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Two datasets of points of known spatial positions and an associated absorbed dose value are often compared for quality assurance
purposes in External Beam Radiation Therapy (EBRT). Some problems usually arise regarding the pass fail criterion to accept
both datasets as close enough for practical purposes. Instances of this kind of comparisons are fluence or dose checks for intensity
modulated radiation therapy, modelling of a treatment unit in a treatment planning system, and so forth. The gamma index is
a figure of merit that can be obtained from both datasets; it is widely used, as well as other indices, as part of a comparison
procedure. However, it is recognized that false negatives may take place (there are acceptable cases where a certain number of
points do not pass the test) due in part to computation and experimental uncertainty. This work utilizes mathematical methods
to analyse comparisons, so that uncertainty can be taken into account. Therefore, false rejections due to uncertainty do not take
place and there is no need to expand tolerances to take uncertainty into account. The methods provided are based on the rules of
uncertainty propagation and help obtain rigorous pass/fail criteria, based on experimental information.

1. Introduction

Modern radiation therapy aims at a high level of accuracy
and, as a consequence, becomes more demanding regarding
quality assurance checks (even patient-specific checks) and
measurement and computation performance. The use of
comparisons of two datasets consisting of a sample of
measured or computed absorbed dose points covering the
treatment field or a patient tomographic slice is frequently
performed on a routine basis. Therefore, the acceptance
method should be both straightforward and reliable.

Traditionally, treatment goals in radiation therapy were
achieved by choosing several directions around the patient so
that the dose from all the beams was conformed to the target
volume, sparing healthy tissues. Nowadays, it is possible to
improve the homogeneity of absorbed dose in the planning
target volume (PTV) and reduce the absorbed dose to healthy
organs using several fields of non-uniform intensity (IMRT)

designed to combine in an optimised dose distribution inside
the patient [1, 2].

The process is more complex than the one involved in
conventional radiation therapy. The way the different beam
orientations are combined could lead to practical problems,
due to several issues: small and elongated beams are used,
there are high dose gradients inside the fields, some features
of the linear accelerator could have a noticeable effect,
and treatment planning computation could not be accurate
enough. These issues can make a particular plan unsuitable
for treatment, and this is the reason why a comprehensive
quality control of the technique and checks for each plan are
often recommended [3, 4].

Two main types of patient specific checks have been
recommended in the literature [3, 5].

(1) The first one consists on recomputing the plan
substituting the representation of a suitable phantom for
the patient representation and obtaining the 2D dose
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distribution on several planes inside the phantom.
Radiographic or radiochromic film is inserted in the
phantom in the same positions where the 2D doses where
computed, and it is irradiated with the whole treatment.
These films are scanned with an appropriate device
and compared with the computed dose planes; this is a
way to check the combined dose distribution. Some 3D
measurement devices are also available [6–9].

(2) Irradiations are carried out for each beam, with the
film or 2D detector placed perpendicular to the beam direc-
tion. The dose distributions have been previously computed
with the treatment planning system, and a corresponding set
of 2D computed dose distributions (or fluence maps) has to
be compared with the measured ones. A check of each fluence
map is obtained with this technique.

In either case, a comparison of two datasets with
a great number of points has to be performed. Similar
situations arise when commissioning a treatment planning
system, since computation results have to be checked against
measurement results. This leads to the following problem.

Given two arrays of values (absorbed dose), maybe
with different spacing, find a convenient criterion to decide
whether or not they can be considered as coincident for
practical purposes. The dose distributions to be expected
in radiation therapy can have sharp gradients in the field
boundary, and possibly also inside the field, where the
dose is not homogeneous. Wherever a sharp gradient is
present, the result could be affected by geometrical errors
(i.e., error in the position of a collimator leaf, error in the
computation of the dose on the edge of the collimator leaf)
and the check method should be able to cope with this. A
small geometrical error is considered acceptable, but a direct
comparison of the measured and reference dose in this area
could result in a value out of dose tolerance. This is the reason
why acceptance criteria based on distance to agreement
(DTA) were developed [3–5]. DTA is the distance from the
measured point to the nearest point in the reference dose
distribution with the same dose. DTA tolerances are usually
set for penumbra regions (field edges), and tolerances based
on absorbed dose differences are used for homogeneous
regions inside or outside the field. Unfortunately, there is no
reasonable criterion as to whether dose difference or DTA
should be used for points inside a modulated field, because
there could be gradients of very different magnitude.

