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Cell proliferation and differentiation phenomena are key issues in immunology, tumour 
growth and cell biology. We study the kinetics of cell growth in the immune system using 
mathematical models formulated in terms of ordinary and delay differential equations. We 
study how the suitability of the mathematical models depends on the nature of the cell 
growth data and the types of differential equations by minimizing an objective function to 
give a best-fit parameterized solution. We show that mathematical models that incorporate 
a time-lag in the cell division phase are more consistent with certain reported data. 
They also allow various cell proliferation characteristics to be estimated directly, such 
as the average cell-doubling time and the rate of commitment of cells to cell division. 
Specifically, we study the interleukin-2-dependent cell division of phytohemagglutinin 
stimulated T-cells - the model of which can be considered to be a general model of cell 
growth. We also review the numerical techniques available for solving delay differential 
equations and calculating the least-squares best-fit parameterized solution. 
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INTRODUCTION 

An important problem in various branches of 
bioscience is the derivation of mathematical 
descriptions (models) of real-life phenomena that 
are quantitatively consistent with experimental 
observations. These models can then be used to 
provide feedback to researchers on the suitability of 
experimental data, and they in turn can help improve 

and refine the mathematical models. Thus the 
mathematical modelling complements the practical 
experimentation and vice versa. Mathematical 
modelling also provides a systematic way of 
organizing experimental data on the behaviour of 
biological systems at the cell level, the tissue level, 
the organ level and the 'whole human' level. In 
doing so, it provides the opportunity of improving 
both the understanding and prediction of biological 
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phenomena. Thus, in order to allow experimentalists 
to contribute to the derivation and improvement of 
models, the advantages and disadvantages of the 
various modelling approaches need to be made clear. 

The purpose of this paper is to compare two differ- 
ent approaches to formulating mathematical models 
for real-life phenomena, in particular for interleukin- 
2 (IL-2) T-cell growth. The first approach mod- 
els the cell division using only ordinary differential 
equations (ODEs), whereas the second approach uses 
delay differential equations (DDEs) (which include 
ODES as a special case). The comparison is achieved 
by modelling typical experimental cell growth data, 
and assessing the quality of the fit of the mathematical 
models to the data. 

Cell growth, or cell proliferation, is a central topic 
in cell biology, immunology and tumour growth. 
Historically, ODEs have been used to model cell 
growth - this is mainly due to their mathematical 
simplicity and the long-standing availability of soft- 
ware for solving them. However, it is obvious that 
cell division, as well as cell differentiation and cell 
maturation, are not instantaneous processes but take 
a finite time to occur. In some cases the dura- 
tions of the cell processes can be ignored but, in 
principle, they should be included in the model so 
that it is consistent with the cell growth kinetics. 
(Some experimental data has features that are con- 
sistent with there being a time-lag in the cell division 
phase.) When ODE models are used, the delays can 
be modelled indirectly, for example, by a special 
choice of parameter values, by introducing 'hidden' 
variables (so-called 'gearing up' functions; De Boer 
and Perelson, 1991), or by introducing intermediate 
phases into the cell division model. Thus, avoid- 
ing the explicit modelling of the delays yields a 
mathematically less complex model. However, it has 
been suggested (Bocharov and Romanyukha, 1994a, 
Marchuk, Romanyukha and Bocharov, 1991; and 
Morel, Kalagnanam and Morel, 1992) that a delay 
(or time-lag) in the cell division naturally implies 
the use of DDEs in the corresponding mathematical 
model. 

In our recent work (Baker, Bocharov, Paul and 
Romanyukha, 1995; and Baker, Bocharov, and Paul 

