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We present the optimal campaigns in the smoking dynamics. Assuming that the giving up smoking model is described by the
simplified PLSQ (potential-light-smoker-quit smoker) model, we consider two possible control variables in the form of education
and treatment campaigns oriented to decrease the attitude towards smoking. In order to do this we minimize the number of light
(occasional) and persistent smokers and maximize the number of quit smokers in a community. We first show the existence of
an optimal control for the control problem and then derive the optimality system by using the Pontryagin maximum principle.
Finally numerical results of real epidemic are presented to show the applicability and efficiency of this approach.

1. Introduction

Application of control theory to epidemics is a very large
field, and the study of epidemic models is strongly related
to the possibility of evaluation of different control strategies:
screening and educational campaigns [1], the vaccination
campaign [2], and resource allocation [3]. A comprehensive
survey of control theory applied to epidemiology was
performed by Wickwire [4]. Many different models with
different objective functions have been proposed (see [5—
9]). A major difficulty in applying control theoretic methods
to practical epidemiology problems is the commonly made
assumption that one has total knowledge of the state of the
epidemics [10].

In 2000, Castillo-Garsow et al. [11] for the first time
proposed a simple mathematical model for giving up smok-
ing. They consider a system with a total constant population
which is divided into three classes: potential smokers, that
is, people who do not smoke yet but might become smokers
in the future (P), smokers (S), and people (former smokers)
who have quit smoking permanently (Q). Sharomi and
Gumel developed mathematical models by introducing mild
and chain classes [12]. In their work they presented the
development and public health impact of smoking-related
illnesses. Zaman [13] extended the work of Castillo-Garsow
et al. [11] and developed a model taking into account the
occasional smokers compartment in the giving up smoking
model and presented its qualitative behavior.

In this study we consider the model introduced by Zaman
[13] and extend that once a smoker quits smoking he/she
may become a potential smoker again and first discuss the
dynamical behavior and then use optimal control theory
for our optimal problem to minimize the number of light
and persistent smokers and maximize the number of quit
smokers in a community. In our control problem we first
show the existence of an optimal control and then we
derive the optimality system. The technical tool used in this
work to determine the optimal strategy is the Pontryagin
maximum principle. We emphasize that we have not set
up a smoking model that particularly fit our optimization
scheme. In order to do this we use optimal control strategies
associated with two types of control, an education and
a treatment campaigns to minimize the number of light
and persistent smokers and maximize the number of quit
smokers in a community. That is, we derive the optimality
system consisting of the state and adjoint equations and solve
numerically the system by using an iterative method. We
also give an example of the real epidemic model by real data
so that we illustrate how the optimal control theory can be
applied in real situation.

The structure of this paper is organized as follows. First,
we presented the qualitative behavior of the proposed model
and then control system for the optimality and its existence,
and the optimal control pairs are derived in Section 2. In
Section 3, we solve numerically the optimality system by
using real data, which consists of the original state system, the



adjoint system, and their boundary conditions. Finally, we
conclude by discussing results of the numerical simulation
for our giving up smoking model.

2. Optimal Control Problem

In this section, we begin our explorations with a PLSQ model
for a population as defined by the following system consisting
of differential equations:

% = bN(t) = BIL(OP(Y) - (dy + ) P(1) + pQ8),
dzi(t” = BIL(OP(t) = BL(DS(E) — (da + ) L(2),

% = BoL(6)S(t) — (y +ds + ) S(t), N
% = yS(t) — (ds +p + p) Q).

