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Experimental evidence indicates that tumour metastases can exist for long periods in a 
dormant state, with cell proliferation balancing cell death. However, this balance can be 
upset, by removing the primary tumour for instance, which causes the metastasis to grow, 
or by administering a substance inhibiting angiogenesis which causes the metastasis to 
regress. A mathematical model is presented for the growth of a tumour metastasis, which 
by postulating the possibility of a local imbalance between cell proliferation and cell 
death through apoptosis, is able to explain some of these observations. A prediction of 
the model is that at any position within the metastasis there will be a radial movement of 
cells, even in the dormant state. 
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INTRODUCTION 

The in vivo development of cancer, in particular the 
distant spread of solid tumours, typically starts with 
the intiation and growth of a primary cancer at some 
location in the body, followed by the spread to other 
organs. Metastasis is name of the process whereby 
malignant cells are 'released' from a primary and 
spread to other organs of the body where they 
can lodge and grow to form secondary tumours. 
In fact, it is tumour metastasis that is the major 
cause of mortality in cancer patients (Holmgren 
et al., 1995). 

The growth of solid cancers is a complicated 
phenomenon, but broadly two distinct phases can 
be distinguished: an initial avascular phase, fol- 
lowed by vascularization (Folkman, 1976, 1985). 

During the avascular phase a tumour lacks its own 
network of blood vessels, and must obtain nutrients 
(in particular oxygen) and remove waste products 
by diffusion. If detected in a patient, or when (more 
commonly) grown in an experimental animal, an 
avascular tumour is typically less than a few mil- 
limetres in diameter, and often appears to be in 
a steady, dormant state with cell death balancing 
cell proliferation (Folkman, 1976); it is not unlikely 
that a few millimetres represents the largest size to 
which a tumour can grow whilst satisfying its nutri- 
ent requirements solely by diffusive transport. 

Solid tumours may remain in a dormant, avas- 
cular, state for years, before some event triggers 
the vascular phase of development during which 
the tumour cells stimulate angiogensis, the pro- 
cess whereby a cancer effects the development of 
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its own network of blood vessels by growth from 
neighbouring capillary beds (Folkman, 1976, 1985, 
1995). Angiogenesis is initiated by the release from 
the tumour of substances which produce the growth 
of new capillaries towards the tumour which eventu- 
ally becomes penetrated by these vessels (Folkrnan, 
1976, 1985). Very rapid growth of the primary then 
follows until it is a centimetre or more in size, 
whereupon its growth often slows down. 

Vascularization of the primary is an event of 
great clinical significance because, although metas- 
tasis can sometimes occur before the vascular phase 
by spread through the lymphatic system, upon vas- 
cularization the rate at which malignant cells are 
released from the primary tumour and spread dra- 
matically increases. Indeed, the number of cells shed 
by the primary seems to be directly proportional to 
its mass. 

Even though physically separated from its sec- 
ondaries, the presence of the primary tumour can 
sometimes have a profound effect on the develop- 
ment of metastases (Folkman, 1995). For instance, 
for certain cancers the removal of the primary 
tumour can result in the 'awakening' of occult 
and distant metastases from a dormant state - in 
which they may be described, in terms of size, 
as micrometastases - into a phase of rapid growth 
(Woodruff, 1980, 1990). 

In the absence of angiogensis, metastatic tumour 
cells may form microscopic perivascular 'cuffs' 
around a capillary at the location where origi- 
nally a clonogenic cell left the circulation (Holm- 
gren et al., 1995, Folkrnan, 1995). In the lungs 
of a mouse, such cuffs are no larger than about 
150 pm (Folkman, 1995) or about 10 cells (Holm- 
gren et al., 1995), in radius. A micrometastasis may 
remain in a dormant avascular state with a high 
cell proliferation rate balancing a high cell death 
rate by apoptosis, a form of programmed cell death 
which differs from necrosis in many ways and is 
usually characterized by single-cell death in the 
midst of living cells (Thompson, 1995, Steller, 1995, 
Bellamy et al., 1995). The onset of angiogenesis 
can be triggered by the removal of the primary 
tumour - although Folkman (1995) notes that for 

certain other mouse tumours micrometastases ma) 
not become angiogenic, i.e. the angiogenesis genes 
are not activated, even 3.5 months after removal ot 
the primary tumour. 