1997), we showed that a mathematical model of cell 
growth that incorporated a time-lag in the cell divi- 
sion phase provided both a qualitatively and quan- 
titatively better fit to certain reported data than the 
classical exponential ODE growth model. In Baker, 
Bocharov, and Paul (1997), we analyzed three dif- 
ferent patterns of cell growth using simple exponen- 
tial growth and time-lag growth models. First we 
analyzed experimental data for the growth of pre-B- 
cells in different concentrations of fetal calf serum 
(Jonassen, Seglen and Stokke, 1994). The pre-B-cell 
growth data exhibit exponential growth and, in fact, 
the ODE and DDE models are equally consistent, 
both qualitatively and quantitatively. Next we ana- 
lyzed the growth of fission yeast, using data that 
does not exhibit exponential growth (Moreno and 
Nurse, 1994). In this instance, there were significant 
qualitative and quantitative differences between the 
ODE and DDE models, with the DDE model prov- 
ing to be substantially better than the ODE model. 
Additionally, the DDE model can provide direct 
estimates of (i) the cell-doubling time, (ii) the frac- 
tion of the cells that are dividing, (iii) the rate of 
commitment of cells to cell division and (iv) the 
initial distribution of cells in the cell cycle, whereas 
the ODE model only provides an indirect estimate of 
the culture-doubling time. Thus the use of DDEs in 
mathematical modelling permits a richer framework 
for analyzing real-life phenomena, as well as allow- 
ing parameters to be introduced in a scientifically 
meaningful manner. 

The mathematical modelling of cell growth relies 
on the determination of the values of model parame- 
ters that provide the best-fit solution to experimental 
data. One aim of this paper is to highlight the avail- 
ability of numerical software for solving DDEs, and 
for solving the least-squares best-fit parameter esti- 
mation problem. 

Here, we analyze the growth of T-cells resulting 
from the interaction with cytokines. It has been 
suggested that the effect of exogenous IL-2 on the 
growth of phytohemagglutinin (PHA) stimulated T- 
cells is typical of cell growth in general (Cantrel and 
Smith, 1984). Thus, analyzing the kinetics of T-cell 
growth should provide insight into the dynamics of 
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more general mammalian cell growth. We use two 
models to describe T-cell growth, both having the 
same state variables and similar expressions for the 
rates of growth. The main difference between the 
models is how the cell cycle is represented - one 
model explicitly includes a time-lag in the cell 
division, representing the delay in the appearance 
of new cells, and the other does not. Thus the first 
model uses DDEs, and the other uses only ODES. 

The derivation of the mathematical models for 
IL-2 T-cell growth is discussed in some detail. The 
models are then compared, by fitting some typical 
experimental T-cell growth data to them. Finally, 
we discuss the numerical techniques used for solv- 
ing the DDE models and the parameter estimation 
problem, highlighting a number of important issues 
that must be addressed. 

MATHEMATICAL MODELS OF IL-2 T-CELL 
GROWTH 

Background 

It has been suggested that the growth of T-cells in 
response to polyclonal stimulation by PHA is typ- 
ical of cell growth in general (Cantrel and Smith, 
1984; Smith, 1988). Thus the growth characteris- 
tics of the IL-2 T-cell system are identical, for 
example, to those of bacteria, yeasts, protozoa and 
mammalian cells. Therefore, analyzing the kinet- 
ics of T-cell growth may provide insight into the 
dynamics of more general cell growth. The mod- 
els of IL-2 T-cell growth in this section are based 
on the following observations on the growth of 
IL-2-dependent lectin-activated T-cells (summarized 
from Cantrel and Smith, 1983; Cantrel and Smith, 
1984; Smith, 1988). 

Antigenic stimulation of T-cell receptors induces 
virgin or naive T-cells to progress from the Go- 
phase to the GI-phase of the cell cycle and to 
exhibit high affinity IL-2 binding sites. 
Following the antigenic stimulation of T-cells, 
the high affinity IL-2 receptors (TL-2r) and low 
affinity IL-2r occur in the ratio 1:10 on the cell 
surface. 

