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This paper considers modelling atherogenesis, the initiation of atherosclerosis, as an
inflammatory instability. Motivated by the disease paradigm articulated by Russell
Ross, atherogenesis is viewed as an inflammatory spiral with positive feedback loop
involving key cellular and chemical species interacting and reacting within the intimal
layer of muscular arteries. The inflammation is modelled through a system of non-
linear reaction–diffusion–convection partial differential equations. The inflammatory
spiral is initiated as an instability from a healthy state which is defined to be an
equilibrium state devoid of certain key inflammatory markers. Disease initiation is
studied through a linear, asymptotic stability analysis of a healthy equilibrium state.
Various theorems are proved giving conditions on system parameters guaranteeing
stability of the health state and conditions on system parameters leading to instability.
Among the questions addressed in the analysis is the possible mitigating effect of anti-
oxidants upon transition to the inflammatory spiral.
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1. Introduction

Mathematical models have a significant role to play in understanding the structure,

functioning, evolution and diseases of the cardiovascular system. Moreover, formulating,

simulating and analysing such models offer a vast array of challenges. (See [14] for an

interesting survey on the subject.) This article is a continuation of a program to develop,

analyse and simulate mathematical models of atherosclerosis initiated by the authors in [7].

Atherosclerosis is a very complex chronic disease of the arterial system with many

manifestations and many routes to initiation and progression [4,13,15–17]. Biochemical,

genetic, mechanical and pathogenic factors conspire to initiate and promote the disease.

The focus of [9] and the present contribution is the role played by inflammation in

atherogenesis [5,15,16]. This is not to suggest that genetic, mechanical and pathogenic

factors are unimportant or are subordinate to the inflammatory processes considered herein

and in [7] and [9]. Account is taken of them through parameters in the equations studied

below that model a particular inflammatory cycle thought to play a fundamental role in
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atherogenesis. Histology of the arterial wall also plays an important role in atherosclerosis.

Histological details depend upon the basic arterial type (elastic arteries vs. muscular

arteries), artery location, age as well as disease initiated changes such as adaptation and

remodelling (from chronic hypertension, for example) and degradation (inflammation

induced medial diminution, for example). In [9] and the present study, attention is focused

is upon the inner most layer of the arterial wall, the tunica intima since the very beginning

stages of atherosclerosis are largely confined to this layer.

The first extension to the analysis in [7] given by the authors appears in [9] where we used

an energy estimate to analyse the stability of a model of atherogenesis that focused on only

four species involved in the inflammatory process, and which considered the interplay

between viable and apoptotic immune cells. Herein, we consider an extended model that

includes the role of low-density lipoproteins (LDL) in both a native and chemically modified

state (oxLDL), as well as reactive oxygen species (referred to throughout as ‘free radicals’)

present in the subintimal layer. Anti-oxidant effects are also introduced through a parameter.

While these species were considered as part of the original model proposed by the authors in

[7], they were ignored in the numerical and analytical studies appearing in [7–9].

The inflammatory process modelled in [7] involved the following ingredients: two

cellular species (smooth muscle cells and macrophages), lesion debris (necrotic cells, lipid

core of foam cells and smooth muscle cells)1 and three molecular species (LDL, chemically

modifiedLDLand a chemical signally species). Eachof the cellular andmolecular species are

to be viewed as representative of large classes of cells or molecules exhibiting the functional

response attributed to the respective representative. For example, while a number of immune

system cells play a role in the in ammatory processes occurring during atherogenesis, the

monocyte derivedmacrophages are probably the dominant players in the creation of the lipid-

laden foamcells that collect in the lipid-rich core of atherosclerotic plaques.Hence to simplify

the model, macrophages are the only immune systems cells included in the modelling.

Similarly, the LDL species should be viewed as a generic representative of a large class of

lipid molecules and oxLDL as a generic representative from the corresponding class of lipids

that have been oxidized (chemically modified) by free radicals.

The point of view articulated in [16] and motivating the model adopted in [7] is that

atherosclerotic plaques form as a consequence of chronic inflammation sustained through a

positive inflammatory feedback loop [5,6,15,16]. The heart of this disease paradigm consists

of the following process elements. Through various means such as shear stress [2], a portion

of the endothelial layer of a muscular arterial wall develops a ‘leaky’ spot permitting

accelerated transport of LDL (and other macromolecular species) through the endothelial

barrier into the intima where they tend to concentrate due to the difficulty of further passage

through the inner elastic lamina into the media [12]. Simultaneously, monocytes also enter

the intima in response to chemical signalling from an initiating inflammatory reaction

(possibly due to viral or bacterial insult, for example) [10]. The LDL is eventually chemically

modified by reactive oxygen species (typically referred to as free radicals) produced through

natural metabolic processes occurring in various cellular species within the arterial wall (e.g.

smoothmuscle cells, endothelial cells, fibroblasts, etc.). Macrophages have an affinity for the

oxLDL resulting from this chemical modification process (Indeed, there is a strong

experimental evidence that macrophages exhibit positive chemotactic sensitivity to these

oxLDL species), eventually becoming foam cells (i.e. macrophages engorged with oxLDL

particles). These engorged macrophage-derived foam cells are no longer capable of doing

their customary job of removing the debris produced by the inflammatory processes; in fact

they become components of the growing lesion debris. The growing lesion debris produces

various chemical signalling species that attract additional macrophages to the lesion site
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which then get ‘corrupted’ by the oxLDL species resulting in a chronic inflammatory spiral

[6,15,16]. Another aspect of plaque growth modelled in [7] involves the recruitment (via

chemical signalling) of smoothmuscles to the lesion site and their role in forming a tough cap

to isolate the lesion from healthy tissue and the lumen. However, since this is characteristic of

the latter stages of the disease process, we do not consider this process at present.

A number of important issues were not addressed in [7] including how to model plaque

growth with significant luminal occlusion and how to determine under what conditions the

runaway inflammatory/plaque growth spiral occurs and conversely under what conditions

the natural defence mechanisms of the body prevent it. The latter question is the subject of

[9] and the present paper.

The perspective taken in [9] and extended herein on the latter question is that it is one of

stability of the non-linear reaction–diffusion–chemotaxis system used to model the

inflammatory processes initiating atherosclerotic plaque growth. More specifically, the

question investigated is whether certain equilibrium states of the governing system of non-

linear partial differential equations, referred to as ‘healthy states’, are linearly,

asymptotically stable. These healthy states are characterized by the absence of

inflammatory markers, which in the context of the model described above, correspond to

equilibrium states in which the macrophage, debris and chemical signal species are at some

baseline level in the intimal layer that is commensurate with normal immune function. As

stated, the results presented here differ from those obtained in [9] as we account here for

LDL, oxLDL and free-radical interaction and reactions. In addition, we consider herein

both a closed system – in which boundary transport (into the intima via the endothelial

layer) is not allowed – and a more realistic system allowing for boundary transport of some

species. For the latter case, the mathematical methods employed in [9] are adapted to

account for the increased mathematical complexity introduced.