As described in [13] the variables P, L, S, and Q represent
the potential, light (occasional), persistent, and quit smoker,
respectively. The parameter b represents the birth rate, y is
the natural death rate, and y is the quit rate from smoking.
The parameters f8; and f3, approximate the average number
of contacts with smoker individuals needed to make light
and persistent smoker, respectively, in each unit of time.
p is the rate of quit smoker becoming potential smoker
again, and d,, d,, ds, and d, represent the death rate of
potential smoker, occasional smoker, persistent smoker, and
quit smoker, respectively. In this model, we also use the
classic mass action hypothesis for both positive transmission
coefficients f8; and f,. Potential smokers acquire infection
at per capita rate f3;L(t). The total population size at time
t is denoted by N () with N(¢) = P(t) + L(t) + S(t) + Q(¢).
The dynamics of the total population are governed by the
following differential equation:

v (b= p)N(t) = (diP(t) + doL(t) + d3S(t) + daQ(1)).

dt
(2

If all individuals die at the same death rates, then we have
d\ = d, = ds = dy = d, and dynamics of the total population
become

dN
o = (b-d-pN). 3)

When the birth rate is equal to the disease and natural death
rate then the total population remains constant, that is, b =
d + p. The total constant population models were studied by
several authors; see, for example, [8, 14]. In our proposed
model it is not biologically feasible if we consider b < d + y,
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so we assume that b > d + p. The unique positive epidemic
equilibrium of the system (1) is given by

BaS* + (da + 1)
B '

B y+ds+p

B’

o (+p)(ditptp)(Bily+ds+p)+po(di+p))
B2(Bipy = Py +ds +p) — Baldi +u) (ds + p+p))

p* =

L*

x (K = 1),

. _ (do+p) (Bi(y+ds + ) +Bo(dy + )
B2(Bipy = Bi(y +ds +p) — Bo(di + ) (ds +p+p))
x (K = 1),

(4)

where K = bﬁ]ﬁzN*/((dz + [/l)(/.;l()/ + d3 + p) + ﬂz(dl +
@))) represents the smoking generation number (basic
reproductive number). It measures the average number of
new smokers generated by single smoker in a population of
potential smokers. The reproduction number is a concept in
the epidemiology of infectious diseases [12]. It is a measure
of how infectious a disease is and is required if you wish to
calculate how many people you need to vaccinate if you are
to achieve herd immunity. When somebody starts smoking,
they may pass it on to nobody else or they may assist 1, 2,
or more other people (who become secondary cases). The
reproduction number, K, is the average (mean) number of
secondary cases caused by each case of an infectious disease,
during the infectious period. The number K will, of course,
depend on a large number of factors depending on the states
of the diseases. In our proposed model when K > 1 there
exist persistent smokers in the community while for K < 1
there are no smokers.

In order to understand the qualitative behavior of the
giving up smoking model we find the different equilibrium
position of the model.

Remark 1. The Jacobian matrix around the trivial equilib-
rium E; = (0,0,0,0) is

—di—u 0 0 P
0 -u-—d 0 0
Je = - (5)
0 0 —ds—y—p 0
0 0 Y —dy—pu—p

The eigenvalues of the Jacobian matrix around the trivial
equilibrium Ey = (0,0,0,0) are —d; —y, —dr —p, =y —ds — i,
—dy — p — p. Thus all the roots have negative real part, which
shows that the trivial equilibrium is locally stable.

Theorem 1. When K > 1, the giving up smoking model (1) has
unique positive epidemic equilibrium E, = (P*,L*,5§*,Q%),
where P*,L*,S*, and Q* are defined in (4).
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Theorem 2. The giving up smoking model (1) has E; =
(1,0,0,0) as a locally stable smoking-free equilibrium if and
only if B1 < dy + p. Otherwise E is an unstable smoking-free
equilibrium.

Proof. We can examine by linearizing our proposed giving
up smoking model (1) around E; = (1,0,0,0) to get local
stability. Hence, the equilibrium point around E; gives us the
Jacobian matrix:

—di-u B 0 p

pi—u—d; 0 0

=1 0  —d-y-u 0
0 0 y —ds—p—p

(6)

The eigenvalues of the Jacobian matrix J; around smoking-
free equilibrium E; = (1,0,0,0) are —d; — p, 1 — d» — ,
—y —ds — u, —ds — p — p. Thus, we deduce that all the roots
have negative real part when f8; < d, + y which shows that
the smoking-free equilibrium is locally asymptotically stable.

