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A Bayesian Markov chain Monte Carlo method is used to infer parameters for an open stochastic epidemiological model: the
Markovian susceptible-infected-recovered (SIR) model, which is suitable for modeling and simulating recurrent epidemics. This
allows exploring two major problems of inference appearing in many mechanistic population models. First, trajectories of these
processes are often only partly observed. For example, during an epidemic the transmission process is only partly observable:
one cannot record infection times. Therefore, one only records cases (infections) as the observations. As a result some means
of imputing or reconstructing individuals in the susceptible cases class must be accomplished. Second, the official reporting
of observations (cases in epidemiology) is typically done not as they are actually recorded but at some temporal interval over
which they have been aggregated. To address these issues, this paper investigates the following problems. Parameter inference for
a perfectly sampled open Markovian SIR is first considered. Next inference for an imperfectly observed sample path of the system
is studied. Although this second problem has been solved for the case of closed epidemics, it has proven quite difficult for the case
of open recurrent epidemics. Lastly, application of the statistical theory is made to measles and pertussis epidemic time series data
from 60 UK cities.

1. Introduction

The linking of ecological theory with data is currently
a major scientific challenge. Modern methods of data
collection and storage are rapidly improving at all levels,
from the detailed study of individuals in populations to
the distribution of populations and communities over vast
landscapes. Despite the ease with which it is possible to
develop statistical theory and Bayesian Markov chain Monte
Carlo (MCMC) computational statistics for many ecological
problems [1], the resolution of many computational issues
for these problems remains largely unresolved when fitting
dynamical ecological models (either in discrete or continu-
ous time) to large ecological and public health data sets.

In fact, it is possible to discuss many of these com-
putational difficulties using simple stochastic epidemiolog-
ical models. Epidemiological processes serve as excellent
prototypes for exhibiting two major problems of inference
that appear in many mechanistic dynamic models. First,
the transmission process during an epidemic is only partly

observed. As a result in epidemiology one only records cases
and rarely observes the infection time precisely. Second, the
official reporting of observations (cases in epidemiology) is
typically done not as they are actually recorded, but at some
temporal interval over which they have been aggregated.
Although these problems have largely been solved for the
case of closed epidemics, it has proven quite difficult for the
case of open populations that produce recurrent epidemics
(endemic diseases) over many generations in continuous
time. This is because it is hard to simulate paths that are
consistent with the data due to the condition that one must
sample from many recorded intervals given the number of
infectives in the beginning and at the end of the interval.
In general this has proven easier to do for short-duration
epidemics because of computational limitations due to data
augmentation. As the number of recorded intervals increases
the data likelihood computation rapidly becomes intractable
or impossible.

In this paper a data augmentation strategy is imple-
mented that allows addressing these problems, is reasonably
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straightforward to implement, is fast and accurate for the
problem at hand. The basis of the method is a recently pro-
posed Bayesian MCMC algorithm proposed by Wilkinson
[2]. This algorithm is used as the computational foundation
for inferring parameters using a stochastic epidemiological
model: the Markovian susceptible-infected-recovered (SIR)
model of epidemiology. The approach used here includes
births and deaths as well as immigration of infectives and
hence allows modeling of recurrent epidemics and the
inference of model parameters for endemic diseases. The
computational methods in this paper are largely drawn from
recent approaches taken in systems biology for inference
of parameters using time series data. In the Results and
Discussion (Section 3.4) part of this paper a brief review
is made of these computational methodologies. They are
compared to the Bayesian approach taken here along with
its advantages and limitations.

Most previous work on the SIR using likelihood [3] and
Bayesian MCMC [4, 5] has focused on epidemic data sets
collected in small closed communities such as households
[6, 7] but very little into endemic diseases [8]. Exceptions
to this trend are work by Gibson and Renshaw [9] and
the more recent work of Cauchemez and Ferguson [8].
The form of the likelihood in the current framework is
the same as that presented in O’Neill and Roberts [4] and
similar to that of Cauchemez and Ferguson [8] except that
in the present study births, deaths, and immigration of
infected cases are included in the dynamics. This makes
the SIR likelihood used here most similar to that first
utilized by Gibson and Renshaw [9]. This assumption is
critical in simulating an open population stochastic SIR as
an approximate model of endemic diseases. Adding an influx
of migrants allows computationally generating patterns of
persistent and complex sustained epidemic oscillations [10,
11].

Application of the inference method is made for time
series data for two endemic childhood diseases, pertussis
and measles. It is shown how to reconstruct stochastic
oscillations using simulations and model checking with
respect to observed cases. Finally the hypothesis of coherence
resonance is investigated and it is shown how it may account
for some of the empirically observed patterns of stochastic
oscillatory dynamics of the two endemic diseases.