2. Mathematical model

The model for atherogenesis of interest here tracks the evolution of six generic ‘species’

which are major contributors to the initial stages of atherosclerosis. These species are generic

in that they are representative of classes of factors contributing to the inflammatory processes

leading to disease initiation. In this spirit, these representative species are given the labels:

immune cells (principally macrophages), debris (developing lesion), chemoattractant, native

LDL, oxidized LDL and free radicals, and denoted I, D, C, L, Lox and R, respectively.

The governing equations for this simplified model are of the form:

›I
›t

¼ divðm17I Þ2 divðxðI ; CÞ7CÞ2 d11I 2 a15ILox 2 a12IDþMf0; ð1Þ

›D
›t

¼ divðm27DÞ þ c15ILox 2 a21ID2 d22D; ð2Þ

›C
›t

¼ divðm37CÞ þ p32D2 a31CI 2 d33C; ð3Þ

›L
›t

¼ divðm47LÞ2 a46LRþ b4Aoxr4Lox; ð4Þ

›Lox

›t
¼ divðm57LoxÞ þ c46LR2 Aoxr4Lox 2 b15ILox; ð5Þ

›R
›t

¼ divðm67RÞ2 b46LR2 b6AoxRþ pR: ð6Þ
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Here, div and f denote the usual divergence and gradient operators. The various terms

appearing on the right-hand side of these equations require some discussion.

The term 2x(I, C)fC in Equation (1) is the portion of immune cell flux due to

chemotaxis, and the coefficient x(I, C) is the chemotactic sensitivity.2 The term d11I
represents natural turnover of immune cells. The two terms a15ILox and a12ID in (1) give

the rate at which the macrophage population is diminished through foam cell formation

(through binding with oxidized LDL), and through normal immune function. The latter,

for example, could be accounted for by viable macrophages binding with debris for

eventual processing in the liver.3 Finally, in the stability analyses that follow, we will be

considering a perturbation off of a constant level of macrophages. In essence, we are

looking at a small time window. The term Mf0 in (1) represents a baseline level of

immune cells present. In general, Mf0 could depend on the level of chemoattractant,

especially at the boundary where transport across the endothelial layer can occur. We can

assume that over the time scales of interest, the value is constant. Mass transport through

the endothelial layer will be considered in a later section.

The term b15ILox appearing in Equation (5) represents conversion of oxidized LDL

into foam cells. The balance of mass is captured by c15ILox which appears in Equation (2);

thus we have c15 ¼ a15 þ b15. The term a21ID is the rate at which debris is removed by

uncorrupted macrophages while d22D is a natural turnover rate for debris.

In (3), p32D is the rate at which chemoattractant is produced by the lesion debris, while

a31CI is the rate by which the chemoattractant concentration is diminished by binding with

macrophages. The term d33C is a natural chemical degradation rate for the chemoattractant.

In (4)–(6), a46LR and b46LR are the rates at which the native LDL and free radical

concentrations are diminished by free radical oxidation of the native LDL (and their sum

c46 ¼ a46 þ b46 added to the Lox concentration), while Aoxr4Lox is the rate at which the

anti-oxidant concentration, Aox, is able to reverse the oxidative damage done to LDL by

the free radicals. The coefficient b4 (with 0 , b4 , 1) is an efficiency parameter

representing the fraction of the products of the Aox 2 Lox reverse reaction feeding back

into the native LDL population.4 Finally, pR in (6) is the rate of free radical production,5

and Aoxb6R is the rate at which the anti-oxidant concentration is able to reduce the free

radical concentration through direct reaction.

In the next sections, we perform a linear stability analysis of the form in our recent

work [9]. We will consider the Equations (1)–(6) to hold in a domain V with inner and

outer boundaries G1 and G2, respectively. Though we will not specify the geometry

exactly, V can be taken as a deformed annulus in two dimensions, or an annular

(deformed) cylinder in three dimensions. In the first section that follows, we will consider

Equations (1)–(6) to be coupled with homogeneous Neumann boundary conditions on

G1 < G2. This will result in natural extension of the method developed in [9] to the larger

system considered here. Later, we will modify the method to consider Equations (1)–(6)

and allow for a non-homogeneous boundary condition on G1 for immune cells, LDL and

the chemoattractant.

Transport of chemoattractant and immune cells – monocytes that are differential into

macrophages in the tissue – will be considered as influenced by the differential of the level

of chemoattractant at the boundary with some baseline level of chemoattractant in the

plasma . If the level of chemoattractant at the endothelium exceeds this baseline,

monocytes respond by entering into the intimal layer where they become macrophages.

Similarly, chemoattractant exits the intima into the plasma when the baseline level is

exceeded. The transport of native LDL, into the arterial wall – or out in the case of reverse

transport – will likewise be considered. This will allow us to introduce the baseline level
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of LDL in the plasma which will affect the existence and nature of an equilibrium healthy

state. This leads to additional mathematical challenges that are addressed in Section 4.

3. Stability analysis with homogeneous boundary conditions

As stated, we consider Equations (1)–(6) to govern the various species within the domain

V and impose the homogeneous boundary conditions

›I
›n

¼
›D
›n

¼
›C
›n

¼
›L
›n

¼
›Lox

›n
¼

›R
›n

¼ 0;

on G1 < G2. We begin by assuming that there is a constant equilibrium state

ðI e;De; Ce;Le; Loxe;ReÞ, and introduce the perturbation variables u, v, w, z, y and s

which are defined by

I ¼ I eþu; D¼Deþ v; C¼ Ceþw; L¼Leþ z; Lox ¼Loxeþ y and R¼Reþ s:

Substituting the assumed form for I 2 R into (1)–(6) and keeping only terms that are

linear in the perturbation variables results in the system of equations

›u

›t
¼ divðm17uÞ2 divðx7wÞ2 Au2 Bu2 Cu2 Dv2 Ey; ð7Þ

›v

›t
¼ divðm27vÞ þ Fu2 Gu2 Hv2 Ivþ Jy; ð8Þ

›w

›t
¼ divðm37wÞ2 Kuþ Lv2Mw2 Nw; ð9Þ

›z

›t
¼ divðm47zÞ2 P1zþ P2y2 P3s; ð10Þ

›y

›t
¼ divðm57yÞ2 Q1uþ Q2z2 Q3y2 Q4yþ Q5s; ð11Þ

›s

›t
¼ divðm67sÞ2 R1z2 R2s2 R3s; ð12Þ

with the boundary conditions

›u

›n
¼

›v

›n
¼

›w

›n
¼

›z

›n
¼

›y

›n
¼

›s

›n
¼ 0: ð13Þ

For ease of notation, we have introduced a number of parameters. The new parameters are

defined to be:

A ¼ d11; B ¼ a15Loxe; C ¼ a12De; D ¼ a12I e; E ¼ a15I e;

F ¼ c15Loxe; G ¼ a21De; H ¼ a21I e; I ¼ d22; J ¼ c15I e;

K ¼ a31Ce; L ¼ p32; M ¼ a31I e; N ¼ d33; P1 ¼ a46Re; P2 ¼ b4Aoxr4;

P3 ¼ a46Le; Q1 ¼ b15Loxe; Q2 ¼ c46Re; Q3 ¼ Aoxr4; Q4 ¼ b15I e;

Q5 ¼ c46Le; R1 ¼ b46Re; R2 ¼ b46Le; R3 ¼ b6Aox and x ¼ xðI e; CeÞ:

Each of these constants is assumed to be non-negative. Note that due to balance of

mass F ¼ B þ Q1, J ¼ E þ Q4, Q2 ¼ P1 þ R1 and Q5 ¼ P3 þ R2. In our analysis, we will
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make the simplifying assumption that the mobility and diffusions coefficient mi,

i ¼ 1, . . . , 6 are constant.