O'Reilly et al. (1994) report a mouse model in 
which a primary inhibits the growth of its remote 
metastases, but upon the removal of the primary 
the metastases become vascularized and grow. To 
explain their observations, O'Reilly et al. (1994) 
suggest a mechanism whereby the primary initiates 
its own neovascularization by an excess of angio- 
genic stimulators in excess of angiogenic inhibitors. 
However the inhibitors, having a longer half-life 
in the circulation than the stimulators, reach the 
vascular bed of the metastases in excess of the 
stimulators from the primary and any produced by 
the secondary, and hence prevent the neovascular- 
ization and growth of the metastases. The specific 
inhibitor that O'Reilly et al. identified and studied 
in their experiments they named angiostatin, which 
they were able to show mediated, at least in part, the 
inhibition of metastases by a mouse primary tumour. 

Based upon their studies of dormant lung metas- 
tases in mice, Holmgren et al. (1995) discuss the 
balance between cell proliferation and cell death 
through apoptosis in the presence of angiogene- 
sis suppression. In dormant metastases, they found 
both a high proliferation index and a high apop- 
totic index. Correspondingly, microscopic exarnina- 
tion of dormant metastases in the lungs of labora- 
tory mice showed no sign of vascularization and 
no sign of necrosis. The apoptotic indices of qui- 
escent metastases (primary present) were compared 
to that of exponentially growing metastases (pri- 
mary removed), and found to be about three times 
larger in animals where the primary tumour was still 
present. In addition, Holmgren et al. (1995) also 
showed that for mice where the primary tumour 
had been removed, the apoptotic index in lung 
metastases of animals injected with an angiogene- 
sis inhibitor (TNP-470) was about three times larger 
than the apoptotic index in lung metastases of ani- 
mals injected with saline. 

Their findings led Holmgren et al. (1995) to con- 
clude that in a dormant state micrometastases are 
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able to balance a high cell proliferation rate by a 
high rate of cell death, elevated by increased apop- 
tosis caused by inhibition of angiogenesis. Their 
studies showed that angiogenesis significantly low- 
ered apoptosis in metastases, although their high cell 
proliferation rate remained unaltered. 

The effect of angiostatin on a primary tumour is 
discussed in later work by O'Reilly et al. (1996) 
who investigated its effects on three human and 
three murine primary tumours implanted in a mouse 
model. They describe experiments in which the 
administration of angiostatin caused the human pri- 
maries to regress to a microscopic dormant state; 
the growth of the murine tumours was also inhib- 
ited by angiostatin but did not reach a dormant 
state (because, O'Reilly et al. (1996) assumed, the 
murine turhours had been selected, over the years, 
on the basis of their angiogeneticity). O'Reilly 
et al. (1996) measured the proliferative and apop- 
totic indices of the tumour cells and showed that 
although the proliferative index was the same in both 
control and angiostatin-treated animals, the apop- 
totic index was significantly higher in the latter 
group. 

The mechanism whereby angiostatin increases the 
apoptotic index is unknown, but O'Reilly et al. 
(1996) mention various suggestions, e.g. the inhi- 
bition of capillary growth deprives the tumour cells 
of necessary factors provided by the endothelium. 
However, on the basis of this work, they suggest a 
new paradigm for anticancer treatment, 'dormancy 
therapy', based upon the administration of anti- 
angiogenesis agents such as angiostatin. 

We present here a simple mathematical model for 
the development of a micrometastasis. We assume 
a cylindrically symmetric geometry as a convenient 
model for a perivascular cuff. A local imbalance 
in the rates of apoptosis and proliferation near to 
the capillary causes the micrometastasis to grow, 
although the micrometastasis eventually reaches a 
dormant state for reasons described in the next 
section. We assume that angiogenesis is being sup- 
pressed by a factor such as angiostatin, and, further- 
more, that the presence of this factor affects the rate 
of apoptosis. 

