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A survey of cell-population models is presented. The so-called cell cycle is discussed,
including some models which are not population models but which contribute to the
better understanding proliferation of cell dynamics. Classical linear models of structured
cell-population models are described with a review of classical results and a comparison
between different approaches. Finally, some non-linear models are also developed.
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INTRODUCTION: THE CELL CYCLE

Cell lifg spans from the birth of a cell as a result
of the division of another cell, the mother cell, into
two, the daughter cells, to the moment when this
cell hag completed its division into two new cells.
There are cells which never divide or are destroyed
before they divide. In normal conditions, cells of
a given line tend to follow the same path. The
life of an ordinary cell passes through a sequence
of recognizable transitions, which repeats itself to
cells of the next generation. This series of events is
known ias the ‘cell cycle.’

The pbest known scenario for the description of
the cell cycle considers four successive periods G1,
S, G2, M. Cells enter the cell cycle in GI1. This
phase does not seem to have a distinctive tfeature,
in fact, the letter G refers to the word ‘gap’, i.c. the

i
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name given to a non-distinctive part of the cycle.
They then enter a phase of active production, the
DNA synthesis, known as the S-phase. This phase
can be empirically determined. It is followed by
another, not easily distinguishable period. the G2
phase. Finally, the cell starts the process which ends
up with the formation of two new cells, known as
the mitosis or M-phase.

During its whole life, the cell grows in size, not
only because it doubles its DNA content, but also
in other constituents such as RNA. It is commonly
admitted that the size is closely related to the mech-
anisms regulating cell life (Mitchinson, 1971; John,
1981) but that size does not refer to a unique and
well-defined character of a cell. It can be the mass
of some constituent such as RNA or even a hypo-
thetical constituent, a mitogen in the sense of Lasota
and Mackey (1984).
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Molecular Biology Approach to the Cell Cycle

The cell cycle has been investigated for many years
at the physiological level and recently by molecular
biological methods. Starting at the end of the 1980s,
cell dynamics modeling developed in a new direc-
tion. Structured cell population models had been
pushed to a limit, well illustrated by the general
model analyzed in Rossa (1995). Experimental find-
ings from cell molecular biology gave a strong impe-
tus to the search for models describing some of the
biochemical mechanisms underlying cell develop-
ment processes. We briefly comment on this.

First of all, we want to underline that the study
of cells at the molecular level is not exactly recent.
Many of the results used today were discovered
in the 1980s. As an example, Nurse and Bisset
(1981) report that, in yeast, cdc2 and cdcl0 genes
are both needed for completion of G1 (cdc means
cell division cycle). Nurse and his collaborators
identified several other genetic elements throughout
the 1980s (Forsburg and Nurse, 1991).

One of the puzzling facts regarding the size struc-
tured models which were so popular in the 1980s
is the case of embryonic cells. On the one hand,
embryonic cells do not grow in size. They undergo
a series of rapid division cycles in the absence of
any growth. On the other hand, these divisions do
not seem to be regulated by doubling of nuclear con-
tent (DNA) since anucleate embryonic cells continue
to divide (Harvey, 1940). It became more and more
evident that size growth is not always a faithful indi-
cator of the progress through the cell cycle and that
molecular biology data should be taken into account.

In this context cell cycle is explained via the bio-
chemical reactions which occur within each cell. It
is accepted that the evolution through different steps
of the cell cycle is due to fluctuations in concentra-
tions of some proteins (cyclins) and this mechanism
is essentially the same for all types of cells. Roughly
speaking, cyclins A and B are produced at a constant
rate in the cell and their concentrations change peri-
odically along the cell cycle. Cyclin B is related to
the production of another protein called ‘maturation
promotion factor’ (MPF) which at high concentra-
tion gives rise to the mitotic phase (Hyver and Le

Guyader, 1990; Norel and Agur, 1991). The first
models of this type concentrated only on this aspect.
Focusing the study on a few biochemical species,
supposedly the main ones, they aimed at describ-
ing the periodic oscillations of the concentrations
(or of the quantities) of these products in a cell. To
mention a few examples, in Thron (1991) and Norel
and Agur (1991), a system of two first-order ODE
(ordinary differential equation) satisfied by cyclin
B and MPF is proposed. Numerical results indicate
the existence of limit cycles. A more complex model
involving six equations was introduced by Obeye-
sekere et al. (1992, 1994, 1995). State variables are
concentrations of different product which control the
so-called ‘mitotic clock’.

It seems, however, that a correct description of
cell dynamics, even restricted to the level of bio-
chemical species present in the cell, has to take cell-
population processes into account: both cell growth
in size and division. Clearly, the cell-cycle clock
is not a function of only concentration. Otherwise,
daughter cells would have the same capacity of
division as the mother cell and could divide right
after, which would lead to smaller and smaller cells.
This is not observed in normal conditions in non-
embryonic cells. Division is also playing a role in
the clock, by resetting the values of the species.

A model coupling cell growth and evolution at the
molecular level was first proposed by Tyson (1991).
An extension of the Tyson model is given by Novak
and Tyson (1995). Roughly speaking, the model
described by Novak and Tyson (1995) is composed
of two subsystems. One is a two-dimensional system
of ODE governing the evolution of two concen-
trations of the biochemical species. The functions
defining the system are non-linear and depend on
parameters which, in fact, are time-dependent and
are solutions to the other subsystem. Amongst these
parameters is the total mass of the cell. One can
think of the variation of the second group of vari-
ables as rapid with respect to the concentrations so
that they remain nearly constant while the cell pro-
gresses through the cycle. The qualitative feature of
the main system (the one verified by the concen-
tration) depends upon the values of the parameters



or, morg generally, the region where the parameters
live. Two main modes can be depicted: the sponta-
neous ascillator mode, observed in embryonic cells,
where tapid autonomous cycles repeat themselves,
and the excitable switch mode, followed by non-
embryomnic cells in which cells can be switched from
quiescence to proliferating state by some perturba-
tion. A quasi-static model of excitable switch is
described in Thron (in preparation).