Let ~U ¼ ðu; v;w; z; y; sÞ. Before proceeding, we define stability in the following way:

Definition. The equilibrium state is called asymptotically stable if every solution of the

linearized initial boundary value problem (7)–(13) for the perturbation variables vanishes

at infinity in the sense that there exists a positive functional

F ð ~UÞ ¼ FðtÞ such that lim
t!1

FðtÞ ¼ 0:

We will adapt the method used in [9], to build appropriate functionals for two cases of

the system (7)–(13) before turning attention to a system with non-homogeneous boundary

conditions. In the first of these cases, we assume that the integrals of the products uv and uw

over V are positive. Physically, this can be interpreted as saying that an increase debris

(v . 0) and an increase in chemoattractant (w . 0) results in an increase in immune cells

(u . 0). Likewise a decrease in debris and chemoattractant (v , 0, w , 0) is met with a

decrease in immune cells (u , 0). This is physically reasonable. However, we will show

that this condition can be dropped and a slightly weaker stability condition can be obtained.

3.1 Case A:
Ð
V uv dx > 0 and

Ð
V uw dx > 0

In this section, we introduce several integrals. For ease of notation, we will suppress the

integration variables. All integration is over the domain V unless otherwise specifically

indicated.

The transition matrix characterizing the species interactions associated with the system

(7)–(12) is

L ¼

2ðAþ Bþ CÞ 2D 0 0 2E 0

F 2 G 2ðH þ IÞ 0 0 J 0

2K L 2ðM þ NÞ 0 0 0

0 0 0 2P1 P2 2P3

Q1 0 0 Q2 2ðQ3 þ Q4Þ Q5

0 0 0 2R1 0 2ðR2 þ R3Þ

2
66666666664

3
77777777775
:

We will assume that the eigenvalues of L have negative real part.6 In the following

construction, this ensures that
R
Ui ! 0 as t ! 1 for Ui ¼ u, v, w, z, y or s. This follows

from Green’s theorem and the homogeneous Neumann boundary conditions. This

constraint does not guarantee stability of the system or even point-wise boundedness of

each Ui. We will also assume here that m2 ¼ 0 which is consistent with the immobile

nature of the lesion core.

Throughout the construction of an appropriate functional, we will make judicious use

of the inequalities

ðCauchyÞ ab # 1a2 þ
1

41
b2; and

ðPoincar�eÞ

ð
V

u2 #
1

jVj

ð
V

u

� �2

þCp

ð
V

j7uj
2
:
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The parameter Cp present in the Poincaré inequality is a constant that depends on the

geometry of the domain. When an L 2 norm is considered, Cp is related to the inverse of the

first positive eigenfrequency of a free membrane [1].With the constraint that the eigenvalues

of L have negative real part, each of the integrals (
R
Ui)

2 will decay exponentially. So, for

simplicity, we will ignore these terms from the beginning of our construction.

We begin by multiplying (7) by u, (8) by v and so forth. Integration by parts and

application of the Poincaré and Cauchy inequalities to several terms yields the preliminary

inequalities:

1

2
›t

ð
u2 #

ð
2 A1þ

Cp

2
ðm12x=2Þ2

DþE

2

� �
u2þ

D

2
v 2þ

E

2
y22

m1

2
j7uj

2
þ
x

2
j7wj

2

� �
;

ð14Þ

1

2
›t

ð
v2 #

ð
2G1uv2 H12

J

2

� �
v2þ

J

2
y2

� �
; ð15Þ

1

2
›t

ð
w2 #

ð
2Kuwþ

L

2
v22 M1þ

Cp

2
m32

L

2

� �
w22

m3

2
j7wj

2

� �
; ð16Þ

1

2
›t

ð
z2 #

ð
2 P1þCpm42

P2þP3

2

� �
z2þ

P2

2
y2þ

P3

2
s2

� �
; ð17Þ

1

2
›t

ð
y2 #

ð
Q1

2
u2þ

Q2

2
z22 Q3þQ4þCpm52

Q1þQ2þQ5

2

� �
y2þ

Q5

2
s2

� �
; ð18Þ

1

2
›t

ð
s2 #

ð
R1

2
z22 R2þR3þCpm62

R1

2

� �
s2

� �
: ð19Þ

For ease of notation, we set

A1 ¼AþBþC; G1 ¼G2F; H1 ¼Hþ I and M1 ¼MþN:

To proceed, we multiply (7) by ut /D and use the equality from (9)

72w¼
1

m3

ðwtþKu2LvþM1wÞ; ð20Þ

to arrive at

1

D

ð
ðutÞ

2 #

ð
2

m1

2D
›tj7uj

2
2

x

m3D
utwt2

xK

2m3D
þ

A1

2D

� �
›tu

2

�

þ
xL

2m3D
ðutÞ

2þ
xL

2m3D
v 22

xM1

m3D
utw2utvþ

E

2D
ðutÞ

2þ
E

2D
y2
�
; ð21Þ

We can further separate the second term on the right-hand side by imposing the Cauchy

inequality. That is

x

m3D
utwt #

x

41m3D
ðutÞ

2þ
1x

m3D
ðwtÞ

2:
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Later, 1 will be specified as needed. We impose the conditions:

½Condition1� E, 1;

½Condition2�
xL

2m3

,
1

4
and

½Condition3�
x

41m3

,
1

8
:

This will allow us to move all terms involving (ut)
2 to the left. We have

1

8D

ð
ðutÞ

2 #

ð
2

m1

2D
›tj7uj

2
þ

1x

m3D
ðwtÞ

22
xK

2m3D
þ

A1

2D

� �
›tu

2

�

þ
xL

2m3D
v22

xM1

m3D
utw2utvþ

E

2D
y2
�
: ð22Þ

Next, we want to use Equation (9) to investigate the term ð1x=m3DÞðwtÞ
2 appearing in

(22), and choose an advantageous value for 1. If we multiply (9) by 2wt, integrate by parts

and use the Cauchy inequality on the product vwt, we haveð
2ðwtÞ

2 #

ð
2m3›tj7wj

2
2 2Kuwt þ Lv2 þ LðwtÞ

2 2M1›tw
2

h i
:

Imposing

½Condition 4� L , 1;

1x

m3D

ð
ðwtÞ

2 #

ð
2

1x

D
›tj7wj

2
2

21xK

m3D
uwt þ

1xL

m3D
v 2 2

1xM1

m3D
›tw

2

� �
:

Finally, we can substitute this into Equation (22). If in addition, we set

1 ¼
M1

2K
;

we can collect the products utw and uwt into a single term. The resulting inequality is

1

8D

ð
ðutÞ

2 #

ð
2

m1

2D
›tj7uj

2
2
xM1

2KD
›tj7wj

2
2
xM1

m3D
›tðuwÞ2utv

�

2
xK

2m3D
þ

A1

2D

� �
›tu

22
xM2

1

2Km3D
›tðwÞ

2þ
xL

2m3D
þ

xM1L

2Km3D

� �
v2þ

E

2D
y2
�
: ð23Þ

Inequality (23) is one of the principal inequalities to be used in the current construction.