O

Theorem 3. When K > 1, the unique positive epidemic
equilibrium E, = (P*,L*,8*,Q") of the giving up smoking
model (1) is locally asymptotically stable.

Proof. For the proof of this theorem see Appendix A. O

In order to investigate an effective campaign to control
smoking in a community which satisfies that the maxi-
mum number of occasional (light) and persistent smoker
individuals is not larger than that of potential smoker
individuals and more individuals are recovered after quitting
the use of tobacco, we consider the system (1) and use
two control variables to control both the occasional (light)
smoker and persistent smoker population. In the system
(1) we have four state variables P(t), L(t), S(t), and Q(t).
For the optimal control problem we consider the control
variable u(t) = (u1(t),ux(t)) € U relative to the state
variables (P(t), L(t),S(t), Q(t)), where U = {(uy,uz) | u;i(t)
is measurable and 0 < wu;(t) < w; < oo,t € [0,tend], for
i=1,2,},1s an admissible control set.

Next, we describe the role played by the first control
u(t) and how it is incorporated in the system (1). It the
beginning people start smoking occasionally for a variety
of different reasons. Some think it looks cool. Others start
because their family members or friends smoke. Statistics
show that about 9 out of 10 tobacco users start occasionally
and then gradually become persistent smoker. Furthermore
there are strong evidence that the attitude towards smoking
is starting from high (junior) school time. Thus, a campaign
like movie particularly in a class or group to show them
that smoking is more likely to develop cancer of the mouth
and throat, bladder, kidney, liver, stomach, and pancreas
which significantly raises risk of heart attack. Therefore
control function u;(¢) represents education campaign level
used to control smoking in a community. The control u,(t)
represents the level of treatment in the form of stop smoking

injection (vaccine) that contains drugs that block nicotine
receptors of the brain, which in turn helps in reducing
the desire to smoke. The physical meaning of the control
variable in this problem is that low levels of the number of
occasional (light) and persistent smokers build. In case of no
campaign or no treatment the number of persistent smoker
increases while the number of former smoker decreases.
Better and prefect time of campaign brings the number of
occasional (light) and persistent smokers to a small level,
potential smokers begin to build again and more individuals
are recovered by quitting the use of tobacco. The effects of
tobacco on both occasional (light) and persistent smokers
are negative for quit smokers around them, so we wish
to minimize both. Also small amount of control variables
(campaign and treatment) are acceptable; therefore, we wish
to penalize for amount too large, so quadratic terms for
both control variables will be analyzed. Hence, our optimal
control problem to minimize the objective functional is given
by

T 1
Ty uz) = j [mL(t) +aS(0) + 5 (€0 + &uﬁ(t))]dt
0
)
subject to
D bN(1) ~ BLOP®) — (dy-+ )P0 +pQUD),
AL _ B LWP() ~ BLWSO — (da + e+ ()LD,
B b1 (05(0) - (y+ds + o+ w(0)S(0),
90 _ (4 1y()5(0) ~ (dy + 1+ p) Q) + 1 (L)
(8)
with initial conditions
P(0) = Py, L(0) = Lo, S(0) = Sy, Q(0) = Q.
(9)

Here o; and & for i = 1,2 are weight factors (positive
constants) that represent a smoker level of acceptance of the
control campaign. The goal is to minimize the occasional
(light) and persistent smokers and the cost of implementing
the control. Occasional smokers induce an optimal control
u; (t) before they become persistent smokers, and an optimal
control u,(t) should be provided to persistent smokers
population.

