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The contributions in this paper are in two folds. On the one hand, we propose a general approach for approximating ideal filters
based on fractional calculus from the point of view of systems of fractional order. On the other hand, we suggest that the Paley
and Wiener criterion might not be a necessary condition for designing physically realizable ideal filters. As an application of the
present approach, we show a case in designing ideal filters for suppressing 50-Hz interference in electrocardiogram (ECG) signals.

1. Introduction

Filters have wide applications in various fields, ranging
from medical engineering to electrical engineering; see, for
example, Hussain et al. [1], Bhattacharyya et al. [2], Fieguth
[3], Bendat and Piersol [4], Gray and Davisson [5], and
Li [6], just mentioning a few. In the field, the theory and
techniques to approximate ideal filters are desired. There are
some methods about approximating ideal filters, such as But-
terworth filters, Chebyshev filters, Cauer-Chebyshev filters,
and Bessel ones (Wanhammar [7], Mitra and Kaiser [8]).

Recall that the conventional filters of Butterworth type,
Chebyshev type, Cauer-Chebyshev type, or Bessel one are
discussed in the domain of systems of integer order. More
precisely, the frequency response of a filter that is denoted by
H(ω) is a rational function. Both the denominator and the
numerator of the rational function are polynomials of integer
order; see [7, 8], Vegte [9], Dorf and Bishop [10], and Li [11].
From the point of view of mathematical analysis, conven-
tional filters are in the domain of calculus of integer order.

This paper aims at providing an approach to approximate
ideal filters by using frequency responses of fractional-order.
The basic idea is like this. Denote by ωc the cutoff frequency
of a filter. Then, H(ωc) = 0 from a view of ideal filters. In this
case, we present the following approximation:

lim
r→ 0

|H(ω)|r =
⎧
⎨

⎩

1, ω /=ωc,

0, ω = ωc,
(1)

where |H(ω)| is the amplitude of H(ω).

An obvious advantage of the present approach is that the
above always holds no matter what the concrete structure of
H(ω) is. However, theoretically speaking, Hr(ω) has to be
explained from the point of view of fractional calculus.

The remaining paper is organized as follows. Section 2
explains the research background. The problem statement is
described in Section 3. The present approximation is given
in Section 4. A case study is stated in Section 5, which is fol-
lowed by conclusions.

2. Research Background

2.1. Glimpse at Ideal Filters. The ideal lowpass filter implies
that the amplitude of the frequency response is given by

|H(ω)| =
⎧
⎨

⎩

1, ω < ωc

0, elsewhere,
(2)

where H(ωc) = 0. One says that H(ω) is the frequency re-
sponse of an ideal highpass filter if

|H(ω)| =
⎧
⎨

⎩

1, ω > ωc,

0, elsewhere.
(3)

The ideal bandpass filter has the frequency response ex-
pressed by

|H(ω)| =
⎧
⎨

⎩

1, ωcl < ω < ωch ,

0, elsewhere,
(4)
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where ωcl and ωch are cut-off frequencies. A filter is said to be
ideal band stop if its frequency response function is given by

|H(ω)| =
⎧
⎨

⎩

0, ωcl < ω < ωch ,

1, elsewhere.
(5)

2.2. Paley and Wiener Criterion. For facilitating the discus-
sions, we write

H(ω) = R(ω) + jX(ω) = A(ω)e− jϑ(ω), (6)

where ϑ(ω) is the phase response of a filter. Note that the
condition for F−1[H(ω)] = h(t) to be zero for negative t,
where F−1 implies the inverse of the Fourier transform, is
that A(ω) must be square-integrable. That is,

∫∞

−∞
A2(ω)dω <∞. (7)

The above implies the causality of a filter; see, for example,
Papoulis [12]. A necessary and sufficient condition for A(ω)
to satisfy (7) is explained by Paley and Wiener [13]. That
condition is called the Paley and Wiener condition or the
Paley and Wiener criterion. It is expressed by

∫∞

−∞
|lnA(ω)|

1 + ω2
dω <∞. (8)

The Paley and Wiener criterion implies that ideal filters
are not physically realizable because A(ω) = 0 in a certain
frequency range for each type of ideal filters. Therefore,
approximations of ideal filters are desired.

2.3. Some Filters of Integer Order for Approximating Ideal
Filters. Various methods in the approximations are studied,
such as Butterworth filters, Chebyshev’s, Cauer-Chebyshev’s,
and Bessel’s filters; see, for example, [2], and Lam [14].

Taking lowpass filtering as an example, the system func-
tion of the Butterworth filters of order n is given by

A(ω) = 1
√

1 + (ω/ωc)
2n

, n = 1, 2, . . . . (9)

Denote the Chebyshev polynomial of the first kind by
Cn(ω). Then,

Cn(ω) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cos
(

n cos−1 ω

ωc

)

, |ω| ≤ ωc,

ch
(

n ch−1 ω

ωc

)

, |ω| > ωc,
n = 1, 2, . . . .