Here, we simply note that by our definition of 1 the previous [Condition 3] can be restated as

xK

2M1m3

,
1

8
:

To continue, we assume

½Condition 5� G1 ¼ G2 F . 0 and

½Condition 6� J , 1:
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Then, if we multiply both sides of (8) by (1/G1)vt and integrate, we can obtain

1

2G1

ð
ðvtÞ

2 #

ð
2uvt 2

H1

2G1

›tv
2 þ

J

2G1

y2
� �

: ð24Þ

Now, we can combine (14)–(19), (23) and (24) to obtain the first major inequality. In so

doing, we will move all terms involving a time derivative to the left and ignore terms of the

form (ut)
2, (vt)

2 and (wt)
2.

ð
›t

1

2
þ

xK

2m3D
þ

A1

2C

� �
u2 þ

1

2
þ

H1

2G1

� �
v 2 þ

1

2
þ

xM2
1

2Km3D

� �
w2

�

þ
1

2
z2 þ

1

2
y2 þ

1

2
s2 þ ðuvÞ þ

xM1

m3D
ðuwÞ þ

m1

2D
j7uj

2
þ

xM1

2KD
j7wj

2

�
#

2

ð
Cuu

2 þ Cvv
2 þ Cww

2 þ Czz
2 þ Cyy

2 þ Css
2 þ CuvðuvÞ

�
þCuwðuwÞ þ C7uj7uj

2
þ C7wj7wj

2
i
: ð25Þ

The coefficients on the right-hand side are

Cu ¼ A1 þ
Cp

2
m1 2

x

2

� �
2

Dþ E þ Q1

2
;

Cv ¼ H1 2
Dþ J þ L

2
2

xL

2m3D
2

xM1L

2Km3D
;

Cw ¼ M1 þ
Cp

2
m3 2

x

2

� �
2

L

2
;

Cz ¼ P1 þ m4Cp 2
P2 þ P3 þ Q2 þ R1

2
;

Cy ¼ Q3 þ Q4 þ m5Cp 2
P2 þ Q1 þ Q2 þ Q5 þ E þ J

2
2

E

2D
2

J

2G1

;

Cs ¼ R2 þ R3 þ m6Cp 2
P3 þ Q5 þ R1

2
;

Cuv ¼ G1;

Cuw ¼ K;

C7u ¼
1

2
m1 2

x

2

� �
C7w ¼

1

2
m3 2

x

2

� �
:

We are ready to state our first major result.

Theorem 1. The equilibrium solution (Ie,De, Ce,Le,Loxe,Re) of (1)–(6) subject to the

homogeneous Neumann boundary conditions is asymptotically stable provided

(i)
R
uv . 0 and

R
uw . 0

(ii) all eigenvalues of L have negative real part,

(iii) Conditions 1–6 hold, and

(iv) M ¼ minðCu;Cv;Cw;Cz;Cy;Cs;Cuv;Cuw;C7u;C7wÞ . 0
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The proof requires a definition of the functional as the obvious modification of the left-

hand side of (25). Of interest is the physical interpretations of the sufficiency conditions

stated here. The first has already been discussed.

As for the eigenvalues of L, if E ! 1 and J ! 1 (Conditions 1 and 6) and Q1 ! 1, then

to leading order, the matrix is block diagonal. Each of these parameters being small

indicates weak foam cell production since E, J and Q1 are rates at which immune cells and

oxLDL are transformed into debris. Then, if Q2 ! 1 and R1 ! 1, the lower block would

have eigenvalues2P1,2 (Q3 þ Q4) and2 (R2 þ R3) which are all negative. Now, Q2 and

R1 are rates of oxidation of LDL, a destabilizing reaction, whereas (Q3 þ Q4) and

(R2 þ R3) are rates of healthy restoration due to anti-oxidant reaction. So, these

eigenvalues being negative indicates dominance of anti-oxidant reactions over oxidation

of LDL. This is physically realistic as a stability – i.e. indication of healthiness –

condition. As for the upper block under the conditions E ! 1 and J ! 1 and Q1 ! 1, if

L ! 1 (Condition 4) so that production of chemoattractant is small, then to leading order

the eigenvalues of the upper block are

2M1; 2
1

2
ðH1 þ A1Þ^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH1 þ A1Þ

2 2 4ðH1A1 2 DGÞ

q
:

Large M1 indicates low levels of the chemoattractant consistent with low inflammation,

while large A1 (due to A and C) and H1 indicate healthy immune function since these are

rates of decrease of immune cells and debris due to normal immune response. Large D and

G1 also indicate healthy immune response. The eigenvalues have negative real part

provided
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH1 2 A1Þ

2 þ 4DGÞ
p

, H1 þ A1, which is also physically reasonable in the

sense that this would be associated with stabilizing effects dominating.

Next, the meaning of Conditions 1, 4 and 6 have been given. Conditions 2 and 3 hold if

the diffusion due to m3 dominates the chemotactic effects due to x. This is well known as

stabilizing in any system characterized by chemotaxis. Finally, Condition 5 holds if removal

of debris due to normal immune function (G) is large compared to foam cell production due

to binding of macrophages to oxLDL (F). This is a physically relevant condition.

Finally, note that each of the coefficients on the right-hand side in (25) have positive

and negative part (in order from left to right). The last item of the theorem holds if

diffusion dominates chemotactic effects (Cu;Cw;Cz;Cy;Cs;C7u;C7w . 0), healthy

immune response dominates inflammation (A1, G1, H1, K and M1 are large, L small),

and anti-oxidant effects dominate over oxidation (Q2, R1 and Q5 are small compared to

Q3 þ Q4 and R2 þ R3). Note that each of these is naturally consistent with stability.

We note here that (25) can be rewritten in the form

d

dt

ð
~j ·A1

~j # 2

ð
~j ·A2

~j;

where ~j ¼ ðu; v;w; z; y; s; j7uj; j7wjÞT

A1 ¼

d1
1
2

xM1

2m3D
· · · 0

1
2

d2 · · · · · · 0

xM1

2m3D
0 d3 · · · 0

0 0 0 d4 · · ·

..

. ..
. ..

. ..
. ..

.

2
6666666664

3
7777777775
;
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and

A2 ¼

Cu
Cuv

2
Cuw

2
· · · 0

Cuv

2
Cv 0 · · · 0

Cuw

2
0 Cw · · · 0

..

. ..
. ..

. ..
. ..

.

2
6666664

3
7777775
:

For asymptotic stability, it is sufficient that A1 and A2 be positive definite (See the Lemma

in Appendix A). This general result can be verified for any particular set of the parameter

values if such data becomes available. Unfortunately, in contrast to Theorem 1, this is

difficult to evaluate from a bio-physical perspective in the absence of numerical data.