A MATHEMATICAL MODEL FOR A 
MICROMETASTASIS 

Most mathematical models of the growth of solid 
tumours have concentrated upon the development 
of the primary tumour, particularly in the avascular 
phase of growth (Adam, 1991). Various models of 
an avascular primary tumour have been put forward 
since the mid-1960s (Burton, 1966; Deakin, 1975; 
Greenspan, 1972. 1976: McElwain and Ponzo, 1977; 
Chaplain and Sleeman, 1993; Sleeman, 1996), all of 
which account, at least in part, for the development 
of the tumour and the changes in its structure, by 
considering the effects of nutrient (usually oxygen) 
diffusion and consumption on the proliferation and 
death (usually through necrosis) of tumour cells. 

The models referenced above adopt a continuum 
approach in that the properties of the tumour cells 
are modelled in an aggregative sense or continuum, 
not at the level of individual cells. Here we adopt 
a similar approach to account for the growth of a 
micrometastasis. The specific geometry we consider 
is a perivascular cuff growing around a capillary 
vessel, and for simplicity we assume cylindrical 
symmetry in our model. We assume that the cancer 
cells obtain nutrient, in this case oxygen, by dif- 
fusion from the capillary which they surround. As 
noted above, experimentally, micrometastases are 
observed to be around 10 cells in radius and so 
some questions may be asked about the validity of 
a continuum model. However, the discrete nature of 
the problem does not alter the underlying physical 
processes, and thus a continuum model will capture 
perfectly adequately the overall structure and growth 
of the cuff without any loss of physical insight. 

Like other mathematical models for tumour 
growth, to account for the existence of a finite 
equilibrium radius for a tumour, a mechanism 
for the loss of cell volume is assumed, but 
whereas most other models assume that volume 
loss occurs through necrosis, the present model 
assumes volume loss through apoptosis. Apoptosis 
is a form of programmed cell death that is 
widely accepted as being of crucial importance 
to the normal development and homeostasis of 
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multicellular organisms (Steller, 1995). In contrast 
to necrosis, which is a pathological form of cell 
death due to injury resulting in rapid cell swelling 
and lysis, apoptosis results in cell shrinkage and 
volume loss (Thompson, 1995, Bellamy et al., 
1995). Apoptosis has a mechanism for the loss of 
cell volume has been considered in the context of 
spherical tumours by McElwain and Morris (1978) 
and Byrne and Chaplain (1995a, 1996), who found 
that it was possible to obtain a dormant state even 
in the absence of a non-necrotic core. 

It has only relatively recently become appreciated 
that the regulation of cell death is just as complex as 
the regulation of cell production, and many diseases 
can be characterized as either disorders of too large 
a death rate, such as AIDS, whereas others can be 
characterized as being disorders of too small a death 
rate, such as cancer (Thompson, 1995). Apoptosis 
appears to be triggered by a variety of extrinsic and 
intrinsic signals, and Thompson (1995) reports that 
most cells in the body are programmed to commit 
suicide if they do not receive appropriate chemical 
signals from their environment. This may explain 
the observations described above (O'Reilly, 1994, 
1996; Folkman, 1995; Holmgren et al., 1995) that 
treatment with angiostatin, which inhibits angiogen- 
sis and hence presumably reduces the accessibility 
to the tumour cells of various necessary factors, car- 
ried by the blood or provided by the endothelium for 
instance, raises the apoptotic index in metastases. In 
any event, the mode18described below can take into 
account the possibility that the apoptotic index in 
the metastasis is affected by the angiostatin concen- 
tration in the central capillary. 

The present model differs from earlier work in 
that it considers the growth of a mass of cancer 
cells where the source of nutrient is at the centre 
of the mass, i.e. the capilliary around which the 
micrometastasis is growing. It also makes explicit 
a fact that has hitherto only been implicit in certain 
tumour models, namely that there must be a radial 
movement of cells as the tumour grows. 

