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We use the finite element method to solve a convection-diffusion equation when convection is dominating, a problem which de-
scribes the behavior of the concentration of a solute in a blood vessel. A new technique for computing the discrete problem is used.

1. Introduction

Due to the fact that various chemicals, such as oxygen,
carbon dioxide, or lipids, are transported by blood to and
from the other tissues, including the skin, the study of the
blood flow in the human vascular system is of great interest
in medicine and medical engineering.

The skin is the largest organ of the human body, having
very important psychosocial implications. It represents the
only system completely displayed at the body surface, offer-
ing essential information regarding the homeostasis of the
internal organs and thus the general senescence process. Se-
nescence involves a complex of factors, of which vasculari-
sation plays an important role. The perfusion degree of the
tissues depends on the microscopical structure of the vascu-
lar walls, as well as the metabolical and biochemical changes
associated with age. It is well known that the collagen glyca-
tion processes that occur in the vascular walls, and are in-
volved in the senescence process, are associated with vascu-
larisation deficits, that are specific to the ageing process gene-
rally, and to the associated pathology specifically (atheroscle-
rosis, Alzheimer, metabolical diseases, rheumatoid arthritis).
These modifications can be observed at the skin level by
means of images techniques (see [1, 2]).

These are only few reasons for which the study of the pos-
sible solutes in blood vessels is so important. In this sense,
many studies were made and different mathematical models
were given, depending on various factors, such as the health

state of the patient (the existence of pathologies like ather-
osclerosis, etc.). For instance, in [3], an implementation of
adaptive anisotropic meshes for this class of problems by de-
veloping an a posteriori error analysis for a simpler situation,
namely, a single steady advection-diffusion-reaction equa-
tion with a given convective field, is given.

2. The Model Problem

In order to study the transport problem of a solute in a vessel,
we consider the following partial derivative equation:

mΔc + n∇c = f ,
(
x, y

) ∈ Ω,

c = g1,
(
x, y

) ∈ Γin,

c = g2,
(
x, y

) ∈ Γout,

c = ξg3,
(
x, y

) ∈ Γ.

n = (n1,n2). (1)

Here, c = c(x, y) represents the concentration of the solute
in the blood. The first term in (1) describes the diffusion, the
later contains two more terms: one for the diffusion along the
x-direction: n1(∂c/∂x), and another for the diffusion along
the y-direction: n2(∂c/∂y). m represents the diffusivity of the
solute, n a given velocity field, α is a reaction coefficient, f —
a possible forcing term for the solution concentration due,
for example, to chemical reactions.
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The ratio between coefficients m and n determines the
predominance of the convection or the diffusion in the physi-
cal process. If:

|n|
m
� 1, (2)

then the convection is dominant. computing the numerical
solution of a convection-diffusion problem of the form (1)
becomes increasingly difficult (converge slow or not at all)
as the ratio (2) increases (i.e., convection is dominant in the
process), and this is the case in the model problem (1) (the
ratio here is 104, see Section 5).

The domain Ω chosen for this problem represents a part
of an artery (considered to be rigid) and is shown in Figure 1.

The borders of Ω are as follows.

(i) Γin, which corresponds to the point in where the solu-
tion is injected in the blood, thus the concentration of
the solution is known here: u = g1, (x, y) ∈ Γin.

(ii) Γout, which corresponds to the point where the
concentration of the solution can be measured: u =
g2, (x, y) ∈ Γout.

(iii) Γ: in these points the solution is in contact with the
vessel walls, ξ represents the wall permeability, and g3

is a function that decreases from g1 to g2.

3. The Discretization of the Problem

In this paper, we use the finite element method (see [4, 5]).
In order to do this, as in [6–8], the domain [a, b] × [c,d] is
divided in rectangular subdomains.

For the discretizaton of the problem we use the finite
element method. The domain is divided in rectangular
subdomains, having the step hx on the Ox-direction and
hy on Oy. The solution of the systems generated through
discretization is obtained by Gauss full elimination method.
The first level on which the solution is computed is l0, then
this particular solution is used for obtaining the solution
on higher order levels. The grid on the l level is divided by
the one from the l0 level in subdomains. On each of these,
the corresponding system of linear equations will be solved,
and the solutions from the subdomains are used in order to
generate the solution on the l level.

The partial differential equations will be replaced by a
liniar system of equations through the discretization method.