Val dnd Tyson (in preparation) present a model
for the budding yeast (Sacchoromyces cerevisae)
combining a description of the cell cycle in terms
of somg molecular events, and a stage structured
model i{s proposed. This structured model is a trans-
port equation of the type described by Metz and
Diekmann (1986) and Arino (1995). The vector
of state is a double infinite sequence of functions
{n%, D)), (n}@, 7, ).

n(j)- is| the density (with respect to x) of cells with
J scars, in G1, called pre-START phase by Val
and Tyson (in preparation); n} is the corresponding
density! of cells further on in the cell cycle (called
post-START phase); ¢ is the chronological time,
while 7 is the time spent in post-START at time ¢.
The position of a cell in the cycle is described by the
vector ¥ whose components are, in that given order,
the mags of the cell, the START promoting factor,
a complex made of the so-called A-type cyclins,
the mitpsis promoting factor, a complex made of B-
type cyclins and a specific ubiquitin pathway, which
regulates the destruction of B-types cyclins.

There are three sets of equations: one governs
the dymamics of x; the second linear set is made
of the fransport equations which determine the evo-
lution of cells during the periods when they are
subject|to growth and mortality only. The third set of
equations describes the transition from pre-START
to post-START, on the one hand, and the division
(or trapsitions post-START to pre-START of the
next ganeration), on the other hand. In the absence
of stochastic effects in the transitions, the passage
through START occurs for some value of the cell-
cycle state x which is entirely determined by the ini-
tial va:ite. The same is true for the value at division.
According to Val and Tyson (in preparation) START
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is a signal indicating that the cell is committed irre-
vocably to carry out DNA synthesis and engage into
the sequence of events which ends with mitosis.

Looked at through several cycles, the cell-cycle
state of a small cell (it is known that, at division,
each cell of the budding yeast produces a large cell
and a small one) is a piecewise continuous function
with jumps at division times. Between two con-
secutive jumps, it satisfies the system of equations
associated with the dynamics of x. It is reported by
Val and Tyson (in preparation) that the cell-cycle
state trajectories of all small cells approaches a sim-
ilar cyclic attractor, and it is conjectured that there
is a stable size distribution.

Two Subcycle Cell-Cycle Model

This model is based on the assumption that the
cell cycle constitutes two loosely coupled subcycles.
One is the DNA division cycle (DDC) or chromo-
some cycle, including G2 and M phases and a pre-S
phase. The other subcycle is a cell-growth cycle
(CGC) or cytoplasmic cycle, in which cellular mass
is doubled. Both subcycles are necessary to pro-
duce new cells. DDC has a fairly constant duration,
while CGC varies considerably in growth rate, as
found experimentally. These subcycles are assumed
to be mutually dissociated, being possible that their
completion are not simultaneous. If subcycle CGC
is finished before DDC is completed, it is possible
that the new S-phase starts, generating a tetraploid
cell. Sennerstam and Stromberg (1995a,b) present
an explanation of this model and simulation results
are also provided.

CLASSICAL LINEAR MODELS OF
STRUCTURED CELL POPULATION
DYNAMICS

We introduce in this section some ideas in the
formulation of classical models of cell-population
dynamics, following the survey of Arino (1995).
This work provides a review of classical results
together with a list of references.
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Structured models in cell-population dynamics
were considered for the first time in the 1960s. The
first paper on this subject seems to be by Bell and
Anderson (1967). Work done during the 1970s turns
mostly around ron-linear models, but this situation
changes in the beginning of the 1980s when /in-
ear models of population dynamics began to florish
in various domains of applications, notably in cell-
population dynamics. Most studies culminate in the
proof of stable-type distribution property or asyn-
chronous exponential growth (AEG). In a relatively
very short period of time, many authors identified
independently the main mathematical problems to be
solved in this context and the main tools to be used
(e.g. Pruss, 1981; Diekmann, 1982: Webb, 1983). A
number of books, amongst which are Webb (1985),
Metz and Diekmann (1986) and Lasota and Mackey
(1985, 1994), illustrate the rapid development of the
subject. Amongst the reasons for such a develop-
ment, is the progress made earlier in the theory of
positive operators. Interestingly, it appears that pop-
ulation dynamics played also its role in the theory
of positive operators by giving a strong motivation
for getting new results or improving the formulation
of older ones. Good examples of this effect are the
books by Nagel (1986) and Clément er al. (1987).

Roughly speaking, there are three approaches
to the classical models in cell-population dynam-
ics: cell-generation models, size-density models and
time continuous daughter-cell models. In all cases,
the main assumptions which can be made are:

(a) That each of the two daughters of a dividing cell
gets the same share of the non-genetic material
of the mother. This situation corresponds to
equal division. The alternative situation is called
unequal division.

(b) That a cell may or may not alternate between
active periods, so-called proliferative during
which it grows and divides, and dormant or qui-
escent, when it does not grow or divide.

(c) That the material of a cell grows exponentially
fast or not. It does if the growth rate function is
linear.

(d) That the lifelength of a cell is determined or
stochastic.

For each of the above four alternative statements,
one of them favours AEG, while in some instances
when the other choice is taken, AEG does not hold.

Cell Generation Models (Tyson and Hannsgen;
Lasota and Mackey)

In this model, the cell cycle is divided into two
phases; phase A occupies part of the G1 phase.
During this first phase, the cell grows until it reaches
a size which for all cells is the same, normalized to
the value 1 (unit of size). From this moment on,
it stays in phase A during a time 7o which has a
random distribution. It then enters phase B. Phase B
covers part of G1, the whole S phase, G2 and goes to
the end of mitosis. It lasts for a fixed period of time
T's, the same for all cells (Smith and Martin, 1973).

Time T  follows a Poisson law with parameter p:

Prob {Ta > t} = exp(—pr1)

so that p~' is the average length of phase A, from
g p

the moment when cells reach size 1. Size of cell is
supposed to grow continually during both phases.
Denoting 7 the doubling size time, it is assumed that
Ty < t. Also, equal division is assumed, i.e. each
daughter cell has exactly half the size of the mother.