It is thought that only the high affinity 1L-2r are 
able to bind IL-2 at physiological concentrations 
and internalize it, so as to initiate T-cell growth. 
Further progression of an activated T-cell from 
the GI,-phase through the Glb-, S-, G2- and M- 
phases of the cell cycle is promoted by the inter- 
action of IL-2 with IL-2r on the surface of the 
T-cell. 
1L-2r appear asynchronously in the T-cells of 
PHA-activated human peripheral blood. 
T-cell populations exhibit a marked diversity in 
the expression of IL-2r, although there is a cor- 
relation between the IL-2r density and the rate of 
T-cell growth. 
The accumulation of IL-2r by a cell is a grad- 
ual and asynchronous process, and precedes the 
commitment of the cell to cell division. 
The IL-2r density amongst activated T-cells can 
vary by a factor of 1000, and has a log-normal 
distribution - similar to the variation in the dura- 
tion of the cell cycle (Moreno and Nurse, 1994). 
The continued progression of a *cell through the 
phases of the cell cycle depends on the concen- 
tration of available IL-2 and the duration of the 
interaction between IL-2 and IL-2r. 
The IL-2 log(dose)-response curve is sigmoid- 
shaped, reflecting the saturation effect of too high 
a concentration of IL-2 on T-cell growth. 
The duration of the cell division of IL-2-stimu- 
lated T-cells represents the time taken for a T- 
cell to pass from the Glb-phase through to the 
M-phase. 

In modelling in vitro T-cell growth, we introduce 
the following time-dependent variables: 

12(t): concentration of exogenous IL-2, 
TA(t): concentration of PHA-activated T-cells 

expressing high affinity IL-2r, 
TD(t): concentration of IL-Zstimulated T-cells 

entering the cell division cycle, 
TR(t): concentration of 'resting' T-cells with no 

binding sites to IL-2. 

However, in practice, the experimental data often 
corresponds to the concentration of the whole T-cell 
population, namely T*(t) + TD(t) + T R ( ~ ) .  
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The Mathematical Models 

The equations for describing IL-2 T-cell growth are 
based on the Law of Mass Action, and take into 
account the effects of IL-2 saturation and the time- 
lag in the cell cycle. The derivation of both models 
is also influenced by our previous modelling experi- 
ence (Bocharov and Romanyukha, 1994a; Marchuk, 
Romanyukha and Bocharov, 1991; Sidorov and 
Romanyukha, 1993). 

A time-lug model 

(9 

(ii) 

(iii) 

The equation for the kinetics of IL-2 is 

The two processes responsible for the decrease 
in IL-2 - natural death and internalization by 
T-cells expressing IL-2r - are both modelled. 
The equation for activated T-cells expressing 
IL-2r is 

The processes modelled are the creation of T- 
cells by cell division, the progression of IL-2- 
stimulated T-cells into the cell division cycle, 
and the decline in IL-2r expression due to 
its transient nature (Cantrel and Smith, 1983; 
Cantrel and Smith, 1984). The model used for 
the appearance of new cells and the progression 
of activated T-cells into the cell division cycle 
is based on a model of the antiviral immune 
response (Bocharov and Romanyukha, 1994a; 
Marchuk, Romanyukha and Bocharov, 1991; 
and Sidorov and Romanyukha, 1993). 
The number of T-cells that are currently in the 
cell division cycle is determined by 

which follows directly from (2). 
Finally, the equation modelling 'resting' T-cells 
with no binding sites to IL-2 is 

The two factors that affect the number of 'rest- 
T-cells are the return of activated T-cells to the ing ' 

resting phase and natural death. 

Parameters in the time-lug model 

As we have already mentioned, one advantage of 
using a DDE model over an ODE model is that the 
parameters in the DDE model usually have a direct 
biological interpretation. The time-lag model has the 
following parameters: 

ar2: decay rate of IL-2 in the medium, ~0 molec.1 
hr in fetal calf serum. 

n12T: number of IL-2 molecules internalized by 
T-cells via IL-2r, 2000-5000 per T-cell. 

bT12: rate of commitment of T-cells to cell division, 
10-l2 - lo-" ml/(molec. x hr). 

I;: saturation concentration for IL-2, 6 x 101° 
molec./ml. 

p: number of cells produced when a T-cell 
divides, 2. 

TD : duration of the cell division cycle, 8-24 hrs. 
~ A R :  decay rate in IL-2 reactivity of activated 

T-cells, 0.02 hr-I. 
a ~ :  decay rate in the non-cycling T-cell popula- 

tion, 0.01 -0.04 hr-' . 
The initial estimates for the values of the param- 
eters were derived using data from Cantrel and 
Smith (1983), Cantrel and Smith (1984), Ishida 
et al. (1987), Sidorov and Romanyukha (1993), and 
Smith (1988). The time-lag model also requires ini- 
tial functions for TA(t) and for 12(t) to be specified, 
representing the heterogeneity of T-cells expressing 
IL-2r and the IL-2 concentration before the start of 
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the experiment, respectively (see Baker, Bocharov 
and Paul, 1997). 