Various deterministic optimal control models and their
existence are investigated by several authors [8, 9, 15]. First
we shall show the existence for the control system (8). Let
P(t), L(t), S(t), and Q(t) be state variables with control
variable u(t) = (u;(t),uy(t)) € U. For existence we consider
the control system (8) with initial conditions in (9). Then we
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can rewrite the system (8) in the following form: where
Vi=MV +x(V), (10)
P(t) —di - 0 0 )
L(t) 0 —(dz +‘Ll+1/l1(t)) 0 0
V= , M = g
S(t) 0 0 —(y+ds+u+ut)) 0
Q(1) 0 ui (t) Y+ ua(t) —(dy+p+p)

(11)

BN(t) - BiP(1)L(1)
BiP(t)L(t) + B, L(1)S(t)

x(V) =

and V; denotes the derivative of V with respect to the time
t. The system (10) is a nonlinear system with a bounded
coefficient. We set

G(V) = MV + (V). (12)
The second term on the right-hand side of (12) satisfies

|X(V1) = x(V2)| < ALIPL(8) = Po(8)] + Ao |La(8) — Lo(8)]

+A38:(8) = S (D),
(13)

where the positive constants A1, Az, and Az are independent
of state variables P(t), L(t), and S(t) < N(¢), respectively.
Also we get

|G(V1) = G(V)| < AlVy = Vs, (14)

where A = Aj + Ay + Az + ||[M]| < . Thus it follows that
the function G is uniformly Lipschitz continuous. From the
definition of U and the restriction on P(t), L(t), S(t), and
Q(t) = 0 we can see that a solution of the system (10) exists
(see [16]).

To illustrate how to solve a control problem actually, first
we should find Hamiltonian for the optimal control problem
(7)=(9). To do this, we define the Hamiltonian H for the
control problem as follows:

H(P)L> S) Q) u, u2)A1)121A3)/\4)

= L(L, S, u1, up) + A1 (£)g1(t) + A2 (£)ga(t) + A3 (1) g3 (1),
(15)

where L(L,S,ui,u2) = aL(t) + axS(t) + (1/2)(E112(t) +
&ud(t)) is the Lagrangian and g; for i = 1,2,3 is the right-
hand side of the differential equations of the state system (8),
respectively.

>

B2L(1)S(¢)

0

Theorem 4. There exists an optimal control pair u* =
(uf,uy) € U such that

](uik’u;‘) = min ](ul) 1/[2), (16)

(u1,u2)€U
subject to the control system (8) with initial conditions (9).

Proof. To prove the existence of an optimal control, we have
to show the following.

(1) The control and state variables are nonnegative
values.

(2) The control U set is convex and closed.

(3) The RHS of the state system is bounded by linear
function in the state and control variables.

(4) The integrand of the objective functional is
concave on U.

(5) There exist constants such that the integrand in
(7) of the objective functional is satisfied.

In order to verify these conditions, we use a result by
Fister [5]. We note that the solutions are bounded. The set
of all the control variables u(t) = (u1(t),us(t)) € U, is
also convex and closed by definition. The optimal system is
bounded which determines the compactness needed for the
existence of the optimal control. In addition, the integrand
in functional (7) is given by a; L(t) + a2 S(t) + (1/2) (& u3 (t) +
&u3(t)) and is convex on the control set U. Also we can easily
see that there exist a constant ¢ > 1 and positive numbers 7,
and 7, such that

a/2
](ul,uz)2712+771(W1|2+|u2|2) s (17)
which completes the existence of an optimal control. O

Pontryagin maximum principal (PMP) states necessary
conditions [17] that must hold on an optimal trajectory.
These conditions help us in calculation of the state, adjoint,
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and control variables in the optimal control problems. PMP
can be used as both a computational technique and analytic
technique. The technical tools used to determine the optimal
strategy is given in the following form.

If (x*(t),u*(t)) is an optimal solution of an optimal
control problem, then there exists a nontrivial vector func-
tion A(f) = (A;(£),A2(F),...,A,(¢)) satisfying the following
inequalities:

OH (t, x* (1), u* (1), A(1))

0= an ’
o = FHBX* (0, u* (D,A(0) )
ou
N(t) = _aH(t,x*(tg:*(t),/\(t))’

where “7” denotes the derivative with respect to time ¢. Now
we apply the necessary conditions to the Hamiltonian H in
(15).