From the above considerations, one can deduce
that cells have a minimal size o.

The model concentrates on describing the evolu-
tion of generations of cells. This implies that the
time variable is the number of generations (n € N),
not the chronological time. The initial time is the
zeroth generation: all cells present at this initial
stage are taken as the ancestor cells. To each number
n, one associates a probability density function ¥,
obtained by counting the cells produced by # suc-
cessive divisions, starting from ancestor cells, and
calculating the proportion of those cells of each size.

The so-called dynamical process is the process by
which cells pass from n'" to (n+1)® generation. It is
reflected in the densities by a transformation which
gives i,y in terms of ir,. This transformation is
completely determined by the mechanism by which
individual cells progress through the cycle that we
explained before. The derivation is done in Tyson
and Hannsgen (1986) and we refer to this for details.



The |above transformation is expressed in terms
of a kernel K (x, v), so that

+o¢
Yot () = / K ¥ () dy

which determines a linear positive operator P on
L'(0, 400) which leaves the subset of probability
densiti¢s invariant. Such an operator is called a
Markov operator (Lasota and Mackey 1994).

The istable-size distribution problem can be for-
mulated as follows:

To prove existence of a positive fixed point ¢r*
of operator P (a steady-state distribution), and
show that * is globally asymprotically stable,
that'is, show that for each initial probability
density Wy, Y, tends to U*, as n goes to +00.

Condlitions are stated in the above-mentioned
book (Lasota and Mackey, 1994) in order to answer
positively this problem.

Size-Dknsity Models

The best account on size-density models is probably
the bopk by Metz and Diekmann (1986). There
is somje connection with fiuid dynamics in this
approath, namely individuals are like particles of
a fluid iwhich flow into a region, which is the space
of all the structure variables. In a single-type model
(Dieknjann er al., 1984), the state variable is a
scalar ﬁensity function n(t, x), where the structure
variable x may be a vector or a scalar. A standard
choice is the vector (a,s) where a represents the
age and s is a scalar associated with the measure of
some dther character.

This structure variable belongs to some fixed
region Q C RY (N is the dimension of the vector
x) and we assume that the motion of particles in
is governed by an O.D.E.:

dx

T g(x(r)).
The model is obtained counting the number of
individuals entering or leaving any region M of
Q durijng a time interval (¢, + 8¢), jointly with a
standard application of the Stokes theorem, which
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enables us to express the evolution of the population
as a transport equation:

on 0
— + —~[n(t, x)gx)] =B(t, x) = D@, x). (1)
ot ox

B and D correspond respectively to source terms and

sink terms. In order to describe them, we introduce

three functions:

(a) The division rate b(x) (per unit of time/per cell
of size x)

// b(xn(t,x)dxdt
[x1.x2]x[11.£2]

= number of cells of size in [x;, x;]
which divide during the time
interval [ty, 1-].

(b) The mortality rate p(x) (per unit of time/per cell
of size x).

(c) The dispersion of cells at division amongst
the two daughter cells (unequal division). It is
defined in terms of a conditional density f(x, y)
which gives the distribution of the size of a
daughter cell (x), when the size of the mother is
equal to (¥):

/ fx, y)dx

= probability for a daughter cell to have a
size in the interval [x, x»] knowing that
the mother had size y.

Two obvious properties that such a distribution
should verify are f(x,y) = 0 if x > y (the size
of the daughter is less than that of the mother) and
f(x, y) = f(y—ux, ) (the distribution is symmetric,
due to the fact that as soon as the size of one of the
two daughters is known, the other one is also known
in terms of the size of the mother).

With these hypotheses, equation (1) takes the
form

on 3
= 1 &[n(t x)g(x)]
+oo

=2 S »byn(t. y)dy
0

— [b(x) + n(x)]a(, x). (2)
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In case of equal division, the distribution f reduces
to a Dirac function

Flay) =38 <* 2 "'> .

In order to rigorously derive the corresponding
model for equation (2), it is enough to write an
approximation of § by a true function and after
passage to the corresponding limit we obtain the
following equation

on 3[ (1. x)g(x)]
o + = nit, x)gx
=4b2x)n(r, 2x) — [b(x) + ux)In(r, x). (3)

A natural assumption is that division occurs only in
a certain size interval, so that b(x) =0 if x < x; or
x > xy for some 0 < xp < x; < 40o¢.

Moreover, (x;/2) < xg, so that all cells have to
grow for some time before they can divide. Cells
may exceed size x| but cells of size larger than x
do not divide anymore. So they can be treated as
if they had left the cycle. Assuming that division is
equal and no cell divides below size xg, implies that
daughter cells have a minimum size x/2.

As a consequence, we obtain a boundary condi-
tion on the solutions

n(t, X()/2) =0. 4)

A detailed study of system (3)-(4) was undertaken
by Diekmann et al. (1984).

The stable-size distribution is a solution of the
problem which has the form

n(r,x) = e ).

Greiner and Nagel (1988) proved the following
result

Assume that the function g verifies the property
g(2x) < 2g(x), for all x € [xp/2, x,/2]). Then,
system (3)-(4) has a stable-size distribution
(in other words, has exponential asymptotic
growth (AEG)), if the function g is such that
g(2x) < 2g(x) for some x €lxy/2, x1/2[.

The condition g(2x) < 2g(x) is biologically
meaningful. In fact, g(2x) can be interpreted as the
total growth rate of a mother cell of size 2x, while
2g(x) could be seen as the total growth rate of
the two daughter cells if the division were to take
place when the mother has size 2x. Whether the
strict inequality may hold is still an undecided issue.
When it holds, cell-size growth cannot be linear. On
the other hand, it seems to be commonly admitted
amongst biologists that cell size grows exponen-
tially during the unlimited cell-growth phase. This
explains attempts made recently in order to allow
for linear growth rate and have at the same time
AEG. The general model (2)-(4) in which f is a
density of probability other than the Dirac function
was considered by Heijmans (1984), who proved
that AEG holds even in the case when g is such that
g(2x) = 2g(x).