2. Materials and Methods

2.1. SIR Inference: Perfect Information. In this paper a
stochastic version of the Kermack-McKendrick susceptible-
infectious-recovered (SIR) model [12] will be used to address
the inference problem of mechanistic modeling in ecology.
As shown below, a structured representation of this model
(in fact, any mechanistic model in ecology) can immediately
be used to derive a corresponding Markovian stochastic
population model. In the deterministic SIR model, there are
seven possible events: birth, death (including all possible
labeled events for each type of death event), transmission,

recovery, and immigration. The deterministic framework is
described by a set of coupled ordinary differential equations:

ds

dt
= − β

N
i(t)s(t) + μ1N − μ2s(t), (1)

di

dt
= −γi(t) +

β

N
i(t)s(t) + σ − μ3i(t), (2)

dr

dt
= γi(t)− μ4r(t)− σ. (3)

Here, β represents the transmission rate, σ denotes the rate
of immigration of infectious individuals, and 1/γ describes
the average infectious period [13]. The immigration term
σ is placed in the recovered equation to ensure constant
population—a basic assumption underlying the SIR model.
The μi represent the birth and death rates for each com-
partment. Note, however, that per capita birth and death
rates may be assumed to be the same (μ), ensuring a
constant long-term population size, N . Also note that here
x = (x1(t), x2(t), x3(t)) = (s(t), i(t), r(t)), the 3-dimensional
vector of state variables.

Next consider an event-driven model of state change.
Define α = (β,μ1,μ2, γ,μ3, σ ,μ4), which is the 7-dimensional
vector of parameters associated with the SI transitions
(transitions to the recovered class will be ignored in this
paper):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1e1

α2e2

α3e2

α4e4

α5e5

α6e6

α7e7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

event 1
event 2
event 3
event 4
event 5
event 6
event 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

transmission
birth susceptible
death susceptible

infection
death infected
immigration

death recovered

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β

N
si

μ1N
μ2s
γi
μ3i
σ
μ4r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4)

Define a change in state as if it occurred from some updating
rule applied to each possible event. The updating rules are
constrained by the structure of the continuous open SIR
equations (1)–(4) to specify an association between the event
function, ej(x), and an associated stage-change vector ν j .
Define an event pathway vector, (P1, . . . , P7), where each
path P j in Table 1 describes a transition event giving rise to
integral state changes in S and I . Table 1 shows how events
defined by (4) along with the updating of SI states in the
SIR model given by (1) and (2) may be used as a template
to construct these pathways. The structured representation
immediately gives the transition probabilities for the Marko-
vian SIR model [14, 15]. Equations (1)–(3) may now be
used to specify the probability event function, ej(x), and
the associated stage-change vector ν j . For example, since
one defines event 1 to represent a transmission event, then
e1 = P1(ΔS1 = ν11,ΔI1 = ν12) has at time t instantaneous
rate e1(x,α) = (β/N)si, with ν1 = (ν11, ν12) = (−1, 1), where
P1 represents the probability of an instantaneous transition
for the event path P1. Using the directed network shown
in Figure 1, consider event path P1. This is represented in
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Table 1: Structural representation of SI state-event transitions.

Event path
Parameter Transition Flow in node Flow out node Flow difference

Change ν j
α j e j S

j
in I

j
in S

j
out I

j
out ΔSj = ν j1 ΔI j = ν j2

P1 β/N SI 0 1 1 0 −1 1 ν1

P2 μN 1 1 0 0 0 1 0 ν2

P3 μ S 0 0 1 0 −1 0 ν3

P4 γ I 0 0 0 1 0 −1 ν4

P5 μ I 0 0 0 1 0 −1 ν5

P6 σ 1 0 1 0 0 0 1 ν6

P7 μ R 0 0 0 0 0 0 ν7

Death event
susceptible

Birth event
susceptible

Immigration
event

Death event
infected

Death event
recovered

Discrete event simulation
for stochastic population model

Transmission event

Firing time

State change
vector

Recovery event

Node or state

Individuals in a given state

Arc connecting states and events

Firing time of an event ei

e3 = μ2S

e2 = μ1N

e7 = μ4r
R

e4 = γi

te2 ∼ Exp (μ1N)

te3 ∼ Exp (μ2S)

te7 ∼ Exp (μ4r)

te6 ∼ Exp (σ)

te4 ∼ Exp (γ i )

te1 ∼ Exp ((β/N)si )

S
I

= (−1,1)
v1 = (v11, v12)

e5 = μ3I

te5 ∼ Exp =(μ3 I)

e6 = σ

e1 = P(ΔS1 = v11, ΔI1 = v12
)

= P(ΔS1 = −1, ΔI1 = 1)
= α1e1=(β/N)si

Figure 1: Directed network for Markovian SIR dynamics. Each event pathway, P j , is represented in the network as the arrow connecting
nodes of the random variables, here designated as S, I , and R. The blue dots represent individuals flowing through the network. For example,
the flow of individuals out of node with random variable S is represented by the arrow pointing to the box, which gives the firing time to the
event and the state-change vector ν1 associated with the firing of the event.

the network as the arrow connecting nodes of the random S
and I variables. The blue dots represent individuals flowing
through the network. The flow of individuals out of node
with random variable S is represented by the arrow pointing
to the box, which gives the firing time to the event and the
state-change vector ν1 associated with the firing of the event.
The instantaneous flow (or jumping) between the nodes S
and I is determined by P1(ΔS1 = ν11, ΔI1 = ν12). The effect
of the firing on an individual in node S is represented by
ΔS1 and corresponds to the first component ν11 of the state-
change vector ν1. The effect on node I is represented by ΔI1,
which is the second component ν12 of state-change vector
ν1. All of the events in the directed network representing the

open SIR can be treated in the same manner. More generally,
one can write

ej(x,α)dt

= probability that P j event pathway occurs in time dt.
(5)