We consider a cylindrically symmetric cuff of 
cancer cells around a central capillary, which we 
shall take to be of radius r,. Suppose that at a 

given moment the outer radius of the cuff is R(t). 
At any point in the microscopic tumour, a distance r 
from the centre of the capillary, there will be a local 
volume proliferation rate k (cell volume createdunit 
volume/unit time; units T-') and a local apoptotic 
volume death rate a (cell volume destroyedunit 
volume/unit time; units T-I). Any local imbalance 
in proliferation and apoptosis will produce a non- 
zero cell velocity g  at that point, where 

V . g =  ( k - a )  

Since we are assuming cylindrical symmetry in this 
paper we will use a cylindrical polar coordinate 
system, so that g = ug,, where e, is a unit vector 
in the radial direction, and so equation (1) may be 

where u is the radial velocity of the cellular material, 
where we have assumed that after apoptotic death 
a cell ceases to occupy any volume. Below, we 
solve equation (2) subject to boundary conditions 
(see equation (9)), in order to obtain the radius of 
the micrometastasis as a function of time. 

The diffusion of nutrient (which we will take to 
be oxygen) out from the central capillary we will 
assume takes place on a much shorter time-scale 
than the typical time-scales for cell proliferation 
and death (a natural assumption to make, see for 
example Adam and Noren (1993), so that we have 
a quasi-steady model in which the oxygen concen- 
tration c obeys the equation 

where s = nutrient consumption rate and D = 
nutrient diffusion coefficient, both assumed to be 
constant while the cells of the micrometastasis are 
viable. A further condition necessary for the quasi- 
steady assumption is that the time-scale for diffusion 
is much less than a typical 'dynamical' time-scale 
R/U, where U is a typical cell velocity. 

For the micrometastases being considered, there 
is no evidence that the cancer cells are becoming 
less viable due to nutrient starvation. However, some 
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~uthors, in somewhat different circumstances, have 
considered a nutrient consumption rate which is a 
function of nutrient concentration, in particular a 
consumption rate which is constant until the con- 
centration drops to a certain level, and then falls, 
often linearly, to zero as the concentration drops 
still further and the cells cease to be viable; see for 
example McElwain and Ponzo (1977) or Byrne and 
Chaplain (1995a). Although this assumption could 
be built into the model, the qualitative aspects of 
the results would be unchanged but at the cost of a 
more complicated mathematical treatment. 

Assuming that the oxygen concentration at 
the capillary wall is co and the nutrient flux 
(-Drm(ac/ar)) is m, the solution to equation (3) 
which satisfies these boundary conditions can be 
written 

Since Holmgren et al. (1995) report no sign of 
necrosis in their observations of micrometastases, 
we will assume that the concentration c experienced 
by the micrometastasis never gets so low that necro- 
sis occurs, and hence that its radius remains much 

1 
smaller than (2m/s)Z, which is the radius at which 
r(ac/dr) = 0 (assuming r, to be small), i.e. the 
radius, re, the micrometastasis would need to be if 
it were to consume all the nutrient flux from the 
central capilliary. 

Putting rz FZ (2m/s), equation (4) can be written 

and, if we assume that throughout its growth 
the radius r of the micrometastasis remains much 
smaller than r, i.e, rm < r << re, the oxygen 
concentration the micrometastasis experiences can 
be approximated by 

since the third term of equation (5) remains smaller 
than the second for r << re. In other words the 
amount of nutrient consumed by the cells is a small 

fraction of the total amount available, i.e. there is 
no significant variation in the oxygen concentration 
due to consumption. 

In common with other models, see for example 
McElwain and Ponzo (1977), McElwain and Mor- 
ris (1978), Byrne and Chaplain (1995a, 1996), it 
is assumed here that the cell proliferation rate is 
a function of nutrient concentration which for sim- 
plicity we take to be of the form k oc (constant + 
constant c), which, given equation (6), implies that 

with ko, k2 > 0. 
The rate of apoptosis a we initially take to be 

a constant ao throughout the micrometastasis at a 
given moment. We (implicitly) assume a functional 
relation between the rate of apoptosis and the con- 
centration of the angiogenesis inhibitor in the central 
capillary, in that in the discussion below we consider 
the effect of a time-varying a as a presumed conse- 
quence of a change in the inhibitor concentration. 
However, given the uncertainties surrounding the 
mechanism whereby angiostatin affects the rate of 
apoptosis in a tumour, we do not assume an explicit 
functional form for the relationship between the rate 
of apoptosis and inhibitor concentration, although 
the model could, nevertheless, be modified to take 
into account effects such as diffusion and depletion 
due to absorption of the inhibitor. Note that for the 
micrometastasis to start to grow, we require ko > ao. 