Whether unequal division is an important factor
in producing cell variability is still a controversial
issue amongst biologists. A mechanism was recently
analyzed, by which AEG can hold even in the case
of both linear growth rate and equal division. It
assumes that the total population can be subdivided
into two categories of cells: the proliferative cells
(P), whose size grows according to a certain growth
law, and which are subject to division and the qui-
escent cells (Q), which do not grow and do not
divide. A model allowing for such a mechanism,
motivated by the study of tumour cells was first
derived by Gyllenberg and Webb (1987) and ana-
lyzed by Gyllenberg and Webb (1990, 1991). They
prove that AEG holds under some assumptions.
Different versions of this model are considered by
Rossa (1991, 1995). In all of them, equal division
is assumed.

Time-Continuous Daughter-Cell Models

We now review models describing the evolution of
cells in one specific state: either, at the end of growth
when they are mother cells, or, just after division,
when they are daughter cells. A first model of this
type was proposed by Kimmel et al. (1984) aiming
mainly at showing the influence of unequal division



on the dispersion of cell size through successive gen-
erations. Unequal division is modelled by a function
Sf{x, y) similar to the function considered above,
which in addition satisfies a support property: There
exists 0 < d < 1/2 such that f(x,y) > 0 if
dy <xi< (1—=d)y.

The icell cycle is modeled by means of two
functiohs

T =y

the length (or duration) of the cell cycle of any cell
entering the cycle with size x. It is assumed that yr
is decreasing and

0 < ¢(+00) < ¥(x) < ¥(0).
The other function
y=&x)

gives the final size, that is, the mother size, as a
function of the initial size. It is assumed that @ is
increasing, bounded and continuously differentiable
with ®10) > 1.

The state variable of the model is n(f,y) =
density: of daughter cells with respect to size
and time.

Also jimportant in the derivation of the model is
m(t, y) = density of mother cells with respect to
size and time.

n ancﬂ m are related to each other by two funda-
mental gquations

+oC

n(t,ix) =2 J ym(t, y)dy (5)

0
m(t,y) = n(t — Y@ (), (@™ (9)(6)

Equation (5) is straightforward and equation (6) is
obtained by counting the number of mother cells

// (e, yydrdy
[f1. 2]y 3]

in ternﬁ# of the daughter-cell density. We refer to
Kimmel| et al. (1984) and Arino and Kimmel (1987)
for a detailed treatment of this computation.
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Substituting the right-hand side of equation (6) for
m in equation (5), we obtain an equation involving
n only. After a change of variables in the integral,
it takes the form
+00

n(t, x)=2 fle, @@)n(t —y(2). 2)dz. (1)
0

The condition on the support of f yields a sup-
port property for the solutions. Under the additional
assumption

do'(0) > 1

one can show that, for any interval ]A,, A;[,0 <
A < A; < 400, with A| small enough and A, large
enough, if we assume that daughter cells born before
some time fy had size in ]A;, A>[, then the same
is true for all cells born after that time. Moreover,
the size of daughter cells evolves in such a way
that asymptotically it belongs to an interval Ja;, as[,
where a; (or a») is the non-zero fixed point of d®
(or (1 —d)®).

Assuming that daughter-cell sizes are in some
interval JAq, A,[, it was proved in Arino and Kimmel
(1987) that AEG holds if the function

=y
is such that
16 (y)] = 6y > 0 for all y €]A;, Asl.

On the other hand, AEG does not hold if we assume
that
0(y) = 6y for all y €]A1, A;[.

The function #(y) has a biological meaning, it gives
the lifelength of a cell which at mitosis has size y.
The equal division version of equation (7) is

n(r, x) = 4 (2x0)n(r —62x), 71 2x).  (8)

Under the assumption that ®~!(2x) has a positive
fixed point a*, one can see that AEG does not hold.
The model introduced here was mainly intended
to reflect the impact of unequal division on AEG.
It turns out from version (8) that, in this model,
unequal division is in fact necessary to get AEG.
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A more general model which yields AEG even in
the case of equal division, was introduced in Arino
et al. (1991). In this model, stochastic lifelength 1s
considered. Let us consider the case of unequal divi-
sion, still modeled by the same function f as above.

The cell-cycle duration is modeled by a condi-
tional probability, expressed in terms of a density
V(- %)

/ y(t.x)dr
l71.72]

= probability for a cell of initial size x to
have a cell cycle of length 7 € [, 12].

Moreover, y satisfies a technical support property.
It is also assumed that the function ¢ depends on
7 and x and @ is also increasing with respect to T.
Equation (7) is changed to

n(t.x) = 2// flx, Dz y))nt—z, v)dyvdr
Rt xR+ (9)

It was proved in Arino ef al. (1991) that. under some
conditions stated on f, ® and y, AEG holds.

The equal division version of equation (9) is
formulated by Arino (1995) and proves that AEG
holds.

Comparison Between the Three Approaches

Comparative remarks about the cell-growth law

Kimmeli er al. (1984) and subsequent work by Arino
and Kimmel assume that cell growth is modeled in
terms of a function ® = ®(x) or & = d(r, x). If we
assume that cell growth is governed by a differential
equation

dx )

a8 (x(1))
and we denote X (¢, x) the flow associated to the
equation, then X (¢, x) plays the same role as ®(z, x)
in Arino ef al. (1991).

Conversely, it was proved by Arino and Kimmel
(1993) that to a function ®(r, x) it can be associated
a non-autonomous differential equation

dx

- g1, x(1)).

The flow X(z, s, x) determined by the differential
equation is related to & as follows:

X(t. s, x) = O, CD‘I(S, x)).

In particular, we have X(z, 0, x) = ®(t, x).

So, we can conclude that the model with & =
®(7, x) is in fact more general than the differential
equation.