(10)

The frequency response of the Chebyshev type lowpass filters
for ε > 0 is given by

A(ω) = 1
√

1 + ε2C2
n(ω)

, n = 1, 2, . . . . (11)

Denote the Chebyshev rational function of degree n by
Rn(ω). Then,

Rn(ω) = Cn

(
ω − 1
ω + 1

)

, n = 1, 2, . . . . (12)

One of the applications of Rn(ω) is to design an elliptic
filter, which is also known as a Cauer filter, named after
Wilhelm Cauer. An elliptic filter has the property of equalized
ripple (equiripple) behavior in both the passband and the
stopband. The frequency response of the elliptic type lowpass
filters for ε > 0 is given by

A(ω) = 1
√

1 + ε2R2
n(ξ,ω/ωc)

, n = 1, 2, . . . , (13)

where ε is the ripple factor, and ξ is the selectivity factor
[15, 16].

3. Problem Statement

The Butterworth filters obviously correspond to linear
differential equations of integer order [17, 18].

Note that the Chebyshev polynomial of the first kind is
the solution to the Chebyshev equation that is the second-
order linear differential equation given by

(
1− x2)d

2y

dx2
− x

dy

dx
+ n2y = 0. (14)

Therefore, a consequence we note hereby is that the Cheby-
shev type filters as well as the elliptic type filters are corre-
sponding to linear differential equations of integer order.

Recently, filters of fractional-order attract much atten-
tion in the field of circuits, systems, and signals; see, for
example, Podlubny [19], Ortigueira [20], MacHado et al.
[21], Lim et al. [22], Chen and Moore [23], and Zhang
[24], simply citing a few. However, the literature regarding
approximating ideal filters from a view of filters of fractional-
order is rarely seen. For that reason, we propose a question
like this. May ideal filters be approximated by filters or
equations of fractional-order? We will give the affirmative
answer to it in the next section.

4. Approximating Ideal Filters by Systems of
Fractional Order

A linear filter can be expressed by a linear differential
equation given by

p
∑

i=0

ai
dp−i y(t)
dtp−i

=
q
∑

i=0

bi
dq−ie(t)
dtq−i

, (15)

where y(t) is the response and e(t) excitation. Denote the
Fourier transforms of y(t) and e(t) by Y(ω) and E(ω),
respectively. Then, the system function is given by

H(ω) = Y(ω)
E(ω)

. (16)

Denote |H(ω)| by A(ω). Then, H(ω) = A(ω)e− jϑ(ω). This is
the basic principle regarding linear filters. In this case, we say
that H(ω) is the system function or frequency response of a
filter of integer order; see, for example, Monje et al. [25].
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Figure 1: Amplitude response of filter.

We now consider a filter of fractional-order presented by

H1(ω) = [H(ω)]r = [A(ω)]re− jrϑ(ω) (r > 0). (17)

Denote

H1(ω) = A1(ω)e− jϑ1(ω). (18)

Then,

A1(ω) = [A(ω)]r , ϑ1(ω) = rϑ(ω). (19)

Since ϑ1(ω) is similar to ϑ(ω), the key difference between
H(ω) and H1(ω) is in the aspect of amplitude response,
namely, A(ω) and A1(ω).

It can be seen from (19) that

lim
r→ 0

A1(ω) = lim
r→ 0

[A(ω)]r = 1 for A(ω) /= 0. (20)

In addition,

lim
r→ 0

A1(ωc) = lim
r→ 0

[A(ωc)]r = 0 if A(ωc) = 0. (21)

Denote B0.7 the 3-dB bandwidth of H1(ω) by

A1
(
f
)∣
∣
f=B0.7

= 0.707, (22)

where f = ω/2π is frequency. Denote B0.1 the bandwidth for

A1
(
f
)∣
∣
f=B0.1

= 0.1. (23)

Then, the rectangular coefficient defined by

Rec = B0.7

B0.1
(24)

is always ideal for A1(ω). That is,

Rec = B0.7

B0.1
= 1 for A1(ω), (25)

because of (20).
On the other hand,

lim
r→ 0

ϑ1(ω) = 0. (26)

The expression (26) implies that H1(ω) always has a linear
phase response.

Remark 1. Equation (25) does not relate to any concrete
forms of H1(ω). Thus, the present results, namely, (20) and
(21), stand for a general approach for approximating ideal
filters based on systems of fractional-order.

Remark 2. Let

H0(ω) = lim
r→ 0

[H(ω)]r , A0(ω) = lim
r→ 0

[A(ω)]r . (27)

Then, A0(ω) does not satisfy the Paley and Wiener criterion
expressed by (8) because

A0(ω) =
⎧
⎨

⎩

1 if A0(ω) /= 0,

0 if A0(ω) = 0.
(28)

That is,
∫∞

−∞
|lnA0(ω)|

1 + ω2
dω = ∞. (29)

Therefore, this remark suggests a theoretical significance that
the Paley and Wiener criterion might not be a necessary
condition for designing physically realizable ideal filters of
fractional-order.