A solution was proposed by Low et al. [10, 11], involving
the computation of a single figure of merit for the quality of
the match. It has become the method of choice for acceptance
of IMRT plans. It involves an artificial distance in a 3D dose
space. If the dose difference tolerance is ΔD and the spatial
tolerance is ΔR, then the gamma index is

γ = min

√
D2

ΔD2
+

R2

ΔR2
, (1)

where D and R are the dose difference and distance to the
point in the reference dataset where the square root would
reach a minimum. This minimum could be an interpolated
point.

A point passes the check if this index is less or equal
than to 1. ΔD and ΔR are no longer strict tolerances: dose
difference could be greater than ΔD for a point passing the
gamma test; DTA could also be greater than ΔR for a point
with a gamma less than 1; although if dose difference is
greater than ΔD and DTA greater than ΔR at the same point,
the gamma test fails [10]. At the same time, the absolute value
of γ at a point where the test is not passed is a measure of the
severity of the failure.

The gamma index can be easily generalized to a 3D
comparison, if DTA is computed with a 3D search [12].
A gamma filter method developed by Depuydt et al. [13]
helps improve computation efficiency at the expense of not
obtaining gamma values, but just checking whether or not
every point is within tolerance.

It is widely acknowledged that in few occasions measured
and computed datasets pass this gamma test for every
measurement point, and it is customary to allow for some
percentage of points failing the test [3–5, 14]. In practice, the
pass rate is checked, the percentage of points in the reference
dataset passes the test, and the tolerance for this rate is set
according to previous experience. Therefore, the occurrence
of failing points does not mean that the plan has to be
rejected. This is the reason to accept a pass rate that could
be less than 100%. However, there are no other grounds to
accept this tolerance in pass rate, but empirical evidence,
unless experimental uncertainty for the check procedure is
somehow taken into account and propagated to the test
indices. Basran and Woo [14] show their method to set the
acceptance pass rate. They check their history of previous
checks, their pass rates and whether they have been accepted
or not in order to find the pass rate value corresponding to
a 95% confidence. This is a purely empirical method, that
ensured self-consistency, but it does not address the causes
of the failing points.

Palta et al. [15] proposed a method to set tolerances in
the process of commissioning, according to the observed
variability. This recommendation was included in the recent
report by AAPM Task Group 119 [3], to account indi-
rectly for uncertainty in the tolerance levels. In this case,
commissioning tests provide experience about variability of
results that can be attributed to the experimental procedure.
Analysis of the results can help set expanded tolerance levels
of acceptance pass rates.

In other kinds of comparisons (like comparisons between
computed datasets), statistical information is not available
and a decision about the percentage of failing points that can
be tolerated has to be based on other considerations.

In this work, a novel method is presented that modifies
the gamma index check, introducing uncertainty features
into its computation. This method has some interesting
properties: first, it is a direct propagation of experimen-
tal uncertainty, allowing for uncertainty analysis. Second,
tolerance levels are not modified because of uncertainty;
using this method, tolerance levels can be set to values
close to the accuracy actually sought for. And third,
experimental devices, computations, and their uncertain-
ties are characterized by simple and physically meaningful
parameters. Therefore, the study of the check procedure is
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reduced to the a priori study of the devices and algorithms
involved.

2. Methods and Materials

2.1. Theoretical Background. Each of the datasets has been
represented as several arrays of random variables. Their
mean values are the values in the dataset, labelled as small-
case letters with subscripts for their position and superscripts
for the dataset: xri j ,d

t
kl, . . .. There is one array for each

of the spatial coordinates and another for the dose. Test
and reference datasets are allowed to have different values
of uncertainty and array spacing, but spatial uncertainty
within one of the two datasets is supposed to be isotropic.
Therefore, spatial uncertainty is described by one parameter
for each dataset: σts for the test dataset and σrs for the
reference dataset. Along this work, the symbol σ stands
for standard uncertainty (one standard deviation). Similarly,
σtd and σrd are dose uncertainties. ΔR and ΔD are check
tolerances for the comparison between both datasets (not
related to dataset uncertainty). In the next paragraphs, the
computation algorithm for the comparison with uncertainty
evaluation will be presented and the derivation of the
algorithm can be found in the appendix.