In order to achieve this, and keeping the notations used
in [7], we choose the grid steps hlx = (b − a)/2l+1 and
hly = (d − c)/2l+1, l being the number of the level. The
corresponding number of interior grid points is nl = 2l+1−1

on each direction. The largest possible step corresponds to
the level denoted by l = 0 on which the grid has a single
point: ((b − a)/2, (d − c)/2). The grid on the level l will
contain the points (xi, yj), i, j = 1, 2, . . . ,nl, and will be
denoted by Gl. The value of the exact solution in the point
(xi, yj) is denoted by ci, j .

3.1. Finite Element Discretization. According to [4], in order
to apply the finite element discretization, some transforma-
tions of the given equation have to be made. So, the equation
to be discretized is multiplied by a test function v ∈ U(Ω) =
{v | v ∈ H1(Ω), v = g on Γ}, then is integrated on the
domain Ω; H1(Ω) ⊂ C0 is the space of functions with square
integrable derivatives on Ω,

−m
∫∫

Ω
Δcv dx dy +

∫∫

Ω
n∇cv dx dy

+ α
∫∫

Ω
cv dx dy =

∫∫

Ω
f v dx dy.

(3)

Using Green’s formula, the equation above becomes as
follows:

m
∫∫

Ω
∇c∇v dx dy −m

∫

δΩ

∂c

∂n
v ds

+
∫∫

Ω
n∇cv dx dy + α

∫∫

Ω
cv dx dy

=
∫∫

Ω
f v dx dy, u, v ∈ U(Ω).

(4)

The functions c and v are approximated using some continu-
ous functions, Φi (Φi(xj , yj) = δi j , i, j = 1, . . . ,N , N = n2

l
being the number of interior points of the grid on level l),
through the following relations:

c ≈
N∑

i=1

uiΦi, v ≈
N∑

j=1

vjΦ j , (5)

where ci = c(xi, yi), i = 1, . . . ,N . Replacing these approxi-
mations in (4), the system obtained is:

N∑

j=1

Kijc j= Fi, i = 1, . . . ,N , (6)

where

Kij =
∫∫

Ω

[

m

(
∂Φi

∂x

∂Φ j

∂x
+
∂Φi

∂y

∂Φ j

∂y

)

+n1Φi
∂Φ j

∂x
+ n2Φi

∂Φ j

∂y
+ αΦiΦ j

]

dx dy,

Fi =
∫∫

Ω
fΦi dx dy.

(7)
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The restrictions of K and F on a domain ΩA = [a, b] ×
[c,d] are as follows:

kAi j = m
∫∫

ΩA

(
∂ΨA

i

∂x

∂ΨA
j

∂x
+
∂ΨA

i

∂y

∂ΨA
j

∂y

)

dx dy

+ n1

∫∫

ΩA

ΨA
i

∂ΨA
j

∂x
dx dy + n2

∫∫

ΩA

ΨA
i

∂ΨA
j

∂y
dx dy

+ α
∫∫

ΩA

ΨA
i Ψ

A
j dx dy, i, j = 1, . . . , 4,

(8)

f Ak =
∫∫

ΩA

f
(
x, y

)
ΨA

k

(
x, y

)
dx dy, k = 1, . . . , 4. (9)

If x = (d − c)/(b − a), the values of the integral (8) for the
problem (1) are given in the following 4 × 4 matrix:

k =
(
ki j
)

i, j=1 : 4

= m

6

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2x +
2
x
−2x +

1
x
−x − 1

x
x − 2

x

−2x +
1
x

2x +
2
x

x − 2
x

−x − 1
x

−x − 1
x

x − 2
x

2x +
2
x
−2x +

1
x

x − 2
x

−x − 1
x
−2x +

1
x

2x +
2
x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ n1
d − c

12

⎡

⎢
⎢
⎢
⎣

−2 2 1 −1
−2 2 1 −1
−1 1 2 −2
−1 1 2 −2

⎤

⎥
⎥
⎥
⎦

+ n2
b − a

12

⎡

⎢
⎢
⎢
⎣

−2 −1 1 2
−1 −2 2 1
−1 −2 2 1
−2 −1 1 2

⎤

⎥
⎥
⎥
⎦

+ α
(b− a)(d − c)

36

⎡

⎢
⎢
⎢
⎣

4 2 1 2
2 4 2 1
1 2 4 2
2 1 2 4

⎤

⎥
⎥
⎥
⎦
.