Theorem 5. Let P*(t), L*(t), S*(¢), and Q*(t) be optimal
state solutions with associated optimal control variables u; (t)
and uj (t) for the optimal control problem (7)—(9). Then there
exist adjoint variables A (t), A,(¢), A3(t), and A4(t) satisfing

A'1(t) = Br(Aa(t) = A2())L* () + M (£) (d + ),

Aa(t) = Br(Aa () = La(0))P*(8) + B2(Aa (1) — A3(£))S™ (1)
+M2(0) (da + @) + (Ao (t) = Aa(8)) s (£) —

N3(t) = Bo(ha(t) = As()L* (1) + As(£) (y + ds + )
+(A3(1) = La(D)ua () — ez,

Na(t) = Aa(t) = 1 ())p + Aa(t) (ds + 1),

(19)
with transversality conditions (or boundary conditions)
M(T) =0, i=1,23. (20)
Furthermore, optimal control pairs are given as follows:
uf (1) = max{min{ (0 _ga(t))L(t),wl},O}, (21)
1
uy (1) = max{min{ () _?3(0)8“) , wz}, 0}. (22)
2
Proof. For the proof of this theorem see Appendix B. O

Here we call formulas (21) and (22) for u* the charac-
terization of the optimal control. The optimal control and
the state are found by solving the optimality system, which
consists of the state system (8), the adjoint system (20),
boundary conditions (9) and (20), and the characterization
of the optimal control (21) and (22). To solve the optimality
system we use the initial and transversality conditions
together with the characterization of the optimal control pair
(ui(t),u3(t)) given by (21) and (22). By substituting the

values of uf(t) and u3 (¢) in the control system (8) we get
the following system:

dP*(t)
dt
= bN*(t) = fiL* ()P* (t) — (di + p) P*(t) + pQ* (1),

dL*(t)
dt

= BiL*()P*(t) = BoL™ (1)S* (1)

_ <d2 +u+ max{min{ (a(6) = )24(t))L*(t),w1},0})
1

x L*(t),

ds*(t)
dt

= &L*(1)S* (1)

- <y +ds+y+ max{min{ (A3(t)—/1g(t))8*(t) ) wz},O})
2

X S* (1),

dQ* (1)
dt

- <Y + max{min{ (“s(t) - /24(”)8*(” , m},O})S*(t)
2

— (ds+p+p)Q*(1)

+ max{min{ “a(t) = A;(t))L*(t) , wl},O}L*(t).
1

(23)

With the Hamiltonian H* at (P*,L*, S*, Q*, u}, uf, A1, A2,
A’3a /14)>

H*

= (XlL* (t) + ocZS*(t)

% 2
L1 {gl (e Gt 2001700, )
2 &
* 2
ks (max{min {(Mt)—?(t))s <t>)w2})0}) ]
2

+h(gr (1) + A (D)g5 (1) + A3 (t)gs (1),

(24)

where ¢(¢) for i = 1,2,3 is the right-hand side of the
differential equations of the state system (23), respectively.
To find out the optimal control and state we will numerically
solve the system (23) and Hamiltonian (24).



3. Numerical Results

In this section, we shall solve numerically an optimal
control problem for the PLSQ model. Here we obtain the
optimality system from the state and adjoint equations. The
optimal control problem strategy is obtained by solving the
optimal system, which consists of eight ordinary differential
equations and boundary conditions. The optimality system
can be solved by using an iterative method by Runge-Kutta
fourth scheme [18]. Using an initial guess for the control
variables, u;(t) and u,(t), the state variables, P, L, S, and Q
are solved forward in time, and then the adjoint variables,
A for i = 1,2,3,4, are solved backwards in time. If the
new values of the state and adjoint variables differ from the
previous values, the new values are used to update u; (¢) and
uy(t), and the process is repeated until the system converges.
For the PLSQ model presented in this work, the state system
is given by (8) with the initial conditions given by (9). The
adjoint system is given by (20) with the final time conditions
given by (21) and the characterization of the optimal control
by (21) and (22).