Theorem 1, however, gives an explicit set of inequalities involving the pivotal parameters

of the system. To overcome the discrepancy for the case when the integrals
R
uv and

R
uw

can change signs, we use the modified construction that follows.

3.2 Case B: Dropping the assumptions
R
uv,

R
uw > 0

The preceding theorem requires
R
uv,

R
uw . 0. We can drop this requirement and obtain a

slightly different result. We require a regrouping of the terms in our inequality (25) to

eliminate the products uv and uw in favour of terms of the form (u þ v)2 and (au þ bw)2

for some constants a and b. To this end, first note that

1

2
u2 þ uvþ

1

2
v2 ¼

1

2
ðuþ vÞ2:

A regrouping as this leaves us with

xK

2m3D
þ

A1

2D

� �
u2 þ

1

2
þ

xM2
1

2Km3D

� �
w2 þ

xM1

m3D
ðuwÞ;

still appearing on the left in (25). We can restate these terms as

Fu2 þCw2 þ ðauþ bwÞ2;

by setting

a ¼

ffiffiffiffiffiffiffiffiffiffiffi
xK

2m3D

s
; b ¼ M1

ffiffiffiffiffiffiffiffiffiffiffi
x

2m3D

r
; F ¼

A1

2D
andC ¼

1

2
:

Let the vector Y be defined component wise by

Y1 ¼

ð
A1

2D
u2; Y2 ¼

ð
H1

2G1

v2; Y3 ¼

ð
1

2
w2; Y4 ¼

ð
1

2
z2;

Y5 ¼

ð
1

2
y2; Y6 ¼

ð
1

2
s2; Y7 ¼

ð
1

2
ðuþ vÞ2;

Y8 ¼

ð
ðauþ bwÞ2; Y9 ¼

ð
m1

2D
j7uj

2
; Y10 ¼

ð
xM1

2KD
j7wj

2
;
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and consider the functional F1(Y) ¼
P

Yi. Obviously, F1(Y) is non-negative and vanishes

only if Y ¼ 0.

Next, we seek a reordering of the relevant terms on the right-hand side of (25).

However, for the case under consideration, let us replace (25) with a similar inequality

obtained by replacing (14) with the following:

1

2
›t

ð
u2 #

ð
2 A1 2

E

2

� �
u2 þ

E

2
y2 2 Duv2 m1 2

x

2

� �
j7uj

2
þ

x

2
j7wj

2

� �
: ð26Þ

Note that this differs from (14) only by the term 2Duv; here, we withhold applying the

Cauchy inequality to the product Duv, while all other terms are unchanged. We obtain the

inequality (25) with the modification that the coefficients Cu,Cv and Cuv replaced by ~Cu; ~Cv

and ~Cuv defined by

~Cu ¼ A1 þ
Cp

2
m1 2

x

2

� �
2

E þ Q1

2
;

~Cv ¼ H1 2
J þ L

2
2

xL

2m3D
2

xM1L

2Km3D
;

~Cuv ¼ G1 þ D:

Set

au ¼

ffiffiffiffiffiffiffiffiffi
1

2
~Cu

r
; av ¼

ffiffiffiffiffi
~Cv

q
and aw ¼

ffiffiffiffiffiffi
Cw

p
:

Then, under the conditions

½Condition 7� auav $ G1 þ D; and

½Condition 8� auaw $ K;

the inequalities

2
1

2
~Cuu

2 þ ~Cuvuvþ ~Cvv
2

� �
# 2

1

2
ðauuþ avvÞ

2

2
1

2
~Cuu

2 þ Cuwuwþ Cww
2

� �
# 2

1

2
ðauuþ awwÞ

2;

hold.

Now, we define the functional F2 as

F 2ðu;v;w;z;y;s;ðauuþavvÞ;ðauuþawwÞ; j7uj; j7wjÞ

¼

ð
~Czz

2þ ~Cyy
2þ ~Css

2þ
1

2
ðauuþavvÞ

2þ
1

2
ðauuþawwÞ

2þ ~C7uj7uj
2
þ ~C7wj7wj

2

� �
:
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The coefficients are related to the previous ones by

~Cz ¼
Cz

1=2
;

~Cy ¼
Cy

1=2
;

~Cs ¼
Cs

1=2
;

~C7u ¼
C7u

m1=ð2DÞ
;

~C7w ¼
C7u

ðxM1Þ=ð2KDÞ
:

Let M¼ minð ~Cz; . . . ; ~C7wÞ. Then, note that

d

dt
F 1ðYÞ#2MF 2ð0;0;0;Y4;Y5;Y6;Y7;Y8;Y9;Y10Þ: ð27Þ

Hence, the perturbations u, . . . , s decay, and the equilibrium solution

ðI e;De;Ce;Le;Loxe;ReÞ

is asymptotically stable7 provided the conditions of Theorem 1 as well as the additional

Conditions 7 and 8 hold.

4. Non-homogeneous boundary conditions

Here, we return our attention to the original system (1)–(6) considered with the new

boundary conditions imposed:

›D
›n

¼
›Lox

›n
¼

›R
›n

¼ 0;

m1

›I
›n

¼ a1ðC2 C*Þ; m3

›C
›n

¼ 2a3ðC2 C*Þ and m4

›L
›n

¼ 2a4ðL2 LBÞ; ð28Þ

on G1. The parameters a1 and a3 are positive constants as is C*. The parameter C*
represents baseline level of chemoattractant in the blood stream. If the level of

chemoattractant at the endothelial layer is greater than the baseline level, chemoattractant

enters the blood stream while immune cells enter into the subendothelial intima. The

parameter LB is the serum level of LDL. Both forward and reverse transport of LDL from

the plasma and intimal layer can be considered depending on the sign of the coefficient a4.

It is well documented that high serum LDL levels are positively associated with arterial

lesions. Allowing the transport of LDL will allow us to arrive at a stability criteria that

relates this level to other significant parameters. We still consider homogeneous boundary

conditions for all species on the outer boundary G2.

Allowing for transport across the boundary in more realistic, yet presents us with

additional mathematical complexity. The primary problem arises when we integrate by

parts as non-zero boundary integrals must be considered. In the following construction, we

make appropriate modifications.

We again linearize the system (1)–(6) about the constant equilibrium state

ðI e;De; Ce;Le;Loxe;ReÞ. It is necessary here that Ce ¼ C* and Le ¼ LB. Let us denote
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the perturbation variables u, v, w, z, y and s which are defined as before by

I ¼ I e þ u; D ¼ De þ v; C ¼ Ce þ w; L ¼ Le þ z;

Lox ¼ Loxe þ y and R ¼ Re þ s:

Upon linearization, we find that u, v, w, z, y and s satisfy Equations (7)–(12) as before.