PDE versus integral equation

Size-density models are expressed in terms of PDE
(partial differential equation). In contrast, time-
continuous daughter-cell models lead to integral
equations.

Arino and Kimmel (1993) prove that the integral
equation (9) is equivalent to a first-order PDE
involving the derivatives with respect to time,
size and age, through a one-to-one correspondence
between the solutions of (9) and the solutions of
PDE. Such a comparison had be made previously
by Webb (1987).

Time-continuous versus discrete
generation models

The two approaches, the time-continuous approach
and the cell-generation one, are completely different
ways of cell counting. Strictly speaking, cell-
generation models are not evolution models: cells of
a given generation are not in general contemporary
to each other. Even when starting from a single
cell, after a time large enough for asynchronicity
to take on its effect, a large number of generations
coexist on the one hand, while, on the other hand,
cells of a same generation may be present at quite
different times. Although the two approaches are
so different, it is natural to think that they are
somehow related to each other. ldeally, one should
be able to describe cell generations in terms of a
cell-population time map and conversely. It seems
to be however that not all the models allow this. A
basic requirement is that the model should be able
to distinguish cells by their state in the cycle. The
models described above do not feature these traits
since the state variable n(r, x) accounts for all cells



which, at time ¢, have the same size x independent
on what part of the cell cycle they are in. On
the other hand, time-continuous daughter models
as the one described above allow a description in
terms of generations. Such a description was done
by Kimmel and Axelrod (1991), in a framework
slightly: different from the one described above. We
will now review the work by Kimmel and Axelrod

(1991), introducing occasionally some modifications

in theit presentation in a way which copes more

closely iwith assumptions and the analysis made by

Arino gnd Kimmel (1987).

The model by Kimmel and Axelrod (1991) is
described in terms of three functions:

(a) the [function ® which, as noted above, gives the
size at division as an increasing function of the
initial size.

(b) A function G, a cumulative distribution func-
tion, governing a random dispersion of the size
at division with respect to the initial size. This
medns that in the Kimmel-Axelrod model, the
sizd at division y is expressed in terms of the
sizg at birth (x) by the following

y=®x)+v
where v is a stochastic disturbance.
Prob {v < V} = G(V).

No rrandom dispersion corresponds to G(V) = 0
forV<0,G(Vy=1forV > Q.

(c) A ﬂunction H, a cumulative distribution func-
tion, governing a random dispersion of the sizes
of the daughter cells with respect to the size of
the imother.

Let us immediately compare these assumptions
to those made previously. There is no equivalent to
function G: no dispersion is assumed with respect
to the initial size. Function H, on the other hand,
is strongly connected to the conditional density
f(x, ¥). In fact, the assumption made by Kimmel
and Ax¢lrod (1991) turns out to be a special case of
that of Arino and Kimmel (1987).

Kimmel and Axelrod (1991) show unequal divi-
sion to be modelled as follows: From a mother of
size y, it is assumed that one of the daughter cells
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has the size v, where u is a random variable with
values in [0,1], the size of the other cell being, of
course, (1 —u)y. The law of u is given by the func-
tion H:

Prob {u < U} = H(U).

Assuming this law, we can compute:

Y
- (3)-n ()
Y Y
In terms of the function f, we have

Prob {x; <x < x|y = ¥} =/ Cf(x, Y)dx
Xy

This yields the equality

/'YZ fY)dx=H (%) —H (”_Yl>

Xy

which, in particular, entails that H is absolutely
continuous, and its density £ satisfies the following

relationship
1 /x
y y

So, the assumption made by Kimmel and Axelrod
(1991) is a special case of the one made by Arino
and Kimmel (1987). It corresponds to the case when
the function yf(x, y) is positively homogeneous of
degree O in (x, v).

An important difference between the two models
is the absence in (Kimmel and Axelrod, 1991) of
a fanction ¢ giving the duration of the cycle, in
contrast to what was assumed previously (Arino and
Kimmel, 1987). This absence is justified by the fact
that the generation model does not account for the
time spent by cells in their cycle. It indicates that
that model carries less information than the time-
continuous daughter model and that one cannot,
in general, derive the latter one in terms of the
generation model.

Another difference between the two models is that
Kimmel and Axelrod (1991) envisaged mortality
and quiescence of daughter cells, while these factors
were not considered by Arino and Kimmel (1987).




44 0. ARINO AND E. SANCHEZ

It is assumed that of all the daughter cells, a fraction
p is going to grow and divide, a fraction ¢ will die
while the remaining " part becomes quiescent; p g
and r being three constant numbers, with p+¢g+r =
1. It is also assumed that, of all the quiescent cells,
a fraction s is going back into the proliferating state
while the remaining (1—s)™ part stays in quiescence.

Recurrence formulae for successive generations
of proliferating and quiescent cells were obtained
by Kimmel and Axelrod (1991) using a branching
process approach. We will obtain the same result
using a direct probability argument, in the restricted
case when the quiescent cells do not return to
the proliferating state, i.e. s = 0. As a matter of
fact, the case when quiescent cells are allowed to
become proliferating seems to bear some difficulties.
As long as it is quiescent, a cell keeps the same
generation number. So, assuming a stochastic return
to the proliferating state, one can have cells with
a low generation number at arbitrarily large times.
A full description of cells of any given generation
will necessitate the computation of cells of that
generation through all positive times and seems to
be subject to some information on how long it takes
to quiescent cells to become proliferating.

We start from an initial generation, the zeroth
generation, whose distribution over the cell size is
a function Dy (&) (D;(¢) is the distribution for the i
generation). The D; are the states at birth. We denote
M (Z) the initial distribution of cells at division, the
mother cells (M;(¢) is the distribution for the ™
generation).

The word initial refers here to the first genera-
tion: the zeroth generation of mother cells follows
the zeroth generation of daughter cells. In order to
compute My in terms of Dy, we first give an expres-
sion of the size at division as a function of the size
at birth. It is easy to see that

Prob {y € [y1, »2]lx = X}
= Prob {y; < X)) +v < »}
=Gy — PX)) — Gy — ().