Numerical simulation of stochastic mechanistic models
based upon (5) consists of computing the firing of the
transitions for each node of the network. The firing of each
transition is determined by a random clock running at a time
determined by the exponential distribution. For example, in
Figure 1 the boxes represent the noisy clocks keeping time
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Figure 2: A two-hundred-and-fifty-week time series of the number
of infected cases from the SIR immigration model discussed in
this paper, simulated using the stochastic simulation algorithm
(SSA) defined in the supplementary material. y-axis corresponds
to observed infected cases. x-axis corresponds to time in weeks.
Susceptible cases exhibit a similar complex pattern of noisy oscilla-
tions but are not shown. The simulated data are weekly numbers of
infected cases; Disease 1 infected cases are shown in blue; Disease
2 infected cases are shown in red. Parameter values used in the
simulations: for Disease 1: α = (β, γ, σ ,μ) = (3.70, .25, .1, .001)
with N = 50000 and for Disease 2: α = (14.7, .5, .1, .001) with
N = 100000 (see Table 2).

Table 2: Baseline disease parameters.

Parameter Disease 1 Value Disease 2 Value

N 50000 100000

1/μ 1000 wk 1000 wk

1/γ 4 wk 2 wk

1/σ 10 wk 10 wk

β 3.7−wk (192−yr) 14.7−wk (764−yr)

until one goes off in which case a transition is determined by
the associated event function.

Figure 2 shows the output for the infected cases of
stochastic open SIR. In this section the vector x represents
the sample path for which one has complete information.
Assume complete information on the timing and occurrence
over a recorded interval of the time series for each individual
event propagating through the population. Let k̂ = ∑ε

j=1 k̂ j
be the total number of counted events of type P j over
[0,T]. Bookkeep the time and type of event as the set of

ordered pairs (ti, εi), where i = 1, . . . , k̂, with the ti in
increasing order. Next, consider a recorded event occurring
in the ordered interval [ti−1 = t + τ, ti = t + τ + Δτ),
which was a pathway of type Pi. In the appendix (Section
1.1) in the supplementary Material available online at doi:
10.1155/2012/390694, it is shown how construction of the
likelihood function follows from the stochastic simulation
algorithm (SSA) using a factored joint density for any eεi
event tagged with index, εi, where i is an element of the set
consisting of 1, . . . , ε.

It can also be shown using a factored form of the
event function that one can sum over all transitions in the

jump chain resulting from the Kolmogorov forward equation
(KFE; see the appendix (Section 1.2)) to obtain,

L(α, x) =
⎧⎪⎨
⎪⎩

k̂∏

i=1

αεi eεi(x(ti−1))

⎫⎪⎬
⎪⎭×

∫ T

0
exp

⎧⎨
⎩−

ε∑

i=0

αieidt

⎫⎬
⎭,

∝
ε∏

i=1

αk̂ii × exp−
{
αi

∫ T

0
ei(x(t))dt

}
,

(6)

where ε, εi, k̂, and k̂i are as defined from above. As shown
in the appendix (Sections 1.1–1.3) the standard theory
of statistical inference for Markov chains [2, 16, 17] can
be applied to simulated Markov processes, to obtain a
straightforward, but computationally intensive, maximum
likelihood theory for this class of stochastic processes. In
fact, these results demonstrate that one can analytically
compute closed-form solutions for parameter estimates,
since it factors into ε independent functions, one for each
parameter of an event function and its associated pathway.
This gives maximum likelihood estimates of each αi of the
SIR as α̂i = ki/

∫ T
0 ei(x(t)dt, for i = 1, . . . , ε. This has

been demonstrated previously for closed stochastic epidemic
models [18, 19]. In this section it has now been shown
that similar results hold for open stochastic endemic disease
dynamics. The factorization will also be utilized in a new
way, in a Bayesian context recently advocated by Wilkinson
and colleagues [2, 20]. In this case the factorization means
that if independent prior distributions are adopted for the
parameters this independence will be retained a posteriori.
Thus, the Bayes theorem may be placed on top of the factor-
ization of likelihood allowing construction of a simulation-
based MCMC algorithm for the stochastic SIR. Such an
application of this theorem in the SIR case study gives αi |
x ∼ Γ{ai + ki, bi +

∫ T
0 ei(x(t))dt}, where Γ represents the

gamma distribution and i = 1, . . . , 7 are indexed by each
SIR Pi specified in Table 1 and Figure 1. However, before this
method can be applied to the kind of data obtained from
actual epidemics the problem of imperfect observation must
be addressed. This will be discussed in the next section of this
paper.