(10)

Thus the differential equation (1) is approximated in a
grid point (xi, yj), i, j = 1, . . . ,nl by the following system
of linear equations (see [9]):

⎡

⎢
⎣

⎡

⎢
⎣

kD24 kD23 + kC14 kC13

kA34 + kD21 kA33 + kB44 + kC11 + kD22 kB43 + kC12

kA31 kA32 + kB41 kB42

⎤

⎥
⎦

⎤

⎥
⎦ci, j

= f A3 + f B4 + f C1 + f D2 ,

(11)

where

⎡

⎢
⎣

⎡

⎢
⎣
a b c
d e f
g h k

⎤

⎥
⎦

⎤

⎥
⎦ui, j = aui−1, j+1 + bui, j+1 + cui+1, j+1 + dui−1, j

+ eui, j + f ui+1, j + gui−1, j−1 + hui, j−1

+ kui+1, j−1.
(12)

Ω1 Ω2

Ω(n+1)2

Ωn+1

1 2

3

1

2
C1 Cn

Ωn
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c2

cn+2cn+1

n + 1

n + 1
c2n

Ω2nΩn+2

c2n

n + 2

n + 2
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Figure 2

4. Solving Method

The systems generated in Section 3 can be written on any
level l. Each system contains n2

l unknowns. The solution is
exactly computed on a level l0, for example, on l0 = 2 or
l0 = 3 using Gauss elimination method.

The exact solution on the level l0, for the problem is
approximated by ci, i ∈ {1, 2, . . . ,n2

l0
} (Figure 2), wich only

contains an error term due to the discretization. In order to
solve problem on the level l, the grid already obtained will
be further divided. Thus, each domain from the grid, Ωk,
will be splitted into ni subdomains, where ni = 2li+1 − 1 and
li = l − l0 − 1.

On each subdomain Ωk, the discretization of the differ-
ential equation leads to a system whose matrix has the same
form as the one on l0 level. But on the level l0 the boundary
values were given in the hypothesis. For the systems on the
level l to be precisely solved on Ωk, one has to determine as
accurate as possible the ni values on each of the sides of the
domain Ωk. Two possible ways to accomplish this are given
in the following subsections.

4.1. Pondered Arithmetic Mean Prolongation. As in [7], the
value of the approximation on level l is denoted by c(l).
On the borders of Ωk, these values are defined through the
following relations:

c(l)
jN+1,iN+1 = c(l0)

(i−1)n+ j ,

c(l)
jN+1,iN+1+k =

1
N

(
kc(l0)

in+ j + (N − k)c(l0)
(i−1)n+ j

)
,

i = 0, . . . ,n, j = 1, . . . ,n, N = ni + 1;

c(l)
jN+1+k,iN+1 =

1
N

(
kc(l0)

(i−1)n+ j+1 + (N − k)c(l0)
(i−1)n+ j

)
,

i = 1, . . . ,n, j = 0, . . . ,n, k = 1, . . . ,ni.

(13)

4.2. Stellar Prolongation. In [9], a new type of prolongation
which we called “stellar prolongation” because the nodes
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involved in computation are in the shape of a star, is
presented. We use this technique in what follows, too.

In order to determine more accurately the values of the
solution on the borders of Ωk, instead of pondered arith-
metic mean prolongation one can use the solutions of the
systems obtained by discretizing the initial equation in the
grid points corresponding to the values ai and bi, i =
1, 2, . . . ,n2 + n from Figures 3 and 4.

The values ak, k = 1, 2, . . . ,n(n + 1) are computed by
solving a system with the following matrix:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C D Θ · · · Θ Θ
S C D · · · Θ Θ
Θ S C · · · Θ Θ
...

. . .
Θ Θ Θ · · · S C

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (14)

If the discretization is made by the finite element method,
using the notation:

⎡

⎢
⎣

⎡

⎢
⎣
l1 l2 l3
l4 l5 l6
l7 l8 l9

⎤

⎥
⎦

⎤

⎥
⎦

=
⎡

⎢
⎣

⎡

⎢
⎣

kD24 kD23 + kC14 kC13

kA34 + kD21 kA33 + kB44 + kC11 + kD22 kB43 + kC12

kA31 kA32 + kB41 kB42

⎤

⎥
⎦

⎤

⎥
⎦,

(15)

where ki j is given by (10), the matrix A has:

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

l5 l6 0 · · · 0
l4 l5 l6 · · · 0
0 l4 l5 · · · 0
...

. . .
0 0 0 · · · l5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

l2 l3 0 · · · 0
l1 l2 l3 · · · 0
0 l1 l2 · · · 0
...