The 'instantaneous' (ODE) model 

Equations (2) and (3) can be rewritten without the 
delay T D ,  yielding the following system of ODES for 
modelling IL-2 T-cell growth: 

The equation for the kinetics of IL-2 is 
unchanged, 

With no explicit delay, the equation for acti- 
vated T-cells expressing IL-2r becomes 

The equation for the number of T-cells that 
are currently in the cell division cycle follows 
directly from the equation for Ta(t) (as it did 
in the DDE case), 

The equation modelling 'resting' T-cells with 
no binding sites to IL-2r remains unchanged, 

However, it should be noted that the ODE formula- 
tion of the DDE model (above) is not unique. For 
example, equations (4) and (5) may be combined to 
give a single equation, 

with the single parameter b~ characterizing the rate 
of growth of T-cells. 

Parameters in the 'instantaneous' model 

There is a direct correspondence between most of 
the parameters in the ODE model and those in the 
DDE model (above), the two exceptions are the new 

parameter bD and the parameter bT12 each of which 
now has a different interpretation. 

bD: rate of cell division. 
bTlz: rate of cells entering the cell division cycle. 

Both of these parameters have a less well- 
defined biological interpretation compared to those 
in the time-lag model. In the time-lag model, the 
cell division cycle is naturally modelled by two 
parameters - the rate of commitment of T-cells 
to cell division,  TI?, and the duration of the cell 
division cycle, T D .  

Comparing Various Models of IL-2 T-cell 
Growth 

Several mathematical models that include equations 
for modelling IL-2 T-cell growth have recently been 
proposed by McLean (1992), Morel, Kalagnanam 
and Morel (1992), and Sidorov and Romanyukha 
(1993). However, the comparatively limited expe- 
rience in the quantitative modelling of IL-2 T-cell 
growth makes it difficult to provide definitive com- 
parisons between the various models. Thus it is dif- 
ficult to determine which equations are most consis- 
tent with the available data, although it is still useful 
to examine the structure of each of the various mod- 
els. We examine three of the current models: (a) by 
McLean (1992), (b) by Morel, Kalagnanam and 
Morel (1992), and (c) by the authors. In each case, 
the same notation is used in order to allow easier 
comparison. (There is also a more complex model of 
T-cell growth by Sidorov and Romanyukha (1993) 
that includes equations for IL-2 T-cell growth. It 
is closer to our model than the models of McLean 
and of Morel et al., the main difference is that the 
Sidorov and Romanyukha model does not take into 
account the effects of IL-2 saturation.) 
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0 Equations for activated T-cells expressing IL-2r 

(a) Ta(t) = SourceTa - p 
T A ( ~ )  

TA(~) / (  + 1 
I2(t) 

-pTA(t) 
(b) TX(t) = Tk(t- T2)-Tb(t) 

0 Equations for T-cells currently in the cell division 
cycle 

(a) NIA 
(b) Tb(t) = bd2( t )T~( t )  - Tb(t - Ti) 

0 Equations for resting T-cells with no binding sites 
to IL-2r 
(a) Tk(t) =  source^, - p T ~ ( t )  
(b) Tk(t) = 2Tb(t - T I )  - Ta(t) 
(c) Tk(t) = ~ A R T A ( ~ )  - ~ R T R ( ~ ) .  

It is clear that there is no unique mathematical 
model of IL-2 T-cell growth. This is partly due to 
the fact that there is no systematic method for for- 
mulating models of cell growth. A key goal when 
formulating a model should be an appropriate bal- 
ance between the available experimental data and 
the specification of the interactions between cells. 
However, there seems to be no generally accepted 
objective criterion for what constitutes quantitative 
consistency of a mathematical model with experi- 
mental data. 