2.1.1. Probability Check for Gamma Index (2D Datasets). A
pass/fail test has to be performed for each possible pair of
points, one from each dataset: point i j from the reference
dataset and kl from the test dataset.

Step 1. Compute the following parameters:
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Step 2. Compute Pi jkl = P[χ2
h′ i jkl > yi jkl] from a noncentral

chi-square distribution probability function or table.

For each point in the reference dataset, the value Pi j =
P[maxkl(Γi jkl) > 1] = 1−∏kl(1− P[Γi jkl > 1]) is computed
and the test is passed if it is less than a preset significance
figure α.

A global modified pass rate can be reported with the
results of this test for every point in the reference dataset. A
value of α = 0.05 is used in this study.

2.1.2. Probability Distribution of Gamma (3D Datasets). In a
similar fashion, the test can be carried out for 3D datasets.

Step 1. Compute the following parameters:
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Step 2. Compute Pi jklmn = P[Γi jklmn > 1] = P[χ2
h′ i jklmn

>

yi jklmn] from a noncentral chi-square distribution probabil-
ity function or table.

For each point in the reference dataset, the value Pi jk =
P[maxlmn(Γi jklmn) > 1] = 1 − ∏

lmn[1 − P[Γi jklmn > 1]]
is computed and the test is passed if it is less than a preset
significance figure α.

As in the 2D case, a global modified pass rate can be
reported with the results of this test for every point in the
reference dataset. A value of α = 0.05 is used in this study.

2.2. Application. A probabilistic method to check test
datasets for coincidence with a reference dataset, taking
uncertainty into account, was tested with an example. It has
to be remarked that for the new test to be passed, every point
has to pass the test, that is, the probability test has to be
passed for each pair of points drawn from the reference and
test datasets. Common practice when using classic gamma
test is to allow a limited percentage of points to fail the test.
For the application of the present method, the probability
comparison will only be passed if all points pass the test.

A practical example with 5 segments was set up.
Figure 1(a) shows the whole reference composite field on
film and Figures 1(b), 1(c), 1(d), 1(e), and 1(f) the segments
used to obtain the composite image. The composite irradia-
tion was modified in order to introduce controlled defects.

Case 1. A 1 mm shift along X in the first segment, 1.5% more
dose in the second, a 1 mm shift along Y in the third, and
0.5% less dose in the fourth.

Case 2. Same modifications, but the increment of dose in the
second segment is 3% and the third is shifted 4 mm.

Case 3. The first segment has 2% less dose than the reference
and is shifted 4 mm along X ; the second segment has been
delivered with 5% more dose; the third segment shift along
Y is 4 mm, and the fourth has 2% less dose.

Case 4. All segments but the smallest one were shifted 4 mm
along the X axis.

Case 5. All segments but the smallest one were shifted 4 mm
along the Y axis.

Therefore, each of the cases corresponds to a set of shifts
and changes of intensities for every segment as exemplified
in Figure 2. These controlled defects are simple enough as
to make clear whether or not a test on coincidence with the
reference unmodified image should pass or fail. However, the

algorithm was applied with the same rigour as it would have
been done for a more complex fluence pattern.

The modified planar distributions (test datasets) were
compared with the original one (reference dataset) with the
following uncertainty parameters: 0.2% dose and 0.5 mm,
0.5% dose and 0.5 mm, and 0.2% dose and 1 mm. Dose
uncertainty is relative, and this fact has been taken into
account in the computation of the indices. Tests were
performed for tolerances 2% dose and 2 mm and 3% dose
and 3 mm.

A function in R statistical software [16] was used to
perform all the computations. Graphs were obtained using
the “rimage” package [17].

3. Results

Results for the gamma test are shown in Table 1. Pass rates
for a classical test are presented along with the modified test.
Shaded cells contain acceptable values: 100% pass rate for the
modified test and more than 98% pass rate for classical tests.

Figure 3(a) shows a graph with points that fail the classic
test for Case 2 and tolerances of 2 mm and 2%, Figure 3(b)
shows the images of pass probability for the new test with
0.2% uncertainty in dose and 0.5 mm in position, the same
tolerance values as in the previous case.