2.2. SIR Inference: Imperfect Information

2.2.1. Discrete Data Recording. The previous section dealt
with the case of availability of perfect information for an
observed sample path. In this section the case of imperfect
information, such as when sample paths consist of data
obtained on fixed recorded intervals, is considered using
the output of the vector x. Thus, the sampled output
vector is now considered to contain only partially observed
data. A correction can be computed that depends upon
the likelihood of a sample path under the true model and
the likelihood of the sample path under an approximate
model, which takes into account that data are fixed upon two
endpoints. This requires computing the likelihood under an
inhomogeneous Poisson process model, which will now be
stated (Wilkinson [2], Section 10.2).
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For simplicity of notation, it is now assumed that the
“true” sample path x(t) is only observed at times t = 0 and
t = 1. Thus, the data fixed upon two endpoints may now be
denoted as x(0) and x(1). The complete data likelihood for
a discretely sampled trajectory on the interval [0, 1] is then
approximately given by

L∗(α, x)

=
⎛
⎝

k∏

i=1

λεi(ti)

⎞
⎠ exp

{
−1

2
(e0(x(0),α) + e0(x(1),α))

}
,

(7)

where λj(t) = (1 − t)ej(x(0),α) + te j(x(1),α), j = 1, . . . , ε,
and represents the rate of the inhomogeneous Poisson
process across the interval.

Using the ratio of likelihoods, L/L∗, allows one to make
a robust statistical decision with respect to accepting or
rejecting a discretely sampled time interval.

Using a Poisson approximation allows implementing a
very fast stochastic simulation algorithm simply (much faster
than the standard SSA) by applying probability functions
to deterministic flow rates. This essentially corresponds
to computing Euler increments for the τ-leap stochastic
simulation method [21]. These computational algorithms
are briefly described in the appendix (Sections 1.3–1.5).

MCMC implementation using this framework is rea-
sonably straightforward (see [2], Section 10.3): (a) initialize
the algorithm with a valid sample path consistent with the
observed data. (b) Sample the SIR parameters from their
full conditionals given their current sample paths. (c) For
each of the reported time intervals propose new sample paths
consistent with the reported endpoints and accept/reject it
with the Metropolis-Hastings step. (d) Output MCMC state.
Go back to (a). Details of the application of this algorithm
to the Markovian SIR are discussed in the appendix (Section
1.6).

2.2.2. Nonobservance of Susceptible Cases. Because numbers
of susceptible cases are not available from direct observation
they must be reconstructed from the epidemic data. For both
the simulation and empirical estimation studies a simple
reconstruction method [22] is used. This method utilizes the
relationship

St+τ = St − Ct,τ + Ct,τ , (8)

S0 = 0, (9)

where St is the number of individuals in the susceptible
class, Ct,τ the number of reported cases, and Ct,τ the average
reported number of cases over the entire data set. Given the
case report data the susceptible cases are reconstructed by
integrating (8) forward from t = 0.

3. Results and Discussion

3.1. Reconstructing Stochastic Oscillations. It has long been
a challenge in mathematical epidemiology to understand

the recurrence of epidemic outbreaks and establish an
appropriate model that allows studying this phenomenon
[23–27]. Recurrent epidemics often exhibit intricate and
complex dynamics that cannot easily be studied using
deterministic models; demographic stochasticity may play
a critical role in determining the outcome of the process
especially when the population falls below a certain critical
size (the critical community size) [28, 29]. Many recent
theoretical studies expanding upon Bartlett’s concept of
“intrinsic stochastic oscillations” have assumed that the
population persists in a long-term stochastic epidemic state
[10, 11, 30]; a similar assumption is made in theoretical
studies of complex stochastic oscillations in predator-prey
systems [31]. This paper will now explore this scenario and
estimate parameters for persistent noisy recurrent epidemics
using the data assimilation models described in the previous
section.

Parameters were estimated for a time series simulated
using the stochastic SIR immigration model described
previously in this paper. The parameter vector used for α
is shown in Table 2 and is representative of a recurrent
childhood disease such as a measles, mumps, or pertussis.
Two recurrent epidemic scenarios are explored. These are
labeled Disease 1 and Disease 2 in Table 2. City sizes of
N = 50000 and N = 100, 000 are assumed along with a life
expectancy on the order of 20 years. To model the recurrent
nature of such an epidemic, an infective immigration rate of
σ = .1 was assumed, so that there is, on average one new
infective arriving every 10 weeks. The numbers of infected
cases and susceptible cases are always plotted at weekly
intervals in the figures. Likewise the sampling interval used
to estimate parameters was always made at weekly intervals.
This corresponds to the imperfect observation scenario
described in Section 2.2.1. In the next section the scenario
in which case reports must be used to reconstruct the
susceptible class will be dealt with. An example of a simulated
infected cases time series is shown in Figure 2: the blue line is
from a simulation using Disease 1 parameter values; the red
line is from a simulation using Disease 2 parameter values.
Two hundred and fifty weeks of observations of infected cases
for the SIR immigration model discussed in this paper are
shown. Susceptible cases exhibit a similar complex pattern of
noisy oscillations but are not shown in the figure.

Using both infected and susceptible cases time series
obtained from the simulations the parameters shown in
Table 3 were inferred. Analysis of the MCMC data was
accomplished using standard Bayesian data analysis [2, 20,
32–34]. Posterior averages and their standard deviations were
used to infer parameters after two million MCMC iterations
of the inference algorithm. A burnoff of 100000 iterations
was made and iterations were thinned every 100 values.