To determine the numerical simulation of the optimality
system we use a small time step size At = 0.005. We consider
that the optimal campaign continues for 30 day, and use
a real estimate of parameter value represented in Table 1.
For reasonable values of the parameter we restate the idea
presented in [8, 13, 19]. When a person first becomes a
smoker it is not likely that she/he quits for several years
since tobacco contains nicotine, which is shown to be an
addictive drug. We assume 1/y to be a value between 15 and
25 years, that is, 20. Hence, the value of 1/y is set to 7300 days.
The death rate of each individual is different from others
and depends on the real life situation. Here, we assume that
dy < dy < d, < ds. The natural death rate p is per 1000 per
year (currently 8 in the US). There is strong evidence that
the attitude towards smoking is starting from high (junior)
school time. Therefore 1/b is set to be 1095 days. Death from
lung cancer was the leading cause by smoking, with a rate
of 37 per 100,000 individuals [20]. The reasonable value of
parameters f3; and 3, which represent the average number of
contacts with smoker individuals needed to make light and
persistent smoker, respectively, in each unit of time can be
obtained by using the same techniques presented in [13]. We
consider the real data used in [8] for the P(0) = 153, S(0) =
79, and assume that L(0) = 40. and Q(0) = 9.

We presented in Figure 1 the potential smoker in two
systems (1) and (8). The plain line denotes the population
of potential smokers in the system (1) without control while
the dotted line denotes the population of potential smokers
in the system (8) with control. The potential smokers in the
two systems (1) and (8) are almost the same in around days
1-10. After 10 days a slight increase appears in potential
smokers population. Figure 2 represents the population of
occasional smokers in two systems (1) without control and
(8) with control. The population of occasional smokers
sharply decreases from the first day of infection in systems
both with control and without control and reaches its
minimum number of occasional smokers L = 39.3 and
L* = 39 at the end of the optimal campaign.
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TaBLE 1: Reasonable values of the parameter.

Parameter Description Value
b Birth rate 0.00091
U Natural death rate 0.0031
y Recovery rate 0.0013
p The rate of Q becomes P again 0.0031
B Infection rate of smoking 0.00014
B> Infection rate of smoking 0.0024
o Weight factor for smoker 0.091
o Weight factor for smoker 0.001
& Campaign level of acceptance for smoker 0.02
& Treatment level of acceptance for smoker 0.10
d; Disease death rate of P 0.00034
d, Disease death rate of L 0.00045
ds Disease death rate of 0.0054
dy Disease death rate of Q 0.00061
Control in the population of potential smoker
68
66 R
w64 | R
i
o
g
= 62+t R
£
o
& 60 | .
58 | N
56 : : : : :
0 5 10 15 20 25 30

Time (day)

—— w/o control
-—.- With control

FIGURE 1: The plot shows the population of potential smokers P
both with control and without control.

Figure 3 represents the persistent smokers in the two
systems (1) and (8). The persistent smokers population in
both systems (1) and (8) decreases more sharply than the
light (occasional) smokers population and about § = 19
and S* = 16.8 persistent smokers population remains at
the end of the optimal campaign. Figure 4 represents the
numerical results of both systems (1) and (8) of the quit
smokers population. After the optimal campaign the light
(occasional) smokers and persistent smokers populations
decreases while the quit smoker population increases.

In this work we use one set of parameters for both
dynamical systems (1) and (8). Simulations with different
sets of parameter values can be used in the future to obtain a
sampling of possible behaviors of a dynamical system.
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Control in the population of occasional smoker

Occasional smoker

Time (day)

—— w/o control
-—.- With control

FiGure 2: The plot shows occasional smoker L both with control
and without control.

Control in the population of smoker
30 T T T

28 AN

26 N

24 + .

Smoker

22+ e

0 5 10 15 20 25 30
Time (day)

—— w/o control
-—-— With control

F1GURE 3: The plot shows persistent smoker S both with control and
without control.