It corresponds to the probability density dG(Y — @
(X))org(Y—d(X))dY if Gis absolutely continuous.

Counting the mother cells with mass between y; and
y; in terms of the daughter-cell density yields

/ T Mo(vdy
= / ( / T GG - <I><x>>Do<x>> dx
0 M
+o0 ya
=/ </ gy — CD(X))Do(vr)d,\’) dx.
0 ¥

So, assuming that G is absolutely continuous, we
arrive at

MO(Y):A (Y = ®()Do(x) dx.

If there is no random dispersion of the sizes, i.e.
Gv)y=0ifv < 0, G(v) = 1 if v > 0, the above
formula reduces to

Mo(Y) = (@Y (Y)Do(d (V).

After division, mother cells of the zeroth generation
are followed by daughter cells of the first generation,
surviving with probability p. This leads to

+oc

Di(x)=2p S yMo(»dy.
0

Substituting for My its expression in terms of Dy,
we obtain a relationship between two consecutive
generations of cells which determines a discrete
dynamical system. The transition from the i to the
(i + 1) generation is given by the following

+o0 +00
Dip1(x) = 2[7/ fG,y
0 0
x gy — ®NDi(hdzd y.

In the case considered by Kimmel and Axelrod
(1991), it yields

ree pHee g x
Diyi(x) = 2])/ / —h (—)
0 Jo ¥ y

x g(y — @)D () dzd y.

This is the same as formula (A.10) of Kimmel and
Axelrod (1991).



NON-LINEAR MODELS

We now present some non-linear modified versions
of time-continuous daughter-cell models developed
by Arino and Kimmel (1989,1991). These models
include non-linear dependence of the fraction of
cells undergoing effective division on the total num-
ber of ¢ells in the cycle.

Non-Linear Functional-Integral Equation of Cell
Kineti¢s with Unequal Division

We keep notations and hypotheses of the section on
‘Time-¢ontinuous daughter-cell models’ and we add
the following assumptions:

(a) After division, a proportion ¢ of daughter cells
return to the cycle, while the rest (fraction 1—o)
choose another development path, for example,
they differentiate. ¢ is a function of the total
number of the cycling cells, o = o(N). The
peak value of o is 1.

(b) There exists a probability of a defective division.
The probability of this fact is 1 — A. Thus,
A &[0, 1] is the probability of correct division.

Based on equation  (5)
becomels

these assumptions,

+oc

n(t, y) = 220(N(1)) f.x)m(r, x)dx
0

and theh, equation (7) has to be changed to

+ao¢

n(t, y) = 210(N(1)) A J (O, @(2))
x n(t —¥(z2),2)dz (10)

Notice that the number of cells of birthmass x
present in the cycle at time ¢ is equal to the number
of cells of that mass which entered the cycle in the
time interval from ¢t — ¥(x) to t. Integrating over x
yields

+0o0 t
M(t):/ / n(s, x)dsdx. (1
i 0 t—y(x)

Equatio‘ s (10) and (11) define the model completely
and equation
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nit, y) = / FO DM — Y. Ddz (12)

can be considered as a linear version of equation
(11) describing the situation where each division
results in one proliferating cell (on average), i.c.
during zero population growth.

From equations (10) and (11) it is obtained, using
the fact that f(;r “ f(y,x)dy =1, that

N@) = [200(N() — 1]

x/ n(t— 2. 0dz (13)
(A1.A2)

and then either 2Ao(N(+oc)) = 1 or N(4+o0) = 0,
where N(-+oc) = lim,_, ;. N(z). It can be shown
that N(+oc) is completely determined in terms of
combinations of parameters A and N(0).

This model is analyzed in detail by Arino and
Kimmel (1989) using the operator semigroup theory
combined with a classical differential-equation
approach. The non-negative solutions either tend to
a stable steady state or to zero. It is not difficult
to realize that results of the same completeness can
be obtained for any regulation feedback function o.
provided it satisfies some technical hypotheses. The
only difference is in the number and configuration of
the equilibria. However, all of them have the form
N(4o0)vp(x).

The reason for this simplicity is that the non-linear
aspects of the asymptotic behavior of the system
(10) and (11) are reduced to the analysis of an
ODE (13) for N(t). The functional aspect of the
asymptotic analysis is completely contained in the
limit equation (12) which is nearly identical to the
equation of unrestrained growth considered by Arino
and Kimmel (1987). (It may be noticed, however,
that the analysis of existence of solutions is more
difficult for the non-linear problem.)

A modification of this model is proposed by Arino
and Mortabit (1991) in which it is assumed that
the non-linear dependence of the fraction of cells
reentering proliferation is on the total number of
cells that were in the cycle at time t — 1.
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Equation (10) can be substituted by

n(t, %) = 2ha(N( — 1)) / e
0
x n{t —Y(z). z2)dz

and the total population satisfies a retarded differen-
tial equation

N(@) = Rro(N( — 1)) = 1] / (- (). 2)dz

This model provides an example where slow

oscillations are forced into existence by the
introduction of a delay term.
A very general model of cell-population

dynamics, which includes the classical random
transition, size control and inherited property models
as special cases, is derived and analyzed by Webb
(1987). Among specific applications of this model,
the author includes the model by Kimmel ef al.
(1984) which serves as a basis of nonlinear model
(10)-(11). Tt is interesting to remark that this
model fits into the general approach only when the
distribution of cell-generation time, which is one of
the functions defining Webb’s model, is replaced by
Dirac’s delta function. However, the study within
the framework of Webb’s paper seems to be difficult.

With respect to the concept of mitotic regulation,
model (10)-(11) is analogous to Mackey’s (1978)
description of the proliferation of the stem cells
of the hemopoietic system. The behavior of the
population predicted by both models is, however,
completely different: Mackey’s model is capable
of producing periodic oscillations while (10)-(11)
predict a stable regime or extinction of the
population.