Figure 4 shows Markov chain traces for five hundred
weeks of observations of Disease 2. Rapid convergence of
the chain towards a region including the target parameters
is seen for all SIR parameters (β, γ,μ) except for the immi-
gration rate σ . The color panel shows how estimation of σ
improves as data are added (in the figure a yellow line is used
to indicate the results for five hundred weeks of observations,
a red line for one thousand weeks of observations, and a
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Figure 3: Simulation of measles and pertussis as stochastic oscillators with comparison between exact (known) susceptible time series and
reconstructed susceptible time series. Parameters used in the simulations are given in Table 2, with pertussis labeled Disease 1 and measles
Disease 2. The abbreviation s.o. stands for “stochastic oscillator.” (a) measles stochastic oscillator; (b) pertussis stochastic oscillator.

blue line for ten thousand weeks of observations). Figure 5
shows kernel density estimates for five hundred weeks of
observations of Disease 2. The kernel density estimate for
migration rate, σ , is for 10000 weeks of observations. Similar
results were obtained for Disease 1 type recurrent epidemics
(results not shown). All parameters of the epidemic could be
estimated for sufficiently long time series (see Table 3).

Finally, it should be pointed out that nearly unbiased
estimation of the SIR parameters (β, γ,μ) is sufficient for
attractor reconstruction of a persistent recurrent epidemic,
at least if the dominant eigenvalue of the point attractor is to
be inferred, which is thought to be an important component
in driving noisy oscillations of recurrent epidemics in work
going back to Soper [23–29].

3.2. Epidemic Inference for 60 UK Cities. In this section pa-
rameters are estimated using time series data for 60 UK
cities. Pertussis and measles data were obtained using case
notification records from the UK Registrar General for
England and Wales. Pertussis cases were reported weekly and

biweekly for measles. For both diseases cases reported from
the period 1944–1967 were analyzed. City sizes ranged from
10530 (Teignmouth) to 3249440 (London). Reported cases
for three UK cities are shown in Figure 7.

Reconstructed susceptible cases (based upon the method
described in Section 2.2.2) using simulated measles and
pertussis infected time series are shown in Figure 6. Figure 3
shows results from simulation of measles and pertussis
stochastic oscillators. Application of this method to perform
attractor reconstruction for observed measles time series are
shown in Figure 7 for four UK cities. Reasonable similarities
were obtained in the comparison between exact (known)
susceptible time series versus reconstructed susceptible time
series. Parameters used in the simulations are given in Table 2
with pertussis labeled as Disease 1 and measles as Disease 2.

Figure 8 shows the estimates obtained from 60 UK
cities for pertussis and measles. Most notable is the large
amount of statistical variation seen in the pertussis estimates,
particularly in estimates of the duration of infection.
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Figure 4: Markov chain traces for 500 weeks of observations of Disease 2. The color panel shows how estimation of the migration rate, σ ,
improves as data are added (yellow line for 500 weeks of observations, red line for 1000 weeks of observations, and blue line for 10,000 weeks
of observations). (a) Trace of transmission rate (β); (b) trace of birth rate (N); (c) trace of infection rate (γ); (d) trace of migration rate (σ).

Table 3: Posterior estimates of stochastic SIR model.

10000 weeks of observations—Disease 1

Target Disease value Mean Standard deviation posterior

β 3.70 3.69 .042

γ .25 .250 .001

σ .10 .107 .021

μ .001 .001000 .000004

1000 weeks of observations—Disease 2

Target Disease value Mean Standard deviation posterior

β 14.7 14.70 .015

γ .5 .50 .004

σ .10 .170 .136

μ .001 .00100 7.18× 10−6

10000 weeks of observations—Disease 2

Target Disease value Mean Standard deviation posterior

β 14.7 14.72 .20

γ .5 .50 .007

σ .10 .11 .032

μ .001 .00100 1.47× 10−5

3.3. Inferring Coherence Resonance. Coherence resonance
occurs when noise is amplified in an otherwise quiescent

system by interaction of the underlying stochasticity of the
dynamics with the oscillatory transients of the deterministic
dynamics. What has been lacking thus far is a rigorous
statistical approach that allows quantifying the theoretical
expectations that drive this process using observed time
series data. The method developed in this paper is now
used to infer endemic sustained oscillations for noisy measles
and pertussis epidemics via the mechanism of coherence
resonance.

Kuske et al. [11] showed that the Poisson process
model of the SIR may be approximated using a stochastic
ordinary differential equation with a change of variables.
The linearization of scaled model has oscillations that are
slowly decaying with unity frequency. Kuske et al. conjecture
that solutions of the stochastic SIR model resemble a
different approximate model which captures the essence
of the full stochastic model. In this stochastic analogue
the sustained oscillations have a very particular structure:
they are a family of sinusoids modulated by the Ornstein-
Uhlenbeck processes. Making this conjecture Kuske et al.
[11] derive simple quantitative conditions for the existence
of sustained oscillations in noisy time series. Hence, they
are able to describe the parameter region for R0 and γ
in detail, including the behavior of the power spectral
density of stochastic model and its multiscale approximation.
Their parameter space will be taken as the starting point