QUANTITATIVE MODELLING OF 
EXPERIMENTAL DATA 

IL-2 T-cell Growth: GI - phase + S-phase 

T-cells that had been synchronized by being grown 
in a low concentration of IL-2 for 2 weeks had a 
receptor-saturating concentration of IL-2 added. The 
number of T-cells entering the S-phase of the cell 

cycle was determined by adding tritiated thymidine 
( [ 3 ~ ] ~ d ~ ) .  The amount of [ 3 ~ ] ~ d ~  incorporated 
by the T-cells is indirectly related to the number 
of T-cells entering the S-phase, and it is therefore 
necessary to relate the experimental data to the 
variable TD(t). This may be achieved by a process 
of linear regression using data from Figure 3 in 
Smith (1988). The resulting experimental data on 
the initial phase of PHA-blast growth can then be 
used to improve the estimates of   TI, and rs, where 
rs is the time taken for a T-cell to progress from 
the GI-phase to the S-phase. The following initial 
values for the model were used: 

12(0) = 6 x 10'' molec./ml, 
TA(0) = 5 x lo4 cellslml, 
TD(0) = 0 cellslml, 
TR(0) = 0 cellslml. 

The initial function for 12(t) corresponds to the con- 
centration of IL-2 in the cell culture before the start 
of the experiment. The initial function for T A ( ~ )  
represents the initial heterogeneity in the T-cells 
expressing IL-2r and, indirectly, the progress of 
T-cells already in transition from the GI -phase to the 
S-phase of the cell cycle. The initial heterogeneity 
in the T-cells expressing IL-2r implies that, initially, 
the T-cells grow at a uniform rate. Thus the corre- 
sponding initial functions are specified as 

12(t) = 0 molec./ml 
for t E [-rD, 0] 

TA(t) = 5 x lo4 cells/ml 

By explicitly modelling rs, the equations for Ta(t) 
and Tb(t) need to be rewritten: 

where the duration of the cell cycle r~ = rs + r ~ ,  - 

with r ~ ,  being the time taken for a T-cell to progress 
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FIGURE 1 IL-2 T-cell growth - transition from GI  - phase + S-phase. The least-squares best-fit solutions of the ODE model 
(dashed line) and the best-fit DDE model (solid line) plotted against the experimental data (0). 

from the S-phase of the cell cycle through to the 
GI -phase. 

Due to the sparsity of data in relation to the 
number of parameters in the mathematical models, 
it is necessary to fix some of the parameter values 
using information from Cantrel and Smith (1983), 
Cantrel and Smith (1984) and Smith (1988). 

a12 = 0 hr-' 
n l , ~  = 2000 

I ;  = 6 x 101° molec./ml 
t s =  10hrs 

a * ~  = 0.02 hr-' 
p =  2 

t ~ ,  = 18 hrs 
a~ = 0.01 hr-' 
bD = l/q, 

Using experimental data from Smith (1988), 

TABLE I Experimental data for IL-2 T-cell growth: GI-phase 
+ S-phase 

the least-squares best-fit solutions correspond to the 
following parameter values: 

TABLE I1 Best-fit parameter values for IL-2 T-cell growth: 
G I  -phase -+ S-phase 

ODE model DDE models 

~ T I Z  1 IEnorl12  TI? XS CG, I /Error/ 12 
(ml/(molec. (mU(mo1ec. (hrs) (hrs) 

It is clear from both Figure 1 and Table I1 that 
there is both a significant qualitative and quan- 
titative difference between the best-fit solutions 
corresponding to the two types of model.* The 
quantitative differences are apparent from the size 
of the least-squares objective function I ]Error1 lz.  
However, because the initial functions are constants 
and the maximum data point occurs at t = 30, 
the value of the objective function is constant for 
r ~ ,  > 30 - ts. This highlights the crucial need for 
experimental data to be given for a sufficiently long 

*For the ODE model, the nature of the data suggests that it 
might be advantageous to ignore the first two data points and 
solve the model for r 2 10 using the same initial data, the 
resulting best-fit parameter value is b ~ 1 ,  = 6.9 x 10-l3 with 
/Errorll2 = 2062. 
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period of time, especially when the duration of the 
cell cycle is being estimated directly (as in the DDE 
case). 