Selective Regulation of Cell-Population Growth

A more sophisticated and difficult nonlinear model
was introduced by Arino and Kimmel (1991). The
cells leave proliferation with probability increasing
with either the total cell mass or the amount
of a cellular constituent, RNA, selected protein,

etc. This process is called selective regulation of

cell population growth, and is in a qualitative
agreement with observations in many biological cell
systems.

The following assumption distinguishes the model
and replace hypothesis (a) on page 45.

(a’) After division, a proportion of daughter cells
return to the cycle, while the rest choose another
development path, for example, they differentiate.
Cells staying in the cycle are, with the highest
probability, those with the lower x.

The probability of entering Gl is equal to
H(Il —x), where H is a smooth
approximation of the Heaviside function, increasing,
with H(—o0) = 0. H(+o0) = LII() is a
decreasing function of the total number of cycling
cells, t.e. TT = TT(NV).

Finally, the fraction entering G1, among cells with
mass x 18 H(TT(N(1)) — x).

Equation (10) has to be changed to

sigmoidal

n(t.y)y=22H{II(N(@) — v)
+00

S, @nnt —¥(2).2)dz (14)

0

and the model is completely determined by
equations (11)-(14).

From the mathematical viewpoint, the stability
analysis carried out by Arino and Kimmel (1991)
has required novel tools of analysis of the spectral
properties of semigroup of operators.

The solutions of the model equations generate
a semigroup of non-linear positive operators. A
trivial equilibrium exists for all A+ e [0, 1] and
a non-trivial steady-state branches from it at A =
1/2 and continues to exist for A € [1/2,1]. For
A € [0, 1/2], the trivial solution attracts all the non-
negative solutions.

The study of the stability of the non-trivial equi-
librium has motivated the elaboration of an original
abstract result on the spectrum of a difference of two
operators with certain non-negativity properties. In
intuitive terms, it is shown that (under appropriate
technical conditions), if P is a linear operator with
a simple eigenvalue 1 and with the rest of its spec-
trum constrained to a disc with radius < 1, and if
R is an operator with certain positivity properties



and not too large norm, then perturbing P by —R
transfgrms the spectrum of P in such a way that its
spectral radius is < 1.

From biological viewpoint, the so called selective
regulation provides a tool for joint consideration of
cell-pdpulation growth and maturation of individual
cells.

The!oldest concept of homeostatic regulation of
the numnber of cells in a population seems to be that
of mitgtic autoregulation (Wheldon, 1988). Suppose
that each cell synthesizes at a constant rate a molec-
ular species which acts as an inhibitor of prolifera-
tion in the cells concerned. Suppose also that such
molecules are both exported into the environment
by the [cell and reabsorbed from it. The intracellular
densityjt concentration depends on the density of
inhibitbr-synthesizing cells in the neighbourhood,
which ‘provides a negative-feedback mechanism.
The inhibitory molecules may be thought of as
maintaining the cell in a proliferative resting state.
Many models exploited this concept (Mackey, 1978;
Arino {md Kimmel, 1986), which has the disadvan-
tage ofl not taking into account any interdependence
between regulation of cell number and maturation
of individual cells.

It se{ems, however, probable that the maturation
process is directly coupled with population regula-
tion. Let us suppose that maturation means that the
cell acfuires a sufficient amount of a biochemical
species. Cells which have enough of this substance
leave proliferation. The regulatory mechanism may
act in the following way: If the number of prolifer-
ating cells decreases, the threshold level of the sub-
stance frequired to leave proliferation is increased.
Conversely, if the number of cells increases, the
threshdld level of the substance is decreased. These
are the essential features of the model described
before.

The basic question is whether a regulation feed-
back of this type could stabilize the number of
proliferiating stem cells and the distribution of the
biochemical species in the population, under the
inﬂuen#e of external perturbations. In the language
of mathematics, this is the question of stability
of equtibria. Arino and Kimmel (1991) answer
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this question in the affirmative, in a local sense.
The existence of a stable equilibrium depends on
a parameter A equal to the fraction of successful
divisions. If this parameter is < 1/2, the stem-cell
population becomes extinct.

A common feature of many non-linear models
is that the non-linearity is obtained by introducing
dependence of some of the coefficients upon the
total population. This frequently allows determining
a sort of decoupled problem in terms of the total
population and another variable corresponding to a
structure-dependent density. First, the evolution of
the total population can be investigated, frequently
on its own. If a limit behavior of the total population
can be derived from that study, then it frequently
derives the behavior of the density. Thus, global
behavior of the model can be obtained.

Arino and Kimmel (1989) show that the total
population satisfies an ODE. In other approaches,
a retarded equation has to be considered (Arino and
Mortabit, 1991).

A recent example of a model with non-linearity
depending upon the total population has been found
(Mackey and Rudnicki, 1994). We provide a brief
description of the model. The cell cycle is divided
into two parts: a resting phase GO during which
cells are aging and growing in size (more precisely,
here, in maturity, a rather abstract unspecified char-
acter associated with a variable with values in an
interval [0, mp], mp < +00). and a proliferating
phase during which replication of DNA and mito-
sis take place. Right after division, cells go into the
resting phase where they can stay from 0 to +oc,
depending upon the total population of resting cells.
The flux of resting population () inside the prolif-
erating compartment (p) is given by

p(t,m, 0) = B(N(1), m)N(t. m)

where N(¢) is the total number of resting cells at
all maturation levels, while N(z, m) is the density of
such cells with respect to the maturation variable.
Interestingly, the original model in (n, p) can be
somehow integrated to yield a system of equations
in N and P (the density of proliferating cells with
respect to the maturation variable). That system is a
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non-local PDE, the non-local terms being deviations
both in time and the maturation variable.

Under further restriction on the coefficients, a
delay-differential equation, is obtained for N by
which it is possible to determine the behavior of
N first, then that of N and finally that of n and p.

