this research is to understand the dynamic biological variability in clinical

measurements to determine if the regions of normality and clinical insignificance contain

any diagnostic information.

Once we have a good quantitative definition of homeostasis, the specificity problem

can be attacked using pathodynamic (nonequilibrium) models of disease. Such phenotypic

models may then map to specific genotypes or genotype-environment combinations and

may provide a good transitional link between systems biology and clinical medicine.
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A. Appendix

We seek a modification of the stationary, mean-reverting OU process (Equation (1)) that has constant
mean vector m, constant covariance matrix a, and time-dependent drift zðtÞ ¼ t21=2z. This can be
achieved at the expense of a time-dependent diffusion matrix sðtÞ ¼ t21=4s. Specifically, we show
that the equation

dXt ¼ 2zðtÞðX t 2 mÞ dt þ sðtÞ dBt ð15Þ

has a stationary solution such that E½Xt� ¼ m and

E½ðXs 2 mÞðXt 2 mÞ0� ¼ ae22j
ffiffi
t

p
2
ffiffi
s

p
jz:

Applying Itô’s formula [8,11,19] to e2
ffiffi
t

p
zðX t 2 mÞ and using Equation (15), we find

e2
ffiffi
t

p
zðXt 2 mÞ2 e2

ffiffi
t

p
zðXs 2 mÞ ¼

ðt
s

e2
ffiffi
u

p
zs

1

u 1=4
dBu ð16Þ
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and it follows that

Xt ¼ mþ e22ð
ffiffi
t

p
2
ffiffi
s

p
Þ Xt 2 mþ

ðt
s

u21=4e2
ffiffi
u

p
zs dBu

� �
: ð17Þ

Note that the stochastic integral in Equation (17) can be extended down to 0, because the integral
is square integrable on the interval ½0; t�. It follows immediately that

E½X t� ¼ mþ e22
ffiffi
t

p
zðE½X0�2 mÞ

so that E½Xt� ¼ m ;t . 0 if E½X0� ¼ m:
To compute the covariance matrix, note that

e2
ffiffi
s

p
z E
h
ðXs 2 mÞðX t 2 mÞ0

i
e2
ffiffi
t

p
z ¼ E ðe2

ffiffi
s

p
zðXs 2 mÞÞðe2

ffiffi
t

p
zðXt 2 mÞÞ0

h i

¼ E ðe2
ffiffi
s

p
zðXs 2 mÞÞ e2

ffiffi
s

p
zðX t 2 mÞ þ

ðt
s

u21=4e2
ffiffi
u

p
zs dBu

� �0" #

¼ e2
ffiffi
s

p
zE½ðXs 2 mÞðXs 2 mÞ0�e2

ffiffi
s

p
z:

Therefore, if 0 # s , t,

E½ðXs 2 mÞðX t 2 mÞ0� ¼ E½ðXs 2 mÞðXs 2 mÞ0�e22ð
ffiffi
t

p
2
ffiffi
s

p
Þz:

It remains to compute the one-time covariance, and this hangs on the fact that the standard, OU
process (Equation (1)) is stationary with covariance matrix a if and only if azþ za ¼ ss0. Using
Equation (16) with s ¼ 0, we find

E½ðe2
ffiffi
t

p
zðX t 2 mÞÞðe2

ffiffi
t

p
zðXt 2 mÞÞ0� ¼ E½ðX0 2 mÞðX0 2 mÞ0� þ

ðt
s

u21=2e2
ffiffi
u

p
zss0e2

ffiffi
u

p
z du:

Letting

RðtÞ ¼ E½ðX t 2 mÞðXt 2 mÞ0�;

we find

RðtÞ ¼ e22
ffiffi
t

p
z Rð0Þ þ

ðt
s

u21=2e2
ffiffi
u

p
zss0e2

ffiffi
u

p
z du

� �
e22

ffiffi
t

p
z

and it follows that R satisfies the differential equation

_RðtÞ ¼ 2
zffiffi
t

p RðtÞ2 RðtÞ
zffiffi
t

p þ
ss0ffiffi

t
p :

This has a stationary solution RðtÞ ; a if and only if

0 ¼ 2
zaffiffi
t

p 2
azffiffi
t

p þ
ss0ffiffi

t
p ;

that is, if and only if zaþ az ¼ ss0.
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