Growth of PHA-blasts Against Exogenous IL-2 

PHA-blasts were cultured at 5 x lo5 cellslml with 
1UIml of IL-2r, and the number of viable cells in the 
culture was counted every 24 hrs. The average num- 
ber of high affinity IL-2r on the PHA-blasts (from 
normal subjects) was about 4755 per cell. Using 
experimental data for the growth kinetics of PHA- 
blasts from Figure 5 in Ishida et al. (1987), esti- 
mates for the values of bn ,  and TD were improved 
by considering the complete cell cycle for T-cells. 
The initial values used were 

12(0) = 2 x 10l0 molec./ml, 
TA(0) = 3.8 x lo5 cells/ml, 
TD(0) = 0 cellslrnl, 
TR(0) = 1.2 x lo5 cellslml, 
with the following initial functions 

12(t) = 0 molec./ml for t E [-TD, 01, 
TA(t) = 5 x lo5 cellslml 

which corresponds to IL-2 being added to the culture 
at the start of the experiment. The observable data 
corresponds to the total number of viable cells in 
the culture, Tv(t) = TA(t) + TD(t) + TR(~) .  From 
above the DDE and ODE models for Tb(t) are 

and 

respectively. Again, due to the sparsity of data, 
a number of parameter values are fixed based on 
values obtained from Cantrel and Smith (1983), 
Cantrel and Smith (1984), Ishida et al. (1987), and 
Smith (1988). 

I 
20 40 60 80 100 120 

Time (hrs) 

FIGURE 2 PHA-blast growth in normal subjects. The least-squares best-fit solutions of the ODE model (dashed line) and the best-fit 
parameter DDE model (solid line) plotted against the experimental data (0). 
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Using data from Ishida et al. (1987), 

TABLE I11 Experimental data for growth of PHA-blasts 

Time (hrs) 0.0 24.0 48.0 72.0 96.0 120.0 

Tv( t )  x lo6 0.50 1.15 2.40 3.65 2.85 2.20 

we obtained the following least-squares best-fit 
parameter values: 

TABLE IV Best-fit parameter values for growth of PHA-blasts 

DDE models 

The solutions in Figure 2 corresponding to the 
best-fit parameter values of the ODE and DDE 
models given in Table IV clearly exhibit similar 
qualitative and quantitative types of cell growth. 
However, the sparsity of the data prevents any 
further conclusions being drawn. 

NUMERICAL SOFTWARE FOR ANALYZING 
DDE MODELS 

Numerical Solution of DDEs 

The traditional approach to solving DDEs numer- 
ically has been to adapt an ODE solver so that it 
stores the past solution. However, in adapting an 
ODE solver, there are several points that should be 
borne in mind (Baker, Paul and Will6 1995): 

0 the provision of a suitable - robust, but reason- 
ably cheap - continuous extension (or dense out- 
put) for evaluating the delayed solution terms; 

0 the existence of derivative discontinuities in the 
solution that propagate forward in time; 

0 the possibility of a vanishing delay, when t ( t )  + 
0, and its impact on codes that use explicit solu- 
tion methods. 

The correct choice of continuous extension is impor- 
tant, because its order of accuracy should be the 
same as the order of the underlying ODE method 
in order to maintain the asymptotic correctness of 
the error estimator. Additionally, the continuous 
extension should be 'stable', in the sense that it does 
not adversely affect the numerical stability proper- 
ties of the solution. For DDEs that only have non- 
decreasing delayed arguments, the solution becomes 
smoother as time increases, so that 'eventually' 
the existence of derivative discontinuities can be 
ignored. 

There are currently a number of general purpose 
codes for solving initial value problems for DDEs. 
An important feature of such codes is that they aim 
to produce a solution to within a given accuracy for a 
wide range of requested tolerances. Paul (1995) has 
developed such a code based on the successful Dor- 
mand and Prince fifth-order Runge-Kutta method 
for ODEs and the fifth-order Hermite interpolant 
due to Shampine. The resulting code is uniformly 
fifth-order accurate for ODEs, DDEs and neutral dif- 
ferential equations (where the derivative additionally 
depends on delayed derivative values)?. 