. . .
0 0 0 · · · l2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

l8 l9 0 · · · 0
l7 l8 l9 · · · 0
0 l7 l8 · · · 0
...

. . .
0 0 0 · · · l8

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(16)

The components of the constant terms vector are in this
case:

zin+ j = f A3 + f B4 + f C1 + f D

−
⎡

⎢
⎣

⎡

⎢
⎣
l1 l2 l3
l4 l5 l6
l7 l8 l9

⎤

⎥
⎦

⎤

⎥
⎦c f r

(
jh, (i + x0)h

)
,

i = 0, . . . ,n, j = 1, . . . ,n.

(17)

c f r is a function which is zero inside the domain Ω on wich
the system is solved and is equal to the border values on δΩ,
and h is the grid step on l0 level.

The values bk, k = 1, 2, . . . ,n(n + 1) are obtained from a
system whose matrix is also of the form (14), but in which:

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

l5 l2 0 · · · 0
l8 l5 l2 · · · 0
0 l8 l5 · · · 0
...

. . .
0 0 0 · · · l5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

l6 l3 0 · · · 0
l9 l6 l3 · · · 0
0 l9 l6 · · · 0
...

. . .
0 0 0 · · · l6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

l4 l1 0 · · · 0
l7 l4 l1 · · · 0
0 l7 l4 · · · 0
...

. . .
0 0 0 · · · l4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(18)
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The components of the constant terms vector are now

zin+ j = f A3 + f B4 + f C1 + f D2

−
⎡

⎢
⎣

⎡

⎢
⎣
l1 l2 l3
l4 l5 l6
l7 l8 l9

⎤

⎥
⎦

⎤

⎥
⎦c f r

(
(i + x0)h, jh

)
,

i = 0, . . . ,n, j = 1, . . . ,n.

(19)

In the matrix A: x = x0 and y = x0 for the first line of
blocks in (10), on ΩA and ΩB, x = 1 and y = 1 on ΩC and
ΩD, while x = 1, y = 1 for the last line of blocks on ΩA

and ΩB, and x = 1− x0, y = 1− x0 on ΩC and ΩD. For the
remainder of the lines: x = 1, y = 1 (see Figure 5).

For the matrix B: x = 1/x0 and y = 1 for the first line of
blocks on ΩA and ΩD, x = 1 and y = 1 on ΩB and ΩC . The
last line has: x = 1, y = 1 on ΩA and ΩD, and on ΩB and
ΩC : x = 1/(1− x0), y = 1. For the other lines: x = 1, y = 1
(see Figure 6).

The system obtained by discretizing the problem on
every subdomain ΩiN+ j , i = 0, . . . ,n, j = 1, . . . ,n has n2

i

equations and unknowns and will be solved using the Gauss
full elimination method. The solutions a and b computed
above will be used as boundary conditions on this domain
(Figure 7).

Reuniting the solutions computed on the grid corre-
sponding to the level l0 and the ones from every subdomain,
one gets the final solution on the work level l.

bk(( j − 1)n + i + 1)

bk(( j − 1)n + i)

ΩiN+ j

···
···

···
···

ak(in + j − 1)

a1(in + j − 1)

ani (in + j)

a1(in + j)

ak(in + j)

ani (in + j − 1)

Figure 7
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Figure 8: The concentration computed on the domain [0, 1] ×
[0, 0.2].

5. Numerical Results and Conclusions

The method presented above allows the computing of the
concentration of the solvent in blood at any point of the grid
for different grid steps, and can be done for various dimen-
sions of the vessel or values of the coefficients. The impor-
tance of such a method comes from the fact that the evalua-
tion of cutaneous circulation can be a predictive parameter
for the age-related pathology.

The values of the parameters used here are as follows:

(i) the diffusion coefficient: m = 10−3 cm2 s−1;

(ii) the velocity vector: n = (10, 10) cm s−1;

(iii) the wall permeability: ξ = 1 cm s−1;

(iv) the concentration on Γin: g1 = 2 · 10−3;

(v) the concentration on Γout: g1 = 1.98 · 10−3;

(vi) the forcing term for the solute concentration f = 0;

(vii) the vessel dimensions have been chosen to be 1 cm×
0.2 cm.
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Figure 9: The concentration map on the domain [0, 1]× [0, 0.2].

For the convection-diffusion problem (1), the results are pre-
sented in Figures 8 and 9.
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