Figure 4 shows a sequence of pass probability images
for Case 4, tolerance 3 mm and 3%, and different uncer-
tainty values: 0.2 mm/0.2%, 0.5 mm/0.2%, 0.5 mm/0.5%,
and 1.0 mm/0.2%. These uncertainty values have been
chosen to illustrate the method.

4. Discussion and Conclusions

Case 1 is a priori an acceptable result, Case 2 is on the limit of
acceptability, and the other ones are a priori unacceptable.
It is clear that the classic test failed to discard the wrong
irradiations even allowing for a percentage of failing points.
The usual gamma index tests would have approved every
case if a 97% pass rate would be allowed and 3%—3 mm
tolerances would have been used. For tolerances of 2%—
2 mm, only Case 4 would have been rejected. Case 4 is
an extremely undesirable plan, with an unacceptable global
shift, but, interestingly enough, Case 5, with the same shift
along the other axis, would have been accepted with a passing
rate greater than 98%. Comparison of pass rates as well as
of images in Figure 3 shows that the novel test developed
in this work would have rejected cases where the standard
gamma index test would allow for a great number of points in
gradient areas without rejecting the comparison. Therefore,
the new test is less permissive than the classic one.

On the other hand, Figure 4 and their pass rates in Table 1
show the potential misleading effect of using measurement or
computing methods not suitable for the task: as uncertainty
grows larger, it is possible to accept an inadequate case (Case
4), if tolerances are also too large. It can be concluded that
for tolerances of 3% and 3 mm, uncertainties of 0.2% and
1 mm are enough to make the test insensitive. Tolerances of
3 mm and 3% are currently used, but these results show that
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(a) (b) (c)

(d) (e) (f)

Figure 1: Reference dataset. (a) Composite irradiation. (b) Segment 1. (c) Segment 2. (d) Segment 3. (e) Segment 4. (f) Segment 5.

Table 1: Gamma results for Cases 1–5.

Case 1 Case 2 Case 3 Case 4 Case 5

Tolerance 2%—2 mm

Dose Unc. 0.2%. Dist. Unc. 0.2 mm 1.0000 0.9929 0.9926 0.9696 0.9920

Dose Unc. 0.2%. Dist. Unc. 0.5 mm 1.0000 0.9931 0.9930 0.9718 0.9927

Dose Unc. 0.5%. Dist. Unc. 0.5 mm 1.0000 0.9932 0.9932 0.9726 0.9938

Dose Unc. 0.2%. Dist. Unc. 1.0 mm 1.0000 0.9966 0.9966 0.9876 0.9972

Classic test 1.0000 0.9894 0.9861 0.9615 0.9893

Tolerance 3%—3 mm

Dose Unc. 0.2%. Dist. Unc. 0.2 mm 1.0000 0.9957 0.9957 0.9847 0.9965

Dose Unc. 0.2%. Dist. Unc. 0.5 mm 1.0000 0.9967 0.9968 0.9898 0.9979

Dose Unc. 0.5%. Dist. Unc. 0.5 mm 1.0000 0.9968 0.9968 0.9909 0.9979

Dose Unc. 0.2%. Dist. Unc. 1.0 mm 1.0000 1.0000 1.0000 1.0000 1.0000

Classic test 1.0000 0.9933 0.9932 0.9794 0.9946

they are a compromise to account indirectly for uncertainty.
The test developed in this paper would work with accuracy
and sensitivity with 2%—2 mm tolerances that are closer to
actual physical requirements.

The method presented in this work is potentially appli-
cable to a broad set of comparisons: computer versus mea-
sured dose distributions for planning system commissioning,
IMRT commissioning and patient checks, commissioning of
measurement devices, and so forth. For any real experimen-
tal case, care should be taken to characterize its uncertainty.
Furthermore, this method could be used to evaluate whether
experimental uncertainties could deteriorate the sensitivity

of a test. Accuracy requirements in IMRT patient plan checks
are very high, and it is useful to know if the checking device
uncertainty could induce the checker to accept plans too
easily.

Some alternative methods have been described in the
literature in order to refine the standard gamma index test;
but the result is a consensus about tolerances and pass rate
criteria. It is interesting to look at some conclusions in the
ESTRO Booklet no. 9 [5] in the sense that it is hard to
decide if test failure is related to computer system, data
transfer, linear accelerator, measurement, or data analysis. A
document with a similar scope is the one published by the
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Figure 2: Example of setup of a test dataset by shifting and
modifying segment intensity.