Parameter Estimation for DDEs 

The task of parameter estimation is one of min- 
imizing an objective function @(p) based on the 
unknown parameters p and sample data. In the case 
of parameter estimation for DDEs, this can include 
estimating parameters in the DDE and the initial val- 
ues (as in the ODE case), but additionally estimating 
the position of the initial point, the initial functions 
and the delayed arguments. 

Criteria for best-jit parameter values 

The typical objective function is the classical least- 
squares (LSQ) function. In the LSQ approach, the 

7 The code is available for non-commercial purposes by E- 
mailing chris@ma.man.ac.uk. 
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values of the unknown parameters are estimated by 
minimizing the sum of the squared residuals, 

@(wf) = C wij(y:bSj - yi(tj. wf )I2, 
i ,  j 

where the {wij} are weights (possibly related to the 
accuracy of the data points), y:,,, is the jth exper- 
imental datum for the ith component of the model, 
and Yi(tj, p) is the value of the ith component of 
the model at the jth data point corresponding to the 
parameter values p. A significant feature of the LSQ 
approach is that a small relative change in large data 
values can be unduly weighted. For example, a 1% 
change in the value 100 leads to a squared residual 
of 1, whereas a 1% change in the value 1,000,000 
leads to a squared residual of 10,000,000. 

This aspect of the LSQ approach can be criti- 
cal when modelling the immune system, because 
a typical set of data can have a large variation in 
scale but with each datum being equally signifi- 
cant. For these sets of data, the log least-squares 
(LLSQ) approach seems to be more appropriate for 
determining the best-fit parameter values (Bocharov 
and Romanyukha 1994b; Morel, Kalagnanam and 
Morel, 1992). The corresponding objective func- 
tion is 

@(PI = C wij(log I Y ; ~ ,  I - log lpi(tj, P)I)'. 
i , j  

For a mathematical model formulated in terms of 
ODES or DDEs, the LSQ approach leads to a non- 
linear minimization problem. However it can be 
shown that the overall degree on non-linearity of 
the objective function @(p) for the LLSQ approach 
is less than that of the LSQ approach for the same 
problem (Bocharov and Romanyukha 1994a). Thus, 
an appropriate choice of objective function is an 
important factor in determining the ease of solv- 
ing the parameter estimation problem, since the 
choice of objective function strongly affects the non- 
linearity of the minimization problem. 

Numerical techniques for parameter estimation 

Given a set of (experimental) data, the technique 
for finding the best-fit parameter values for a given 

mathematical model and objective function involves 
solving the model equations using the current val- 
ues of the parameters. The parameter values are 
then adjusted (by the minimization routine) so as 
to reduce the value of the objective function. How- 
ever, in order to find the global best-fit parameter 
values, the initial estimate of the parameter val- 
ues must be sufficiently close to the global mini- 
mum. Thus good starting estimates for the parameter 
values can be of great assistance, both in speed- 
ing up the minimization process and finding the 
global minimum. Such estimates can sometimes be 
obtained by a sequential process of finding the 
best-fit parameter values for subsets of the data, 
where the subsets are usually obtained by sub- 
dividing the observation interval. As the size of 
the subinterval increases, the best-fit parameter val- 
ues can be improved in a step-by-step manner. 
This approach can be very efficient for parame- 
ter estimation in some immune response models 
(Bocharov and Romanyukha, 1994a; Bocharov and 
Romanyukha, 1994b; Marchuk, Romanyukha and 
Bocharov, 1991). 

There are a number of general purpose 
least-squares minimization routines available, for 
example, E04UPF in the NAg library, LMDIF from 
NETLIB and fmins in MATLAB. (In this paper, we 
used both the unconstrained minimization code 
LMDIF, and the constrained minimization code 
E04UPF.) However, there are a number of points 
that should be noted: 

0 First, the model solution values {yl(t,, p)} are 
obtained numerically. Thus the actual values used 
in the objective function are perturbed solution 
values yl(t,, p)+6,,, where S,, is dependent on the 
user-requested tolerance in the ODEDDE solver. 
This limited accuracy of the solution values must 
be accounted for in the minimization process, 
and this can ultimately be achieved by specifying 
the correct number of digits in the value of the 
objective function. 