Integrating equation (2 )  from the edge of the 
capillary to the current outer radius R(t)  of the 
micrometastasis gives 

and using equation (7) and imposing the boundary 
condition that u = 0 at r = r,, i.e. the micrometas- 
tasis remains in contact with the capillary wall and 
there is no flux of cancer cells across the wall, we 
obtain 

r(ko - k2 ln(r/r, j - a0 jdr (9) 
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where the cell velocity at the outer edge of the 
micrometastasis is the rate at which the micrometas- 
tasis expands into the surrounding medium, i.e. 

u l r = ~ ( r )  = (dR/dt). 
The right-hand side of equation (9) can be evalu- 

ated to give 

It is useful in what follows to change to a non- 
dimensional time variable defined thus, 

5 = kot (11) 

so that the time-scale for the evolution of the 
micrometastasis is clearly related to a measure of the 
cell-cycle time. We can then rewrite equation (10) 
to obtain 

where we have defined the dimensionless parameters 
rj  and y - which characterize the relative impor- 
tance of apoptosis to proliferation at the capillary 
and the radius at which the proliferation index falls 
to zero (r, exp( 1 / y)) - thus 

As noted above, for the micrometastasis to start to 
grow at all, we require rj  < 1. 

From equation (12) it can be seen that the micro- 
metastasis stops growing in size, i.e. (dR/dt) = 0, 
at a radius Rd given by 

if R: >> r i  (Holmgren et al. (1995) observe that 
Rd % lor,). Rd represents the maximum radius 
to which the micrometastasis can grow given the 
previaling conditions, and, presumably, corresponds 
to its dormant state. 

Also, dR/dt = 0 when R = r,, and so to 
avoid an obvious inconsistency in the model, i.e. 
if starting precisely at r = r ,  the micrometastasis 

cannot grow, we assume that the actual starting 
radius for the micrometastasis is Ro = r,+ (1 cell 
layer thickness). 

A prediction of the model is that, even in a 
dormant state, at any radius there will be a radial 
migration of cancer cells, where the cell velocity as 
a function of radius 

is obtained from equation (8) (cf. McElwain and 
Pettet (1993) who consider a model of a multicel- 
lular spheroid in which there is radial migration of 
cells towards the centre). 

As a check on the internal consistency of 
the model we can consider the magnitude U 
of the typical sort of velocities involved. For 
convenience we take the maximum velocity which, 
from equation (15), can be shown to be exp{(l - 
y/2 - rj)/y]. Comparing the value of Rd/U(= 
(21y)e1) with the cell doubling time In 2 (in non- 
dimensional units), we find that we require the 
condition 7.8 >> y. 

To obtain the approximate time development of 
the cuff, by making the assumption that for most of 
its growth r >> r,,, equation (12) can be integrated 
to give 

where the initial condition R(0) = Ro, defined as 
above, has been imposed. Notice that R + Rd as 
t + ca. For a more accurate description of the 
growth, equation (12) can of course be integrated. 

In order to obtain results consistent with the 
assumptions of the model, certain constraints must 
be placed upon the various parameters controlling 
the growth. For instance, the dormancy radius Rd 
should be less than the radius at which cell prolifera- 
tion drops to zero ( r ,  exp!l/y)), which requires that 
rj > y/2. Furthermore, in order for the assumption 
underlying the derivation of equation (14) to be 
valid, i.e. R: >> r&, we require exp((1 + y/2 - 

rj)/y) >> 1. 
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Figures 1 and 2 illustrate the effects of varying 
the relative importance of apoptosis and prolifera- 
tion (quantified by the value of q), and the effect 
of changing the radius at which cell proliferation 
stops (determined by the value of y). The solutions 
have been obtained by integrating equation (12) 
numerically. 