8 Computational and Mathematical Methods in Medicine

4

3

2

1

0

14 14.5 15 15.5

D
en

si
ty

Density (x = β)

(a)

120

100

80

60

40

20

0

0.46 0.48 0.5 0.52 0.54

D
en

si
ty

Density (x = γ)

(b)

20

15

10

5

0

0.06 0.08 0.1 0.12 014 0.16

D
en

si
ty

Density (x = σ)

(c)

50000

30000

10000

0

0.00090 0.00095 0.00100 0.00105 0.00110

D
en

si
ty

Density (x = μ)

(d)

Figure 5: Kernel density estimates for 500 weeks of observations of Disease 2. The kernel density estimate for migration rate, σ , is for 10,000
thousand weeks of observations. (b) Density of of transmission rate (β); (a) density of infection rate (γ); (c) density of migration rate (σ);
(d) density of birth rate (μ).
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for formulating the hypothesis of coherence resonance in
stochastic epidemics explored in this paper.

Kuske et al. [11] give the biological criterion for sustained
oscillations via coherence resonance for the SIR model in
terms of two bounds:

ε2 = R0

2

√
μ

μ + γ

1
R0 − 1

� 1,

δ2

2ε2
= μ + γ

4Nμ

(
1 +

R0 + 1
R0 − 1

+ 2
μ + γ

μ(R0 − 1)

)
� 1.

(10)

Hence, these bounds can be explored by estimating R0 and
γ that explore this region for the UK measles and pertussis
data. Assume that 1/μ = 70 is a nuisance parameter.
Although σ was estimated, it does not play a role in the
following analysis; therefore it is ignored in this section. In
addition to μ parameter estimates of interest are those of γ,
β, and R0 which are required to estimate ε2 and δ2/2ε2. The
major predictions with respect to stochastic amplification in
the model of Kuske et al. [11, Page 465] are as follows: (1)
for very small values of δ2/2ε2 one expects to see very small
oscillations. (2) When δ2/2ε2 is increased but below one the
stochastic fluctuations balance with the deterministic slow
decay so that both stochastic and deterministic components
interplay to determine the attractor dynamics. (3) When
δ2/2ε2 is large the stochastic variations govern the dynamics
so that an approximation based upon slowly varying modu-
lations is no longer appropriate.

The key results are as follows. Figure 9 shows the
estimated variance of the stationary process from measles
and pertussis time series. Since this quantity restricts the
variance of the stochastic fluctuations relative to the slow
time scale it can be used to determine the relative sensitivity
of fluctuations on this time scale. It may be observed in
Figure 9 that there exist very small estimated values δ2/2ε2

for pertussis (blue); hence, one expects to see relatively small
very noisy oscillations propagated through the attractor.
In this case the demographic noise will not be likely to
be amplified optimally with respect to the deterministic
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Figure 9: Estimated variance of the stationary process from measles
and pertussis time series. Plotted on the x-axis is the rate of infection
(γ) in years. Plotted on the z-axis is the variance (δ2/2ε2). Plotted
y-axis is the reproductive rate of the disease (R0). One observes very
small estimated values δ2/2ε2 for pertussis (blue), hence one expects
to see relatively small very noisy oscillations propagated through
the attractor. In contrast, measles (red) exhibits more moderate
estimated values δ2/2ε2. This implies that the stochastic fluctuations
balance with the deterministic slow decay so that both stochastic
and deterministic processes contribute the dynamics in terms of
producing patterns of coherence resonance.

frequency in the power spectrum and will show more
irregular fluctuations due to stochastic amplification of
demographic noise. Hence, it may be predicted that the
power spectral distribution will not be as sharply peaked
and that the multiscale approximation is not as valid for
pertussis as for other pathogens. In contrast, Figure 10
shows that for measles (red) one observes more moderate
estimated values of δ2/2ε2. This implies that the stochastic
fluctuations balance with the deterministic slow decay so
that both stochastic and deterministic processes contribute
the dynamics in terms of producing patterns of coherence
resonance. For measles epidemics it is predicted that the
power spectral density will have stronger peaks in the vicinity
of the deterministic frequency. Measles noisy oscillations are
predicted to be better structured and exhibit more coherent
cycles around the endogenous period and measles epidemics
will exhibit more sensitivity to stochastic amplification. That
is they will amplify the noise to generate more regular
stochastic cycles in the neighborhood of a fixed frequency.

Figure 10 shows a plot of estimated per year rate of
infection (labeled as gamma) versus R0 in analytically
predicted bounds expected for multiscale dynamics leading
to coherence resonance. In Figure 9 the light green line
represents the V-shaped boundary of ε2 < .1 computed using
N = 500000 and μ = 1/55. This region is approximately the
same size when computed for ranges of N between 500000
and 2,000000 [11]. The blue line in Figure 7 represents the
contour of the bound δ2/2ε2 < .2. Both measles (red)
and pertussis (blue) estimates lie well within the bound
set by δ2/2ε2 for coherence resonance; however, pertussis
lies on the boundary of the ε2 bound, which seems to
suggest that these epidemics are not as likely to exhibit
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multiscale dynamics as measles epidemics. There does not
appear to exist quite a strong separation between slow
and fast time scales in determining pertussis dynamics as
there does for measles dynamics. Hence, one expects less
coherence and less structured oscillations for pertussis more
coherence and structured oscillation for measles epidemics.
These results are supported by those observed in Figure 10
and complement each other.