American Association of Physicists in Medicine [3]. Both et
al. [18] performed a study of check results (dose difference
and distance to agreement) in order to set reasonable
acceptance values for the percentage of passing points (95%
for prostate, 90% for other sites) and point dose error per
field (3% for prostate and 5% elsewhere). Stock et al. [19]
present a strategy of primary and secondary checks. They
accept checks with γ pass rates of 5% and prescribe further
evaluation (γ angle, e.g.) if γ pass rate is greater than 5% but
less than 10%. Moran [20] designed a method to allow for
small range failures in the test.

In the survey performed by Nelms and Simon [21],
current practice (September 2007) in the USA is presented.
It is far from clear that the consensus about how to accept
results from a comparison check is actually used. From
these sources, it seems there is no rigorous accepted method
in the literature in order to consider measurement and
computation uncertainty a priori.

This work shows a practical application of several results
about the probability distribution of quadratic forms of
normal random variables. Since no a priori relationship
between dose and position uncertainty can be assumed, the
expression for the gamma index cannot be reduced to a
simple noncentral chi-square random variable. This is the
reason why some more refined mathematics have been used.
The use of a Monte Carlo method [22] would introduce
more than a million iterations for each pair of points while
the three moment approximation used in this work is fast
and accurate enough. Computation does not involve more
iterations than a classic gamma check.

A classical test (with ΔD = 3%, ΔR = 3 mm, and a pass
rate tolerance of 97%) accepts every case in this work, despite
the fact that some of them were designed with controlled
defects that should not be acceptable at all. Using tighter
tolerances (presented, ΔD = 2%, ΔR = 2 mm), only one case
is rejected (Case 4) and, oddly enough, Case 5, with the same
shift as Case 4 but along the central dose edge, passes this
classical test. Figure 3(b) shows that this allowance in pass
rate means that points in high gradient regions are allowed
to fail the test. Unless further investigation is carried out it is

(a)

(b)

Figure 3: Image of pass probability for Case 2: (a) classic test with
tolerances of 2 mm and 2%. (b) new test with tolerances of 2 mm
and 2%.

not clear that those failing points are due to limitations in the
measurement procedure.

When the new method is used, it becomes feasible to
ensure whether or not points failing a classic test are a
consequence of measurement limitations. If the new test
does not yield a 100% pass rate it is possible to assert that
the failing points cannot have been caused solely by the
measurement procedure but there is also a problem with the
irradiation. Therefore, no failing points are allowed.

As pointed out previously, this novel method relates
experimental features (uncertainty) with test results. A well-
defined answer in terms of probability, whether or not the
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(a) (b) (c) (d)

Figure 4: Image of pass probability for the new test for Case 4: (a) uncertainty 0.2%—0.2 mm and tolerances of 3 mm and 3%, (b)
uncertainty 0.2%—0.5 mm and tolerances of 3 mm and 3%, (c) uncertainty 0.5 mm—0.5% and tolerances of 3 mm and 3%, (d) uncertainty
1.0 mm/0.2% and tolerances 3 mm and 3%.

probability of failing a gamma test at the point i j is larger
than α, is obtained. As long as the uncertainty properties
of the experimental or computational procedure have been
investigated, the user is provided with a method to obtain
a definite answer. On the other hand, feasibility studies
become possible and it is possible to evaluate whether or
not a comparison procedure uncertainty features could affect
sensitivity in the test results.

Appendices

A. Probability Check for Gamma
Index (2D Datasets)

Gamma is often described as a distance in aN+1 dimensional
space. If the additional dimension were a spatial one and
there would be the same tolerance and uncertainty value
for every spatial direction, the problem of propagating
uncertainty to gamma would have been much easier. But the
additional dimension, absorbed dose, has independent toler-
ance and uncertainty values, and the problem, in its simpler
formulation, is the following one: find the probability that
the sum of two normal random variables, with zero mean,
different variances, and different coefficients is less than g2.