Figure 1 shows that for fixed y ,  as the value of q 

increases, i.e. as apoptosis becomes more important, 
then, as indicated by equation (14), the dormancy 
radius decreases. Note also that the value of q has 
little effect on the time taken to reach the dormancy 
radius, which again is consistent with equation (16). 

Figure 2 shows that for a fixed q, as the radius 
at which proliferation stops is decreased, ie. as 
the value of y increases, so the dormancy radius 
is decreased and the time taken to get within a 
fixed fraction of this radius decreases - behaviour 
consistent with equation (16). 

Note that since Holmgren et al. (1995) observe no 
signs of necrosis, we have not included the effects 
of necrosis in the model and have assumed that the 
dormancy radius for the micrometastasis is less than 
the radius at which the nutrient concentration goes 
to zero (although necrosis may well begin at low, 
but nevertheless non-zero, nutrient concentrations). 

b I . . . . , .  . I . . . .  

i o  210 $0 4'0 30 60 7Io 

Time 

FIGURE 1 The effect of 7 upon growth of micrometastasis. In all plots r, = 1, y = 0.2, Ro = 1.1. 
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1 _ . _ . I . . . . , . . . . , . , . . , _ . , .  

110 2l0 $0 do go 610 7IO 

Time 

FIGURE 2 The effect of y upon growth of micrometastasis. In all plots r,, = 1, q = 0.5, Ro = 1.1. 

THE EFFECT OF A DIFFERENT low that necrosis begins, i.e. 
FUNCTIONAL FORM FOR THE 
PROLIFERATION RATE 

In this section we assess the effect of having 
a different functional form for the variation of If we assume that the nutrient concentration varies 
proliferation rate with nutrient concentration. For the as a function of radius as described by equation (6), 
sake of example we assume that the proliferation the critical radius i at which the nutrient concentra- 
rate remains constant at ko for values of the nutrient tion reaches P is given by 
concentration c above a critical value i., and then 
drops to zero for values of c below 5, the cancer 2D(co - 5) 
cells becoming dormant rather than c becoming so (18) 
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The time evolution of the outer radius R of the When the micrometastasis has grown so that 
micrometastasis can be obtained by integrating the R > i., the right-hand side of equation (8 )  may be 
right-hand side of equation (8). integrated to give 

which may be integrated to give R(?) = i. to give 

where R(0) = Ro. 

Time 

FIGURE 3 The effect of rj upon growth of micrometastasis. In all  plot^ rm = 1, ? = 5 ,  Ro = 1 
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where 2, the time taken for the micrometastasis to 
grow to i ,  is easily found from equation (20) to be 

Note that equation (22) shows that as t + oo, R~ + 
r i  + (i2 - r;)(l/17), the dormancy radius. 

Like Figures 1 and 2 for the previous model, 
Figures 3 and 4 illustrate the effects of varying the 
relative importance of apoptosis and proliferation 
(quantified by the value of q ) ,  and the effect of 
changing the radius at which cell proliferation stops 

(determined by the value of i ,  for the modified 
model presented in this section). 

Figure 3 shows that for constant i increasing 
the relative importance of apoptosis, i.e. increas- 
ing q has the effect of decreasing the dormancy 
radius and also increasing the time it takes the 
micrometastasis to get to within a fixed fraction of 
this radius. 

Figure 4 shows that for constant 17 the effect of 
decreasing the critical radius at which proliferation 
stops, i.e. decreasing the value of i ,  has the effect 
of decreasing the eventual dormancy radius. 

I . . . . , . .  
, I n 1 .  

10 do $0 4'0 5b 

Tlme 

FIGURE 4 The effect of-? upon growth of micrometastasis. In all plots r ,  = 1, q = 0.5, Ro = 1.1. 
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The results presented in this section indicates that 
changing the functional form of the dependence 
of proliferation rate on nutrient concentration may 
produce quantitative differences in the growth of the 
micrometastasis, but the qualitative behaviour still 
remains the same, i.e. growth stops at some finite 
radius. The crucial point being that the proliferation 
rate decreases with nutrient concentration which in 
turn decreases with radius, causing a local excess of 
cell death over cell proliferation in the outer regions 
of the micrometastasis. 