CELL-CYCLE KINETICS WITH
SUPRAMITOTIC CONTROL

This section is intended to present a model which
incorporates a fwo subcycles description of the cell
cycle, and which is developed by Kimmel and
Arino (1991). The model is based on the so-called
supramitotic regulation, 1.e. decisions controlling
growth of the cell are made not at the beginning of
the cell-division cycle but a previous point and their
impact is extended to the next decision point, which
is located in the next division cycle. The period from
one decision point to the next is called the ‘growth
control cycle’. In this model, the new growth-control
cycle, is entered when the cell attains a threshold
size. The threshold is, in general, a random variable,
so the model allows for imprecise control.

Another feature of the model is the presence
of two types of cells. At the beginning of each
growth-control cycle, cells may switch from one
type to the other with given transition probabilities.
This assumption is based on a theory of cell-cycle
regulation for PPC3 cells formulated by Sennerstam
and Stromberg (1988). The main ideas are that
cells may switch from a fast to a slow cell-cycle
variant and back and that the decision is made in the
preceding cell division cycle (supramitotic character
of the regulation).

To derive the model, consider cells of type 1
(smaller) and of type 2 (larger) which may switch
from type i to type j with a probability p;; at a size-
control point between cell divisions, for example on
the G1/S phase boundary. Then they proceed to divi-
sion, producing progeny of identical type. Therefore
it is necessary to consider four variants of cell-
division cycle (1.1), (1,2), (2.1), (2,2), where (i, j)
denotes cells born as type / that switched to type j.

It is assumed that the growth rate r is constant
throughout the cell cycle and identical for both cell
types. Daughter cells entering Gl at size y grow
to a threshold size w;, which is a random variable
with distribution density /#; depending on cell type
i. The support of A; 1s a closed interval [w;y. wiz]
the ends of which are the minimum and maximum
threshold values, respectively. Then the cells begin
DNA synthesis, that is, they enter the S-phase.
Parameters of the model will be chosen in a way
that excludes the possibility of a daughter cell being
equal to, or larger than, the minimum threshold for
DNA synthesis. In other words, it is guaranteed that
the G1 phase is longer than 0.

After leaving Gl, cells progress through phases
S. G2 and M towards division. Total duration of
these phases is assumed to be equal to 7. During this
time cells are still growing at rate ». The division is
unequal, modelled by a distribution density f(x, v)
as described above.

The dynamics of the model is described in terms
of distribution densities of cell flow rates through
various points of the cell cycle. First, n;;(z, v) is the
density of flow rate of the age 0 daughter cells into
G1 phase, for the type / cells that will switch to type
J at the GL/S boundary. The interpretation is that
ni;(t, y)drdy is equal to the number of these cells
with sizes in the interval (v, y+d v) that entered G1
in the time interval (¢, 7 + dr).

Analogously, m;;(z, x) is the density of flow rate
of mother cells through division. These are cells
that started as type 7 daughters and now are type
J. Finally ¢;;(z, x) is the flow-rate density of daugh-
ter cells descending from mothers described above,
before they are assigned to the G1 phase of any of
the four cell-division cycle types.

The relationship between n;; and ¢;; is described
by the system of equations

nii(toy) = pijlguit, y) +qut, W), i = 1,2, (15)
The principle of unequal division implies that the

relationship between ¢,; and m;; is

qij(t. y) = 2/ \ fOuxom(t,odx i =1,2.
40 (16)



Finally, the distribution m;; of the flow rate of
mother |cells can be found from a balance argument
which yields

mii(t, x) = rhij(x — 1r)
/O it = (t 4+ 0),x — 1z + o) do (17)

Combining equations (15), (16) and (17), we obtain

+00

n(t, y)=2r F,x0)Hx —rr)
0

/n[t —(t4+o)x—r(t+o)ldodx (18)
where we have used the matrix-vector notation

I’l(t, y) =* (nll(t9 }’)7 an(I’ y)s na1 (ta }’)» n22(t» y))T
H(w)

pihi(w) 0 puiha(w) 0

_ | Prli(w) 0 pr2ha(w) 0
B 0 pathi(w) 0 patha(w)
0 puhi(w) 0 paha(w)

The expression for the total number N;;(t) of the
(ij)-type cells present at time ¢ is derived in the
following way. The density of cell flux into Gl
including cells born with size ¢ at time p that will
enter S after reaching threshold size w, is equal to
h,-(w)n,y(p, ). Population at time ¢ includes cells
born before ¢ but not earlier than one cell-cycle
duration before ¢, i.e. after t — [t — (w — &)/r].
Eventud,lly

wii +o0 t
Nij() = / / / i)
0 1i t—[t—(w—¢)/r]

x nij(p, §)dpdwdsd

where the upper bound wy; reflects the fact that only
cells with size less than the minimum threshold size
are allowed into G1, by hypothesis.

This model is of independent mathematical inter-
est. The analysis of asymptotic properties is accom-
plished by defining and investigating an abstract
semigropp of positive linear operators in an appro-
priate state space. In brief, it is proved that the semi-
group iy eventually compact, that its spectrum has
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a dominating eigenvalue determined as a solution
of a characteristic equation and that the asymptotic
behavior of the semigroup is determined by the dom-
inating eigenvalue. This allows conclusion of AEG
for this model.

Kimmel and Arino (1991) make a comparison of
the model with experimental data. Basic pedigree
statistics, 8 curves and generation time correlations
are obtained from measurements available for the
embryonic cells. The main biological conclusion
which is consistent with these results is that switch-
ing from one cell type to the other is a necessary
but relatively infrequent event.

Remark

The mechanism described by Kimmel and Arino
(1991) for the switch is quite rudimentary. It is
assumed that with a fixed probability, cells of a
given type may either keep that type or switch to
the other. This has the following consequence, with
the notations used by Kimmel and Arino (1991).

12 P21
it ) = 22006y, na (6 9) = Phnn, )
P11 P2

for ¢ large enough. Thus, the dynamics can be
reduced to the dynamics of cells not changing type.
This ceases to be true if it is assumed that the p;;
depend on the size. In that case, the analysis made
by Kimmel and Arino (1991) remains valid.
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