The boundary conditions for the system now under consideration are unchanged for v, y

and s. That is

›v

›n
¼

›y

›n
¼

›s

›n
¼ 0: ð29Þ

For u, w and z we note that

m1

›ðI e þ uÞ

›n
¼ a1ðCe þ w2 C*Þ so m1

›u

›n
¼ a1w: ð30Þ

Similarly

m3

›w

›n
¼ 2a3w and m4

dz

dn
¼ 2a4z on G1: ð31Þ

We will construct an inequality that allows us to conclude sufficient conditions under

which the equilibrium state is stable. To address the impact of the boundary conditions, we

will use the following inequalities:

ðSobolevÞ

ð
G

u2ds # C1

ð
V

u2 þ j7uj
2

� �
dx and

ðGeneralized FriedrichÞ C2

ð
V

u2dx #

ð
V

j7uj
2
dxþ C3

ð
G

u2ds:

The coefficients C1, C2 and C3 depend on the geometry8 of the domainVwith boundary G.

We proceed in a fashion similar to the previous cases by multiplying (7) by u, (8) by v,

and so forth and integrating by parts to obtain (all integration that follows is overV except

where specifically indicated)

1

2
›t

ð
u2 ¼

ð
G1

uw a1 þ
xa3

m3

� �
2 m1

ð
j7uj

2
þ x

ð
7u ·7w2 A1

ð
u2 2 D

ð
uv2 E

ð
uy;

ð32Þ

1

2
›t

ð
v 2 ¼ 2G1

ð
uv2 H1

ð
v 2 þ J

ð
vy; ð33Þ

1

2
›t

ð
w2 ¼ 2a3

ð
G1

w2 2 m3

ð
j7wj

2
2 K

ð
uwþ L

ð
vw2M1

ð
w2; ð34Þ

1

2
›t

ð
z2 ¼ 2a4

ð
G1

z2 2 m4

ð
j7zj

2
2 P1

ð
z2 þ P2

ð
yz2 P3

ð
zs; ð35Þ

1

2
›t

ð
y 2 ¼ 2m5

ð
j7yj

2
2 Q1

ð
uyþ Q2

ð
zy2 ðQ3 þ Q4Þ

ð
y 2 þ Q5

ð
ys; ð36Þ

1

2
›t

ð
s2 ¼ 2m6

ð
j7sj

2
2 R1

ð
zs2 ðR2 þ R3Þ

ð
s2: ð37Þ
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We assume that the effect of foam cell formation on the concentration of oxLDL is

negligible as compared to the competing oxidizing and anti-oxidant reactions. Thus, for

simplicity, we set Q1 ¼ 0 and likewise Q4 ¼ 0. This is similar to our condition that Q1 is

small in the previous case considered. This of course requires that c15 ¼ a15.

Next, we can apply the Cauchy and Sobolev inequalities to (32) to arrive at the

inequality

1

2
›t

ð
u2 #

1

2

ð
G1

w2 a1 þ
xa3

m3

� �
2 m1 2 C1 a1 þ

xa3

m3

� �
2

x

2

� � ð
j7uj

2

þ
x

2

ð
j7wj

2
2 A1 2

C1

2
a1 þ

xa3

m3

� �� � ð
u2 2 D

ð
uv2 E

ð
uy: ð38Þ

Let us note that large m3 should enhance the stability of the system in general, since

this would indicate strong diffusive effects. Similarly, small a3 and small x would be

associated with stability since this corresponds to weak cumulative (in the domain and on

the boundary) chemotactic effects. If m3 is larger than xa3, we would expect this to be

stabilizing. We impose the condition

½Condition 9� m1 2 C1 a1 þ
xa3

m3

� �
2

x

2
; �m1 $ 0:

This condition coupled with (38) implies

1

2
›t

ð
u2#

1

2

ð
G1

w2 a1þ
xa3

m3

� �
2 A12

C1

2
a1þ

xa3

m3

� �� �ð
u2þ

x

2

ð
j7wj

2
2D

ð
uv2E

ð
uy:

ð39Þ

If we sum (34) and (39), we find that

1

2
›t

ð
ðu2þw2Þ#2 a32

1

2
a1þ

xa3

m3

� �� �ð
G1

w22 �m1

ð
j7uj

2
2 m32

x

2

� �ð
j7wj

2

2 A12
C1

2
a1þ

xa3

m3

� �� �ð
u22D

ð
uv2E

ð
uy2K

ð
uwþL

ð
vw2M1

ð
w2:

ð40Þ

For ease of notation, we will introduce the parameter �a

�a ¼ a3 12
1

2

a1

a3

þ
x

m3

� �� �
:

Similarly, we introduce the parameter �m3 and impose the condition

½Condition 10� m3 2
x

2
; �m3 $ 0:

Set Cð �a; �m3Þ ¼ minð �a=C3; �m3Þ. Then Cð �a; �m3Þ will increase if both �a and �m3 increase, and

is at least non-decreasing in �a and �m3 independently. Letting C ¼ C2, where C2 is the other

geometrically dependent constant appearing in the generalized Friedrich inequality, we
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have (after applying said inequality)

�a

ð
G1

w2 þ �m3

ð
V

j7wj
2
$ Cð �a; �m3ÞC

ð
V

w2:

One of the primary inequalities – that for sum u 2 þ w 2 – can now be written

1

2

d

dt

ð
ðu2 þ w2Þ # 2 A1 2

C1

2
a1 þ

xa3

m3

� �� � ð
u2 2 M1 þ Cð �a; �m3ÞC 2

L

2

� � ð
w2

þ
L

2

ð
v2 2 D

ð
uv2 E

ð
uy2 K

ð
uw: ð41Þ

Additional inequalities are obtained from (33), (36) and (37), for v 2, y 2 and s 2,

respectively.

1

2

d

dt

ð
v2 # 2G1

ð
uv2 H1 2

J

2

� �ð
v2 þ

J

2

ð
y2: ð42Þ

1

2

d

dt

ð
y2 # 2

m5

Cp

þ Q3 2
Q2 þ Q5

2

� �ð
y2 þ

Q2

2

ð
z2 þ

Q5

2

ð
s2 þ

m5

CpjVj

ð
y

� �2

: ð43Þ

1

2

d

dt

ð
s2 # 2

m6

Cp

þ R2 þ R3 2
R1

2

� �ð
s2 þ

R1

2

ð
z2 þ

m6

CpjVj

ð
s

� �2

: ð44Þ

We cannot impose physically reasonable conditions analogous to those used in

previous sections that allowed us to ignore the terms (
R
y)2 and (

R
s)2 that arise from use of

the Poincaré inequality. These additional terms are obviously non-negative, so at present,

we will treat them as we treat the perturbations variables u 2 2 s 2. That is, we will find

sufficient conditions on the various parameters such that

d

dt

ð
y

� �2

, 0 and
d

dt

ð
s

� �2

, 0:

We integrate (11) and (12) over V then multiply by (
R
y) and (

R
s), respectively.