3.4. Systems Biology Approaches to Inference. This paper
utilizes a parameter estimation used for mechanistic mod-
eling of biochemical systems [2] to address the important
challenge of bridging the gap that exists between mathe-
matical modeling of epidemics and data analysis. In this
paper the Bayesian MCMC method has been shown to
be useful in bridging such a gap as well as in testing
interesting hypotheses regarding the properties of stochastic
amplification in epidemics. However, the application of this
computational theory in this paper to a simplified open
Markovian SIR is really just a first step. But it is an important
one and has allowed investigating the properties of data from
endemic diseases—a highly nontrivial inference problem
in epidemiology. In this section some other, more recent
systems biology methods are reviewed and compared to the
method used in this paper. Some advantages of systems
biology inference methods will be briefly discussed and may
be used building upon the results presented in this paper.

The application of computational and mathematical
techniques from what has been called algorithmic systems
biology [35] to a epidemiological modeling problems will
likely prove fruitful. The derivations of stochastic model-
ing of continuous time processes and the corresponding
likelihoods are quite general. However, the approach by
Wilkinson [2] and colleagues was a first step in modeling
systems in which stochastic effects due to small numbers of
molecules or individuals in populations are to be studied. In
fact, subsequent studies by the authors focused on inference
methods based upon diffusion approximations, which are
more tractable and scale up to large systems more easily
but are not appropriate for systems in which low densities
are common. Applying the Wilkinson Bayesian MCMC
Markov jump process approach requires approximating a
continuous system using a discrete Poisson approximation.
However, as shown in this paper such an approximation does
allow obtaining results for endemic diseases which would
otherwise be impossible to obtain using earlier algorithms
put forward such as that by Gibson and Renshaw [9] for
example. Also even as the smaller scale used in this paper it
is so computationally intensive it cannot yet be applied to
larger scale problems. That is the main reason in this paper
that a simplified Markovian SIR model was used. However,
even for simplified models one may have the problem of
taking long waiting times for rare events. Both simulated and
variational maximum likelihood methods in systems biology
[36–38] suffer from similar maladies at the Bayesian MCMC
methods.

Recent breakthroughs in automated estimation of rare
event probabilities in biochemical systems [39–41], however,
may allow addressing some of these fundamental problems.
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Figure 10: Plot of estimated per year rate of infection (labeled
gamma on the y-axis) versus R0 (labeled on the x-axis) in
analytically predicted bounds expected for multiscale dynamics
leading to coherence resonance. The light green line represents
the V-shaped boundary of ε2 < .1 computed using N = 500000
and μ = 1/55. This region is approximately the same size when
computed for ranges of N between 500000 and 2,000000 [11]. The
blue line represents the contour of the bound δ2/2ε2 < .2. Both
measles (red) and pertussis (blue) estimates lie well within the
bound set by δ2/2ε2 for coherence resonance; however, pertussis
lies on the boundary of the ε2 bound, which seems to suggest that
these epidemics are not as likely to exhibit multiscale dynamics
as measles epidemics. This can be seen visually by comparing the
reconstruction of the stochastic oscillators for measles (red) and
pertussis (blue), respectively, for London shown in Figure 7.

For the first time an accelerated maximum likelihood
estimation for stochastic biochemical systems is in sight that
can be based on the continuous time SSA. Construction
of inference algorithms based upon these recent studies in
systems biology will allow extending the results presented in
this paper to more realistic models of the epidemiological
process such as including multiple exposed and infected
classes. It will also allow including the possibility of disease
interactions which, for two diseases can require up to fifty
state variables to model [42].

4. Conclusion

In this paper a straightforward Bayesian MCMC method-
ology for inferring parameters for open SIR models using
stochastic simulation is applied to both simulated and
observed epidemic time series data. The methods described
in this paper are general enough for extension to more
complex epidemiological scenarios, which is currently the
goal of future work. This is useful because the efficient
integration of complex likelihoods for population models
is currently an object of intense ongoing research. Analysis
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of the data for the methodology developed in this paper is
accomplished using standard Bayesian data analysis [2, 20,
32–34].

The results obtained in this paper show how pertussis
and measles epidemics behave with respect to the presence
of demographic noise. Time series for 60 UK cities were used
to estimate epidemiological parameters for these pathogens.
A coherence resonance model was fit to the data to infer the
role of multiscale effects in producing period and amplitude
in the epidemics. It was found that measles appears to fit
the model rather well. However, pertussis does not seem
to fit the model, and it is predicted that there does not
appear to exist quite a strong separation between slow and
fast time scales as for pertussis as seems to exist for measles
epidemics. Therefore, one expects less coherence and less
structured oscillations for pertussis but more coherence and
structured oscillation for measles epidemics. The statistical
theory developed in this paper was used to investigate
coherence resonance of epidemics [10, 11] using empirical
time series data. It is hoped that future work will be directed
toward extending these results to more complex epidemic
modeling [43] such as theory of immune-mediated processes
in pathogen interactions [42, 44].