Two sets of 2D dose distributions are defined: the
reference one and the test one. Both are regular arrays but
their spacing could be different. The reference points are
labelled with subscripts (i j) and the test points with (kl). For
each of these positions, there will be three quantities: dose
Dr

i j , x coordinate Xr
i j , and y coordinate Yr

i j . The notation for

the test 2D set will be a t superscript instead of r. X and Y
axes are the same for both point sets. These quantities will
be considered normally distributed random variables, with
mean the measured or computed values. Capital letters will
refer to random variables and small letters to their means
(dri j , x

r
i j , y

r
i j ,d

t
kl, x

t
kl, y

t
kl). Absorbed dose in the reference set

has associated standard uncertainty σrd and σtd in the test
set. Spatial uncertainty is isotropic in both datasets (same
standard deviation for X and Y) and will be referred to with
the symbols σrs and σts . Thus, we are assuming that
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variables with different means and standard deviations. If
this equation is written in the following way:

Γi jkl
2 = σtd

2
+ σrd

2

ΔD2
· Dijkl

2

σtd
2

+ σrd
2

+
σts

2 + σrs
2

ΔR2
·
[

Xijkl
2

σts
2 + σrs

2
+

Yijkl
2

σts
2 + σrs

2

]
,

(A.2)
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Table 2

λ1 = (σt
d

2
+ σr

d
2)/ΔD2 h1 = 1 δ2

1 = (dtkl − dri j)
2
/(σt

d
2

+ σr
d

2)

λ2 = (σt
s

2 + σr
s

2)/ΔR2 h2 = 2 δ2
2 = ((xtkl − xri j)

2
+ (ytkl − yri j)

2
+ (ztkl − zri j)

2
)/(σt

s
2 + σr

s
2)

it becomes a weighted sum of noncentral chi-square random
variables. The following random variables:

D̃i jkl =
Dijkl√

σtd
2

+ σrd
2
∼ N

⎛
⎝ dtkl − dri j√

σtd
2

+ σrd
2

, 1

⎞
⎠,

X̃i jkl =
Xijkl√

σts
2 + σrs

2
∼ N

⎛
⎝ xtkl − xri j√

σts
2 + σrs

2
, 1

⎞
⎠,

Ỹi jkl =
Yijkl√

σts
2 + σrs

2
∼ N

⎛
⎝ ytkl − yri j√

σts
2 + σrs

2
, 1

⎞
⎠

(A.3)

have standard deviation 1. It is possible to use now some
of the properties of the noncentral chi-squared distribution.
Let Un be a finite set of independent normally distributed
random variables with means μn and standard deviation 1.
Then, W = ∑

n Un
2 will have a noncentral chi-square distri-

bution χ2(n, λ) with n degrees of freedom and noncentrality
parameter λ =∑n μn

2. Thus,

D̃i jkl
2 = Dijkl

2

σtd
2

+ σrd
2
∼ χ2

⎛
⎜⎝1,

(
dtkl − dri j

)2

σtd
2

+ σrd
2

⎞
⎟⎠,

R̃i jkl
2 = X̃i jkl

2 + Ỹi jkl
2 = Xijkl

2

σts
2 + σrs

2
+

Yijkl
2

σts
2 + σrs

2

∼ χ2

⎛
⎜⎝2,

(
xtkl − xri j

)2
+
(
ytkl − yri j

)2

σts
2 + σrs

2

⎞
⎟⎠.

(A.4)

The squared gamma index is

Γi jkl
2 = σtd

2
+ σrd

2

ΔD2
· D̃i jkl

2 +
σts

2 + σrs
2

ΔR2
· R̃i jkl

2. (A.5)

Given a quadratic form of normally distributed variables,
there always exists a transformation which reduces it to a
weighted sum of noncentral chi-squared variables, corre-
sponding to the orthogonal transformation that reduces the
form to its canonical form. As a matter of fact, the previous
derivation is a very simple particular case of this general
result [23]. In the gamma test problem, it is necessary to
evaluate the probability of the event Γi jkl

2 > 1.
In the general case of a quadratic form, the noncentrality

parameters are linear combinations of the means. Thus, a
quadratic form of central normal variables results in a linear
combination of central chi-squared variables. The normal
variables involved in Γ are noncentral ones; their means are
the differences between doses or between spatial coordinates
in the test and the reference datasets.