0 If the minimization process uses numerical 
approximations to either the partial derivatives 
or the Jacobian of the objective function, then 
the effect of the limited accuracy of the model 
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solution values must be assessed. In particular, it 
is usually implied that the accuracy of the model 
solution does not need to be greater than that 
of the data. In fact, the model solution must be 
obtained to greater accuracy if the convergence 
rates of derivative-based minimization methods 
are to be realized. 

0 One of the main assumptions in minimization the- 
ory is on the smoothness of the objective function. 
It is usually assumed that the objective function 
has sufficiently smooth derivatives everywhere. 
However, in the case of parameter estimation for 
DDEs, Baker and Paul (1995) showed that the 
objective function (6) can be both discontinuous 
and have discontinuous partial derivatives any- 
where. This can seriously affect the reliability and 
robustness of minimization codes that rely on hav- 
ing a smooth objective function. 

a In terms of efficiency, it may be advantageous 
to use a combination of minimization methods. 
The initial estimate of the parameter values can 
first be improved 'by a computationally cheap 
method, such as a derivative-free direct search 
method. The resulting estimate of the best-fit 
parameter values can then be improved using a 
computationally expensive but rapidly converging 
method, such as a Newton-based method. 

0 The convergence of a minimization method can 
be improved by specifying lower and/or upper 
bounds on the values of the model parameters 
(based on a priori information). In doing so, the 
computational effects of the variations in scale in 
the ranges of the parameter values can be reduced 
by rescaling the parameters to be of the same 
order of magnitude. 

CONCLUSIONS 

The main objective of this paper is to demonstrate 
that some real-life phenomena are better modelled, 
in terms of qualitative and quantitative consistency 
with experimental data, by mathematical models 
that include explicit time-lags. In doing so, we 
hope to convince modellers that they should not 

restrict themselves to using only ODES, because 
efficient and reliable codes for solving DDEs are 
available. Additionally, because DDEs model real- 
life phenomena more precisely, they allow more 
biologically meaningful parameters to be modelled 
directly (see Baker, Bocharov, and Paul 1997). Our 
work has been based on: 
0 well-founded numerical techniques for solving 

DDEs and for minimization, and 
0 analysis of various mathematical models used in 

modelling cell division. 

Using this expertise, we compared the qualitative 
and quantitative consistency of two basic models 
(one with time-lags and the other without) for some 
typical experimental data on the growth of T-cells. 
In our view, T-cell growth has features in com- 
mon with many other biological systems, such as 
population growth, and immunological and epidemi- 
ological phenomena (Marchuk, Romanyukha and 
Bocharov, 1991). In consequence, our study here 
of T-cell growth, and of fission yeast in Baker, 
Bocharov, and Paul (1997), might be of wider inter- 
est to experimentalists working in cell growth and 
differentiation phenomena. Indeed, the delays that 
appear in DDE models are often directly measur- 
able and explicitly controllable biological parame- 
ters. However, it should be noted that ODE mod- 
elling compliments the DDE modelling approach, 
in that the best-fit parameter values obtained from 
an ODE model can be used as initial estimates 
for the corresponding parameter values in the DDE 
models. 

The coverage of DDEs in the literature is now 
quite extensive, both from the mathematical per- 
spective (Baker, Paul and WillC, 1995), and the mod- 
elling perspective (Banks, Burns and Cliff, 1981; 
Epstein, 1992). The DDEs used in this paper are 
of the simplest kind, having constant time-lags, and 
represent the simplest type of integro-differential 
equations (IDEs). Other IDEs can provide even 
greater opportunity for modelling hereditary effects 
on the rate of cell growth, however they are typi- 
cally computationally more expensive to solve. For 
example, the term in (1) representing the reduction 
in IL-2 due to internalisation by T-cells might more 
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naturally be given as an integral term, corresponding 
to the gradual reduction in IL-2. 

Finally, in order for experimentalists to be able 
to contribute to the formulation and testing of math- 
ematical models, they need to know what types of 
equation are feasible. We hope that the results pre- 
sented in this paper demonstrate convincingly that 
there are distinct advantages to using DDEs in some 
cases, and that the increased mathematical complex- 
ity of DDE models presents no further difficulty 
numerically than ODE models. 
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