Acknowledgments

This work was partly funded by the University of Missouri
and Duke University. The author would like to thank Helen
Wearing and Pej Rohani for comments and suggestions on
earlier versions of this paper.

References

[1] J. S. Clark, Models for Ecological Data, Princeton University
Press, Princeton, NJ, USA, 2007.

[2] D. J. Wilkinson, Stochastic Modelling for Systems Biology,
Chapman and Hall, Boca Raton, Fla, USA, 2006.

[3] H. Andersson and T. Britton, Stochastic Epidemic Models and
Their Analysis, Springer, Berlin, Germany, 2000.

[4] P. D. O’Neill and G. O. Roberts, “Bayesian inference for
partially observed stochastic epidemics,” Journal of the Royal
Statistical Society. Series A, vol. 162, no. 1, pp. 121–129, 1999.

[5] P. D. O’Neill, “A tutorial introduction to Bayesian inference
for stochastic epidemic models using Markov chain Monte
Carlo methods,” Mathematical Biosciences, vol. 180, pp. 103–
114, 2002.

[6] N. G. Becker, Analysis of Infectious Disease Data, Chapman and
Hall, London, UK, 1989.

[7] N. G. Becker and T. Britton, “Statistical studies of infectious
disease incidence,” Journal of the Royal Statistical Society. Series
B, vol. 61, no. 2, pp. 287–307, 1999.

[8] S. Cauchemez and N. M. Ferguson, “Likelihood-based esti-
mation of continuous-time epidemic models from time-series
data: application to measles transmission in London,” Journal
of the Royal Society Interface, vol. 5, no. 25, pp. 885–897, 2008.

[9] G. J. Gibson and E. Renshaw, “Estimating parameters in
stochastic models using Markov chain methods,” IMA J. Math.
Appl. Med. Biol., vol. 15, pp. 19–40, 1998.

[10] D. Alonso, A. J. McKane, and M. Pascual, “Stochastic amplifi-
cation in epidemics,” Journal of the Royal Society Interface, vol.
4, no. 14, pp. 575–582, 2007.

[11] R. Kuske, L. F. Gordillo, and P. Greenwood, “Sustained oscil-
lations via coherence resonance in SIR,” Journal of Theoretical
Biology, vol. 245, no. 3, pp. 459–469, 2007.

[12] W. O. Kermack and A. G. McKendrick, “A contribution to the
mathematical theory of epidemics,” Proceedings of the Royal
Society of London Series A, vol. 115, pp. 700–721, 1927.

[13] R. M. Anderson and R. M. May, Infectious Diseases of Humans:
Dynamics and Control, Oxford University Press, Oxford, UK,
1991.

[14] A. G. McKendrick, “Applications of mathematics to medical
problems,” Proceedings of the Edinburgh Mathematical Society,
vol. 44, pp. 98–130, 1926.

[15] M. S. Barlett, “Some evolutionary stochastic processes,”
Journal of the Royal Statistical Society: Series B, vol. 11, pp. 211–
229, 1949.

[16] P. Billingsley, Statistical Inference for Markov Processes, Univer-
sity of Chicago, Chicago, Ill, USA, 1961.

[17] P. Guttorp, Stochastic Modeling of Scientifc Data, Chapman and
Hall, Boca Rotan, Fla, USA, 1995.

[18] W. N. Rida, “Asymptotic properties of some estimators for
the infection rate in the general stochastic epidemic model,”
Journal of the Royal Statistical Society: Series B, vol. 53, pp. 269–
283, 1991.

[19] R. J. Kryscio, “The transition probabilities of the general
stochastic epidemic model,” Journal of Applied Probability, vol.
12, pp. 415–424, 1975.

[20] R. J. Boys, D. J. Wilkinson, and T. B. L. Kirkwood, “Bayesian
inference for a discretely observed stochastic kinetic model,”
Statistics and Computing, vol. 18, no. 2, pp. 125–135, 2008.

[21] D. T. Gillespie, “Approximate accelerated stochastic simulation
of chemically reacting systems,” Journal of Chemical Physics,
vol. 115, no. 4, pp. 1716–1733, 2001.

[22] G. V. Bobashev, S. P. Ellner, D. W. Nychka, and B. T. Grenfell,
“Reconstructing susceptible and recruitment dynamics from
measles epidemic data,” Mathematical Population Studies, vol.
8, no. 1, pp. 1–29, 2000.

[23] W. H. Hamer, “Epidemic disease in England—the evidence of
variability and of persistence of type,” Lancet, vol. 1, pp. 733–
739, 1906.

[24] H. E. Soper, “The interpretation of periodicity in disease
prevalence,” Journal of the Royal Statistical Society: Series B, vol.
92, pp. 34–73, 1929.

[25] M. S. Bartlett, Stochastic Models in Ecology and Epidemiology,
Methuen, London, UK, 1960.

[26] M. S. Bartlett, “Chance or chaos?” Journal of the Royal
Statistical Society: Series A, vol. 153, pp. 321–349, 1990.

[27] N. T. J. Bailey, The Mathematical Theory of Infectious Disease
and Its applications, Griffin, London, UK, 1975.
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