5. Case Study

We consider a finite impulse response filter (FIR) given by

H
(
f
) = 1 + cos

(
2π f T

)− j sin
(
2π f T

)

2

= 1
2

[
1 + exp

(− j2π f T
)]

, j = √−1,

(30)

where T is the sampling period. Figure 1 indicates A( f ) for
T = 0.01.

For A( f ) = |H( f )| and T = 0.01, we have

A
(
f
)∣
∣
f=50 = 0. (31)

Note that

A
(
f
)∣
∣
f=25 = 0.707,

A
(
f
)∣
∣
f=46.8 = 0.1,

(32)

Thus, the rectangular coefficient of H( f ) is

B0.7

B0.1
= 25

46.8
= 0.534. (33)

The rectangular coefficient of 0.534 exhibits that H( f ) is not
a satisfactory filter in general. Nevertheless, one is able to
easily modify it to be such that it is an ideal filter by

lim
r→ 0

[
H
(
f
)]r= lim

r→ 0

[
1 + exp

(− j2π f T
)

2

]r

=
⎧
⎨

⎩

1, f < 50,

0, f = 50.
(34)

Figure 2 shows the approximations of [H( f )]r for r =
0.1, 0.01, 0.001, and 0.0001, respectively. It exhibits that the
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Figure 2: Approximations of [H( f )]r for different values of r. (a) r = 0.1. (b) r = 0.01. (c) r = 0.001. (d) r = 0.0001.

present method well approximates the ideal filter. As a matter
of fact, in the sense of 0.9994 ≈ 1 [H( f )]r for r = 0.0001, see
Figure 2(d), can be regarded as an ideal filter in practice.

The following is called a binomial series:

(1 + x)ν =
∞∑

k=0

⎛

⎝
ν

k

⎞

⎠ xk for |x| < 1, (35)

where
( ν
k

) = Γ(ν + k)/Γ(ν)Γ(1 + k) is binomial coefficient
[26]. By using binomial series, (34) can be expanded by

lim
r→ 0

[
H
(
f
)]r = lim

r→ 0

[
1 + exp

(− j2π f T
)

2

]r

= 1
2

lim
r→ 0

∞∑

k=0

Γ(r + k)
Γ(r)Γ(1 + k)

exp
(− jk2π f T

)
.

(36)

Therefore, in general, [H( f )]r should be taken as a filter of
fractional-order from a view of fractional-order systems [25];
see the Appendix for the meaning of [H( f )]r in fractional-
order systems.

It is worth noting that (34) may yet be an ideal FIR
notch filter used for suppressing 50-Hz interference in
electrocardiogram (ECG) signals, which is a key component
in processing ECG signals in medical engineering; see, for
example, Talmaon [27], Levkov et al. [28], Martens et al.
[29], Dotsinsky and Stoyanov [30], and Li [31], though H( f )
is not a satisfactory filter for this purpose. Finally, it is noted
that the research though reflected in this paper might be used
for studying other topics, such as those in [32–35].

6. Conclusions

We have presented a general approach for approximating
ideal filters from a view of fractional-order systems. This

approach is based on fractional calculus. The theoretical
significance of the present approach is that the Paley and
Wiener criterion might be no longer a necessary condition
for designing physically realizable ideal filters. We have
showed a case that can be used for designing ideal filters for
suppressing 50-Hz interference in ECG signals.

Appendix

The fractional derivative of Caputo type of a function f (t) is
defined by

Dν
t f (t) = 1

Γ(n− ν)

∫ t

0

f (n)(u)du

(t − u)ν−n+1 , n− 1 ≤ α ≤ n,

(A.1)

where Γ is the Gamma function [19]. For simplicity, we write

0D
v
t by Dv. Without generality losing, we take a system of

second-order as a case:
(
d2

dt2
+ ω2

0

)

x(t) = e(t), ω0 > 0. (A.2)

There are two types of fractional-order systems based on
(A.2). One is given by (see [36])

(
d2−ε

dt2−ε + ω2
0

)

x(t) = e(t), 0 < ε < 1. (A.3)

Another is expressed by

(
d2

dt2
+ ω2

0

)β

x(t) = e(t), β > 0; (A.4)

see, for example, [37, 38].
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Denote the impulse response function of (A.5) by h(t).
Then,

(
D2 + ω2

0

)β
h(t) = δ(t), (A.5)

where δ(t) is the Dirac-δ function.
Denote the Fourier transform of h(t) by H(ω). Then, we

have

H(ω) = 1
(
ω2 + ω2

0

)β . (A.6)

Therefore, if one denotes the frequency response of (A.2) by
H0(ω), which is a system of 2-order,

H0(ω) = 1
(
ω2 + ω2

0

) , (A.7)

then,

H(ω) = [H0(ω)]β. (A.8)

The expression (A.8) gives the explanation of [H( f )]r in
fractional-order systems discussed in the body text of the
paper.
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