4. Conclusion

In this paper we considered the model introduced by
Zaman [13] and extend that once a smoker quits he/she
may becomes a potential smoker again, and then we used
optimal control theory to minimize the number of light
and persistent smokers and maximize the number of quit
smokers in a community. The control plots obtained from
the numerical simulation in this paper represent that the
numbers of light and persistent smokers decreases and the
number of quit smokers increases in the optimality system.

7

Control in the population of quit smoker

20 T T T T T
g
2
=)
g
w
3
o

8 1 1 1 1 1

0 5 10 15 20 25 30

Time (day)

—— w/o control
-=-- With control

Ficure 4: The plot shows quit smoker Q both with control and
without control.

We also showed that for certain values of control rate there
exists its corresponding optimal solution. We considered
a special disease (smoking) in a specific community as a
realistic model, and we hope that the approach introduced
in this paper will be applicable in other epidemic models
beyond the giving up smoking model.

Appendices
A. Proof of Theorem 3

The Jacobian matrix of the giving up smoking model (1)
around Ex = (P*,L*,8*,Q") is

Ap AL 0 1%
Bp By Bs 0 (A1)
* = N 1
] o0 CL Cs 0
0 0 y Dq
where
Ap = —piL* — (dy +p), Ap = =P,
Bp = BiL*, Bp = B1P* = B2S* — (da + ),
(A.2)
Bs = —f,L", CL = .S,
Cs = BoLl™ — (y+ds +p), Dq = —(ds +u+p).
The characteristic equation of J * is
/\4 + 01/13 + 02A2 + a3A +a4 = 0, (A3)



where

a; = —(Ap+ B+ Cs+ Dg),

a, = CsDq + ApBc + (Cs + Dq) (Ap + BL) — ALBp,

as = A Bp(Cs + Dq) — (CsDq(Ap + Br) + ApBc(Cs + Dg)),

as = APBLCSDQ - ALBPCSDQ - pprCL.
(A.4)

By Routh-Hurwitz conditions the equilibrium state is
asymptotically stable if a; > 0, as > 0, a4 > 0 and a;aza3 >
a3+atay. Thus it follows that the unique positive equilibrium
E, of the giving up smoking model, which exists if K > 1,
is always locally asymptotically stable. This completes the
proof.

B. Proof of Theorem 5

To determine the adjoint equations and the transversality
conditions, we use Hamiltonian (15). From setting P(t) =
P*(t), L(t) = L*(¢), S(t) = S*(¢), and Q(¢) = Q*(¢) and
differentiating the Hamiltonian (15) with respect to P, L, S,
and Q, we obtain

M) = *?TI; = B (8) = L (D))L(E) + A1 () (dr + ),

Ay (t) = —aa—i[
= B1(Ai(t) — A2(8))P(2)
+ B2(A2(t) = A3(1))S(t) + A (1) (dy + )
+ (A2 (1) = Aa())un (8) — a1,
A1) = —%—Z
= Ba(Aa(t) = A3()L(t) + A3 () (y + ds + )
+ (A3(t) = Aa())ua(t) — a2,
Ay(t) = —3% = (Aa(t) = A1(1)p + Aa(t) (dy + ).

(B.1)

Using the optimality conditions and the property of the
control space U for the control variable u, we obtain

ST,HI =0 = §ui(t) + (=Ax(t) + A4())L() = 0.  (B.2)

By using the property of the control space, we obtain

? 0RO

1
uf (t)=+ Qa(t) ~Aa (1) L(1) if0 < M&M
J &
w1 if M >0,
) 1

(B.3)
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This can be rewritten in compact notation

uf(t) = max{min{ () _?14(t))L(t) ,wl},O}. (B.4)

Similar to the control variable u,, we get

7 ¢ BO-M(0)S0)
&
i) | BO-MO0 e OsO-L®)SO
& &
£ Q50 =80
W 1 = Wy.
| &
(B.5)

This can also be rewritten similar to the above compact form

as
uy (t) = max{min{ “s(1) 7?4(1‘))8(1‘) ,wz},O}. (B.6)
2

This completes the proof.
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