THE EFFECT OF VARYING THE 
APOPTOTIC INDEX 

There is some evidence that the size of the primary 
tumour may affect the inhibition of the metastases 
(O'Reilly, et al. 1994). In this section we consider 
the effect of an increase in the rate of apoptosis, due 
perhaps to a change in the angiostatin concentration. 

There is also evidence that angiostatin has a sig- 
nificant half-life in the body. For example, a figure 
of 5 days is quoted by Folkman (1995) for the time 
taken for angiostatin to disappear from the human 
circulation, while a half-life of 4-6 hours is quoted 
by O'Reilly et al. (1996) for human angiostatin in 
mice. So it is perhaps unrealistic to consider instan- 
taneous changes in a, although, if we take the cell 
doubling time to be about 48 hours, the time-scales 
just quoted are short in comparison to the growth 
time-scale in the above model. However, as a model 
for the variation in the apoptosis rate, one might con- 
sider a gradual variation. For example, suppose that 
for r 5 so, the non-dimensional rate of apoptosis 
changes according to the equation 

where 0 < q0 < r j l ,  SO that q increases to r]l over a 
characteristic (non-dimensional) time-scale T. 

We can obtain the subsequent time development 
of the micrometastasis by integrating equation (12), 
with Rd from equation (14) as the starting radius, 
assuming that prior to ro the micrometastasis had 

more or less reached the dormancy radius Rd cor- 
responding to ro. However before considering this, 
we note that to obtain the long-time behaviour of the 
solution we can consider an instantaneous increase 
in the rate of apoptosis from 90 to r j l .  Similar argu- 
ments to those used above show that the time devel- 
opment of the micrometastasis will be governed by 
the equation 

which gives rise to a new dormancy radius 

Equation (25) may be integrated to give the time 
development of the cuff 

where the initial condition R(so) = Rd has been 
used. Note that the radius of the micrometastasis 
increases towards its new equilibrium radius Rd over 
a finite time-scale even though the increase in r]  is 
instantaneous. 

Figure 5 shows the results of some calculations 
involving the numerical integration of equation (25) 
where the value of r varies with time according to 
equation (24). At time t o  = 0, the value of r]o is 0.5 
and micrometastasis radius is the corresponding dor- 
mancy radius (20.08). The three curves in Figure 5 
correspond to different values of q (0.6, 0.7, 0.8) (all 
have the same value of the other parameters) and 
the time constant T = 20. As expected, in all three 
cases the micrometastasis radius decreases with time 
towards the dormancy radius corresponding to the 
value of gl . 

Figure 6 shows the effect of changing the time- 
scale T for the apoptosis change. In the five curves 
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T i m e  

FIGURE 5 The effect of a time-varying apoptosis rate; the number associated with each curve gives the final value of q l .  In all 
plots r,,, = 1, qo = 0.5, Ro = 20.08, y = 0.2, T = 20. 

plotted, 00 = 0.5, ql = 0.7 and y = 0.2, while the 
initial radius for the micrometastasis is the dormancy 
radius corresponding to qo = 0.5. The values of T 
used are 1, 5, 10, 40 Note that for large values of T 
the variation in micrometastasis radius is essentially 
governed by the time-scale of the variation described 
by equation (24), whereas if T is sufficiently small 
the variation in micrometastasis radius is essentially 
described by equation (27). 