Different expansions of the distribution function of
a weighted sum of noncentral chi-squared variables can

be found in the literature, and they could be used for
this problem. Shah and Khatri [24] found a power series
expansion, Ruben [25] developed series of distribution
functions of central and noncentral chi-squared variables,
with coefficients recursively defined, and Shah and other
authors [26] proposed series involving Laguerre polynomi-
als. There is also a simple approximation based on a study
on relationships between chi-squared and Poisson variables
first proposed by Patnaik [27], improved by Pearson [28],
which gives accurate results especially in the tails [29]. Imhoff
[23] rewrote this approximation for the weighted sum of
noncentral chi-squared variables. It uses probability values
for a single central chi-squared variable. This approach was
used in the present work. The accuracy of this method leaves
out of the question a Monte Carlo approach based on ISO
recommendations [22], which would lead to a minimum of
107 iterations for each pair of points.

According to Imhoff, if Q = ∑m
r=1 λrχ

2
hr ;δr

2 (δ2
r being

noncentrality parameters in his notation), then

P[Q > x] ∼= P
[
χ2

h′ > y
]

, (A.6)

where

h′ = c2
3

c3
2

,

y = (x − c1) ·
(
h′

c2

)1/2

+ h′,

cj =
m∑
r=1

λr
j ·
(
hr + jδr

2
)

, j = 1, 2, 3.

(A.7)

Applying this approximation to the problem of finding
P[Γi jkl

2 > g2], the set of parameters (2) in the main
text are obtained, taking into account that the chi squared
parameters are those in Table 2, taking into account that for
our case, and, therefore, (2) in the main text are obtained.
With those parameters Pi jkl = P[Γi jkl > g2] = P[χ2

h′ i jkl >

yi jkl], and the probability of gamma being greater than
g2 for the points (i j) in the reference dataset and (kl) in
the test dataset, taking into account spatial and dosimetry
uncertainties in both datasets has been obtained.

It is possible to modify the original gamma test for the i j
point if the probabilities

Pi j = P
[

max
kl

(
Γi jkl

)
> 1

]
= 1−

∏
kl

(
1− P

[
Γi jkl > 1

])
(A.8)

are defined and the following criterion is set: i j passes the test
if Pi j < α being α a significance figure, set by the user as the
maximum probability to be accepted.
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B. Probability Distribution of
Gamma (3D Datasets)

The squared gamma random variable is now Γi jklmn
2 =

Dijklmn
2/ΔD2 + (Xijklmn

2 + Yijklmn
2 + Zijklmn

2)/ΔR2. As long
as the spatial standard uncertainties are isotropic, the same
rearrangement as in the 2D case can be done

Γi jklmn
2

= σtd
2

+ σrd
2

ΔD2
· Dijklmn

2

σtd
2

+ σrd
2

+
σts

2 + σrs
2

ΔR2
·
[
Xijklmn

2

σts
2 + σrs

2
+

Yijklmn
2

σts
2 + σrs

2
+

Zijklmn
2

σts
2 + σrs

2

]
,

(B.1)

and, defining the new random variable Z̃i jklmn =
Zijklmn/

√
σts

2 + σrs
2 ∼ N(ztlmn − zri jk/

√
σts

2 + σrs
2, 1), we obtain

D̃i jklmn
2 = Dijklmn

2

σtd
2

+ σrd
2
∼ χ2

⎛
⎜⎝1,

(
dtlmn − dri jk

)2

σtd
2

+ σrd
2

⎞
⎟⎠,

R̃i jklmn
2

= X̃i jklmn
2 + Ỹi jklmn

2 + Z̃i jklmn
2

= Xijklmn
2

σts
2 + σrs

2
+

Yijklmn
2

σts
2 + σrs

2
+

Zijklmn
2

σts
2 + σrs

2

∼ χ2

⎛
⎜⎝3,

(
xtlmn − xri jk

)2
+
(
ytlmn − yri jk

)2
+
(
ztlmn − zri jk

)2

σts
2 + σrs

2

⎞
⎟⎠,

Γi jklmn
2 = σtd

2
+ σrd

2

ΔD2
· D̃i jklmn

2 +
σts

2 + σrs
2

ΔR2
· R̃i jklmn

2.

(B.2)

Using Imhoff ’s three moments approximation, the param-
eter values are the ones in equations (3) in the main text,
and Pi jklmn = P[Γi jklmn > 1] = P�χ2

h′ i jklmn
> yi jklmn�. The

test is Pi jk < α with Pi jk = P[maxlmn(Γi jklmn) > 1] =
1−∏lmn[1− P[Γi jklmn > 1]].
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