Making use of the fact that both y and s satisfy homogeneous Neumann boundary

conditions, and using the Cauchy–Schwarz inequality on terms of the form (
R
z)2 we

obtain

1

2

d

dt

ð
y

� �2

# 2 Q3 2
Q2 þ Q5

2

� � ð
y

� �2

þ
Q2jVj

2

ð
z2 þ

Q5

2

ð
s

� �2

; ð45Þ

and

1

2

d

dt

ð
s

� �2

# 2 R2 þ R3 2
R1

2

� � ð
s

� �2

þ
R1jVj

2

ð
z2: ð46Þ

Finally, we can consider the variable z. Since we can allow a4 to have either sign, there

are two cases. If a4 . 0, we have reverse transport. In the absence of medical intervention,

this is the less likely case as LDL molecules are typically trapped in the arterial wall. We

could ignore this case; however, it is of interest to see what the stabilizing effect is and how

it balances with other parameters.
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First, in the case of forward transport, a4 ¼ 2 ja4j , 0, we can use the Sobolov

inequality and obtain from (35)

1

2

d

dt

ð
z2 # 2ðm4 2 ja4jC1Þ

ð
j7zj

2
2 P1 2 ja4jC1 2

P2 þ P3

2

� �ð
z2 þ

P2

2

ð
y2 þ

P3

2

ð
s2:

ð47Þ

The destabilizing effect is readily apparent as we see that the criterion for decay will

require P1 to increase as ja4j increases. We will require the condition

½Condition 11:1� m4 . ja4j; if a4 , 0:

For the reverse transport case (a4 . 0), we can consider the expression

2m4

ð
j7zj

2
2 a4

ð
G1

z2 þ f0

ð
z2;

where

f0 ¼
P2 þ P3 þ R1 þ Q2 þ ðR1 þ Q2ÞjVj

2
:

Application of the Friedrich’s inequality to the term f0

R
z 2 gives

2m4

ð
j7zj

2
2 a4

ð
G1

z2 þ f0

ð
z2 # 2 m4 2

f0

C2

� �ð
j7zj

2
2 a4 2

f0C3

C2

� �

�

ð
G1

z2: ð48Þ

Here, we will impose

½Condition 11:2� m4 . f0=C2 and a4 . f0C3=C2 if a4 . 0:

This latter condition guarantees the existence of a positive constant Ĉ such that

2m4

ð
j7zj

2
2 a4

ð
G1

z2 þ f0

ð
z2 # 2Ĉ

ð
z2:

Our primary result for this section is arrived at by summing the inequality (47) [or

using (48)] with (41)–(46). Assuming the Conditions 9, 10, hold, and that the appropriate

Condition 11.1 or 11.2 holds, we have

1

2

d

dt

ð
½u2 þ v2 þ w2 þ z2 þ y2 þ s2� þ

1

2

d

dt

ð
y

� �
þ

ð
s

� �� �

# 2 Cu

ð
u2 þ Cv

ð
v2 þ Cw

ð
w2 þ Cz

ð
z2 þ Cy

ð
y2 þ Cs

ð
s2

�

þðDþ G1Þ

ð
uvþ E

ð
uyþ K

ð
uwþ CÐ

y

ð
y

� �2

þCÐ
s

ð
s

� �2
#
: ð49Þ
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The coefficients on the right-hand side are

Cu ¼ A1 2
C1

2
a1 þ

xa3

m3

� �
;

Cv ¼ H1 2
J þ L

2
;

Cw ¼ M1 þ Cð �a; �m3ÞC 2
L

2
;

Cz ¼

P1; a4 . 0

P1 2 ja4jC1 2
P2þP3þR1þQ2

2
2 ðR1þQ2ÞjVj

2
; a4 , 0;

8<
:

Cy ¼
m5

Cp

þ Q3 2
J þ P2 þ Q2 þ Q5

2
;

Cs ¼
m6

Cp

þ R2 þ R3 2
P3 þ R1 þ Q5

2
;

CÐ
y
¼ Q3 2

Q2 þ Q5

2
;

CÐ
s
¼ R2 þ R3 2

R1 þ Q5

2
;

Let the vector ~V ¼ ðu; v;w; z; y; s;
Ð
y;
Ð
sÞ, and assume the following condition is met.

[Condition 12] Each of the coefficients Cu;Cv; . . . ;C
Ð
s
are positive.

Define the functional

F 3ð~VÞ ¼
X6
i¼1

ð
V2
i

 !
þ V2

7 þ V2
8;

and the parameters

bu ¼

ffiffiffiffiffiffiffiffiffi
1

3
Cu

r
; bv ¼

ffiffiffiffiffiffi
Cv

p
; bw ¼

ffiffiffiffiffiffi
Cw

p
and by ¼

ffiffiffiffiffiffi
Cy

p
:

Finally, define

F 4ð~VÞ ¼

ð
1

2
ðbuuþ bvvÞ

2 þ
1

2
ðbuuþ bwwÞ

2 þ
1

2
ðbuuþ byyÞ

2

þM z2 þ s2 þ

ð
y

� �2

þ

ð
s

� �2
 !

;

where M ¼ min{Cz;Cs;C
Ð
y
;CÐ

s
}.

Theorem 2. The equilibrium solution ðI e;De; Ce;Le;Loxe;ReÞ of (1)–(6) subject to the

boundary conditions (28) is asymptotically stable provided Conditions 9–12 hold and if

bubv $ Dþ G1; bubw $ K and buby $ E:
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If all hypotheses in Theorem 2 are satisfied, then

d

dt
F 3ð~VÞ # 2F 4ð~VÞ;

establishing asymptotic stability for this case analogous to (27) for the previously

considered equations.

The parameters �m1 and �m3 appearing in Conditions 9 and 10, respectively, are positive

when the competing effects of diffusion and chemotaxis are such that diffusion dominates.

Dominance of diffusion in such systems is again well known to be stabilizing. A

comparison of �m1 with the parameter C7u from Section 3.1 shows that the inclusion of

boundary transport of immune cells due to chemotaxis places a stronger burden on

immune cell motility for stabilization. We have

�m1 ¼ m1 2 C1 a1 þ
xa3

m3

� �
2

x

2
and C7u ¼

1

2
m1 2

x

2

� �
:

The diffusive capability of immune cells must overcome chemotaxis across the boundary –

governed by parameters a1 and a3 – in addition to the interior of the domain. The more

likely of the two versions of Condition 11, is the case a4 , 0 since forward transport of

LDL molecules and subsequence trapping of such molecules is what is observed. The

diffusion parameterm4 is non-negative; here, Condition 11.1 imposes a lower bound on this

value for stability. It means that diffusion must dominate the influx due to haptotaxis at the

endothelial layer and high serum LDL levels. Finally, Condition 12 represents a sufficient

relationship between various stabilizing and destabilizing factors. Of interest here is the

two coefficients CÐ
y
and CÐ

s
unique to the case allowing for boundary transport. The

parametersQ2,Q5 and R1 are oxidation rates with respect to the concentrations of LDL and

free-radicals. Parameters Q3 and R3 are proportional to the anti-oxidant concentration.

Positivity of CÐ
y
and CÐ

s
can thus be interpreted as requiring the anti-oxident level to be

large as compared to the oxidation reaction rates, which is intuitive as a stability criterion.

5. Conclusion

Herein, we have extended the methodology introduced in [9] to study atherogenesis as an

inflammatory instability. As before, we are able to obtain physically reasonable stability

criterion given, our model of the disease process. Of note at present is the inclusion of the

previously neglected interactions involving LDL cholesterol, oxygen and anti-oxidant

species. In particular, we see that increasing the anti-oxidant levels in the system, in

conjunction with any action that increases diffusivity in the domain has the expected effect

of mitigating disease. Moreover, we obtain particular inequalities that can be considered as

data becomes available. For example, we found that we require (closed boundary case)

12
b4

2

� �
Q3 þ m5Cp .