In considering the consequences of increasing 
q,  we are in effect modelling the effects of a 
dormancy therapy (O'Reilly, et al. 1996) which 

acts by increasing the rate of apoptosis. From 
equation (25) we can seen that if we wish to 
regress the micrometastasis so that & x r,, ie. the 
micrometastasis is effectively 'removed', we require 
a value for ql  of (1 + y12). Figure 7 shows the 
results of just such a calculation, where a value of 
1.1 has been used for q l ,  which, with a value of 
0.2 for y ,  should cause the micrometastasis radius to 
decrease to the value of r,, i.e. 1.0. A value of 1 has 
been used for T so that the change in micrometas- 
tasis radius is close to the fastest possible. Despite 
this, however, although the micrometastasis radius 
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FIGURE 6 The effect of the time-scale for the change in apoptosis rate; the number associated with each curve gives the value of 
T. In allplotsr, = 1,qo =0.5,q1 =0.7,Ro =20.08, y ~ 0 . 2 .  

does approach the desired value, the time-scale over 
which it does so is rather longer than T, which 
is, perhaps, inconvenient from the point of view of 
therapy. 

We have not allowed for any variation in the 
apoptotic index with radius. It has been suggested 
that cells die through apoptosis more readily if they 
are deprived of various chemical signals. Thus, it is 
possible that diffusing out from the central capillary 
is some factor whose concentration determines the 
local rate of apoptosis a (in the sense of lowering 

concentration increases a), in which case a should 
vary with radius, and not be treated as a constant 
in equation (8). However, in the model the effects 
of varying a are largely interchangeable with the 
effects of varying the proliferation rate k, e.g. k 
decreasing with increasing r ,  acts, qualitatively, like 
an a which increases with r. Thus although the 
model can be straight forwardly modified to take 
into account a radial variation in a,  the qualitative 
behaviour of such a case should, in essence, be 
covered by the above discussion. 
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FIGURE 7 Tumour regression using enhanced apoptosis. In all'plots r,,, = 1, qo = 0.5, ql = 1.1, Ro = 1.0, y = 0.2, T = 1. 

CONCLUSION 

Following closely previous experimental work 
(Holmgren et al., 1995, Folkman, 1995, O'Reilly, 
et al. 1994, 1996) we have presented a quantitative 
model of the growth and regression of micrometas- 
tases. We have established the relevant parameters 
in the model which may, in principle, be identified 
by experiment so that the model can be easily run 
using experimentally determined or available param- 
eter values (see for example Holmgren et al. (1995) 
for measures of proliferation and apoptotic indices). 

By assuming a local imbalance between pro- 
liferation and apoptosis, the model shows how a 

micrometastasis can grow and reach a steady state 
even in absence of necrosis. The model predicts that, 
even in a dormant state, at any radius there will be 
a radial migration of cancer cells, and we note that 
flows of tumour cells away from central capillary 
have indeed been reported in tumour cords in exper- 
imental animals, e.g. Moore et al. (1984, 1985): The 
model can follow the development of a micrometas- 
tasis provided that its radius never becomes so large 
that the nutrient concentration in the outer regions 
drops to such a value that necrosis sets in; and on 
this point we note that in the experiments of Holm- 
gren et al. (1995) there was no sign of necrosis in 
the micrometastoses. The model could be extended 
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to cover the effects of angiogenesis in much the 
same way as similar effects have been modelled in 
the case of primary tumours (Chaplain and Sleeman, 
1990, Chaplain et al., 1995; Byrne and Chaplain 
1995b, 1996). 

The model can be extended in a number of other 
ways as well. For instance, one could consider 
the situation were the micrometastasis radius R(t) 
becomes so large that the oxygen concentration 
drops to the point where in outer regions cells no 
longer become viable and necrosis sets in. This 
situation is relevant to the tumour cords found in 
a number of human and animal tumours, which are 
cylindrical cuffs that separate central blood vessels 
from areas of gross necrosis, e.g. Moore et al. (1984, 
1985). Another way in which the model could be 
extended is to consider a apoptotic index which is 
a function of radial distance away from the central 
capillary. 

As indicated in the previous section, it is pos- 
sible using the model to investigate the effects of 
increasing the rate of apoptosis, which causes the 
micrometastasis to shrink in radius, i.e. regress. It 
may thus be of some use in the proposed clinical 
technique of dormancy therapy in which an angio- 
genesis inhibitor is used to cause a micrometastasis 
to regress. It is also straightforward to investigate the 
effect on growth of a decrease in the rate of apop- 
tosis, caused by the removal of the primary tumour 
for instance. 
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