Q2 þ Q5 þ E þ J

2
þ

E

2D
þ

J

2G1

;

which gives a specific relationship between the magnitude of anti-oxidant reaction

((1 2 b4/2)Q3), diffusion (m5) and healthy immune function (D andG1) as compared to the

total oxidation rate (Q2 þ Q5) and foam cell production (E þ J).

The final result suggests that any intervention that can minimize – or to an even larger

extent, reverse – the influx of LDL into the intima will provide the greatest degree of

stability. What is more, from the Condition 11.2 (reverse transport), and perhaps more
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importantly from the coefficient Cz in Section 4 corresponding to transport of LDL into the

intima (forward transport), the size of the domain plays a role in stability. Here, we see that

the smaller the domain (i.e. jVj) the more stable the system. If the geometry is known, an

explicit stability condition on the parameters can be obtained relative to the shape and

thickness of the intimal layer.

Herein, we were also able to adapt the method presented in [9] to the more realistic

inclusion of the effects of boundary transport. This is possible as we avoid the

mathematical intractability that can occur when using spectral theory. By using Sobolov

embedding, we are further able to obtain stronger results. For example, we are able to

show that in some cases the gradients of the perturbations, in addition to the perturbations

themselves vanish asymptotically.

A number of assumption were made within the current study such as the constant rate of

free-radical production and the constant level of anti-oxidant concentration among others.

More complex dynamics for additional species such as free radicals, anti-oxidants, and high-

density lipoproteins (HDL) can reasonably be included. Cobbold Sherratt and Maxwell, in

their study of LDL oxidation [3], do include and analyse the effect of the presence of HDL –

known to mitigate LDL oxidation. Expansion of the governing equations to account for

additional processes is one topic of ongoing investigation. The method of analysis is flexible

and lends itself to such extensions. Additional numerical studies of the various parameters

that we obtain herein may further illuminate the relationship between competing reactions

such as rates of LDL oxidation as compared to the rate of uptake of oxidized LDL by

macrophages, or the rate of production of chemoattractant as compared to its natural

degradation and diffusivity. As in [9], we propose that the methodology presented here is

also adaptable to systems other than those considered presently.
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Notes

1. We note here that ‘debris’ is applied in perhaps a non-conventional way. We do not mean to say
that the material we are calling debris is an inert byproduct of some other process that plays no
role other than occupying space. In fact, as will be seen in the mathematical model to follow,
debris – more precisely lesion debris – is an active species participating in the inflammatory
feedback loop. Having used the term ‘debris’ for this species in the previous works [7–9], we
will herein follow this convention.

2. In the classical Keller–Segal model for dictyostelium discoideum, for example, x(I, C) has the
form x(I, C) ¼ I/C [11]. At present, there is no need to specify a particular form for x(I, C).

3. How to model the various ‘reaction’ terms in the governing equations is a significant issue.
Classical ‘mass action’ kinetics is adopted here mostly for illustrative purposes. However, the
coefficients are not assumed to be constants; rather they are functions of the reacting or interacting
species and can capture saturation effects in the reaction rates, for example. For the stability
results considered here, it is not necessary to adopt specific forms for the reaction rates. However,
one must specify values for the reaction rates at a healthy state in order to apply the stability
results to any particular concrete setting. Naturally, specific forms for the coefficients are required
in order to prove the existence of or find healthy (equilibrium) states. In particular, this is done
below for the special case of constant reaction coefficients.

4. We are incorporating a simplified version of the model of Cobbald Sherratt and Maxwell for
LDL modification which presently supresses the multiple stage oxidation process found in [3].
Our generalized native LDL species can be considered as a sum of all LDL that is not fully
chemically modified. The anti-oxidant reaction likewise here appears as a single reaction.
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5. Free radical production is considered here to be a metabolic byproduct which for present
purposes will be assumed to be constant.

6. A number of conditions, including this one imposed on L, will be made. The physical
interpretations will be discussed following the statement of our obtained results.

7. See Appendices A and B for an argument that (27) implies asymptotic stability in the sense
defined previously.

8. In the case of an annulus of inner and outer radii rI and rO, respectively,

C1 ¼
4 lnðrO=rIÞ

r2O 2 r2I
; C2 ¼ r2O 2 r2I

	 

lnðrO=rIÞ

	 
21
and C3 ¼ 1=lnðrO=rIÞ:
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Appendix A

Define F1ðtÞ ¼ F̂1ð ~jðtÞÞ ¼ ~jðtÞ�A1
~jðtÞ and F2ðtÞ ¼ F̂2ð ~jðtÞÞ ¼ ~jðtÞ�A2

~jðtÞ for ~j in Rn, with A1 and
A2 positive definite matrices.
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Lemma. Suppose

d

dt
F1ðtÞ # 2F2ðtÞ; for t . t0;

and F1(t0) . 0. Then

lim
t!1

~jðtÞ ¼ ~0:

Proof. First note that F1(t) ! 0 if and only if ~jðtÞ! ~0, and that F1 is both non-negative and non-
increasing. Thus limt!0F(t) exists and is either zero or a finite number. Suppose limt!0F(t) . 0. It
follows that there exists a1 . 0 such that kx~iðtÞk . a1 for all t . t0. It then follows that there exists
a2 . 0 such that F2(t) . a2, for all t . t0, and hence that

d

dt
F1ðtÞ # 2a2; for t . t0:

But it then follows that there exists T . t0 such that F(t) , 0 for all t . T, in contradiction to the
non-negativity of F1. We can thus conclude that F(t) ! 0 and hence limt!0

~jðtÞ ¼ ~0. A

Appendix B: d=dtðF 1ðtÞÞ # 2MF 2ðtÞ implies asymptotic stability

If F1(t0) ¼ 0 for some t0, then F1 ; 0 since F1 is monotone and non-negative. Otherwise, suppose
that there exists a trajectory Y exceeding some point Y0 at t ¼ 0 such that for for all t . 0 Y remains
outside of a ball of radius R0 . 0. Then at least one of the 10 components of Y exceeds R0/10.

We note that the left- and right-hand sides of the inequality differ only with respect to Y1, Y2 and
Y3. It should thus be considered what happens in the case that one of these components is larger than
R0/10 . 0. If Y1 . R0/10, then as a result of the Poincaré inequality, there exists c . 0 such that
Y9 . cR0/10. Similarly, if Y3 . R0/10, there exists c . 0 such that Y10 . cR0/10. Finally, if
Y2 . R0/10 and Y1 ¼ 0, then there exists some c . 0 such that Y7 . cR0/10.

We can conclude then that there exist positive constants a and T such that for t . T

F 2ðtÞ $ a;

where a depends on the coefficients of the linear system through M and depends on R0 through Y.
But then

d

dt
F 1ðtÞ # 2a;

so that

F 1ðtÞ # 2at þ F 1ð0Þ:

But, for sufficiently large t this contradicts the non-negativity of F1. So F1 must vanish at infinity.
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