
Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 451516, 10 pages
doi:10.1155/2012/451516

Research Article

A Signal-Processing-Based Approach to Time-Varying Graph
Analysis for Dynamic Brain Network Identification

Ali Yener Mutlu,1 Edward Bernat,2 and Selin Aviyente1

1 Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
2 Department of Psychology, Florida State University, Tallahassee, FL 32306, USA

Correspondence should be addressed to Ali Yener Mutlu, mutluali@msu.edu

Received 30 March 2012; Revised 3 July 2012; Accepted 10 July 2012

Academic Editor: Tianzi Jiang

Copyright © 2012 Ali Yener Mutlu et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In recent years, there has been a growing need to analyze the functional connectivity of the human brain. Previous studies
have focused on extracting static or time-independent functional networks to describe the long-term behavior of brain activity.
However, a static network is generally not sufficient to represent the long term communication patterns of the brain and is
considered as an unreliable snapshot of functional connectivity. In this paper, we propose a dynamic network summarization
approach to describe the time-varying evolution of connectivity patterns in functional brain activity. The proposed approach
is based on first identifying key event intervals by quantifying the change in the connectivity patterns across time and
then summarizing the activity in each event interval by extracting the most informative network using principal component
decomposition. The proposed method is evaluated for characterizing time-varying network dynamics from event-related potential
(ERP) data indexing the error-related negativity (ERN) component related to cognitive control. The statistically significant
connectivity patterns for each interval are presented to illustrate the dynamic nature of functional connectivity.

1. Introduction

The human brain is known to be one of the most complex
systems and understanding its connectivity patterns for
normal and disrupted brain behavior remains as a challenge.
Over the last decade, there has been a growing interest
in studying brain connectivity. In literature, three kinds of
brain connectivity have been addressed to define interactions
between different regions of the human brain: anatomical
connectivity, functional connectivity, and effective connec-
tivity [1, 2]. Anatomical connectivity is defined as the set of
connections at the physical or structural layer which links
neuronal units at a given time and can be analyzed using
techniques such as diffusion tensor imaging [3, 4]. Func-
tional connectivity is defined as the statistical dependencies
among remote neurophysiological events, which indicate the
integration of functionally segregated brain regions. Finally,
effective connectivity refers to causal relations between
neural systems where causality is understood in at least two
distinct ways: temporal precedence and physical influence

[5–7]. In this paper, we limit our focus on discovering
functional connectivity where reciprocal interactions are in-
vestigated.

Functional connectivity can be inferred from differ-
ent neuroimaging data such as the functional magnetic
resonance imaging (fMRI), electroencephalography (EEG),
and magnetoencephalography (MEG) [8]. fMRI provides
a high spatial resolution whereas EEG, and MEG have
more limited spatial resolution. However, EEG and MEG
offer higher temporal resolution required for quantifying
the time-varying relationships between neuronal oscillations
compared to fMRI which makes these recording techniques
more appealing for quantifying the functional brain con-
nectivity. Various measures, such as spectral coherence and
phase synchrony, have been proposed for quantifying the
functional relationships among different brain regions [9].
However, these measures are limited to quantifying pairwise
relationships and cannot provide an understanding of the
collective behavior of different brain regions. Attempts to
characterize the topologies of these large networks led to
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the emergence of a new, multidisciplinary approach to the
study of complex systems based on graph theory, which
has been used to analyze models of neural networks,
anatomical connectivity, and functional connectivity based
upon fMRI, EEG and MEG. Network characterization of
functional connectivity data is motivated by the develop-
ment of neurobiologically meaningful and easily computable
measures, such as graph theory-based clustering coefficient
and characteristic path length, that reliably quantify brain
networks [1, 10–13]. These measures also offer a simple
way to compare functional network topologies between
subject populations and have been shown to reveal presumed
connectivity abnormalities in neurological and psychiatric
disorders [14, 15].

A network is a mathematical representation of a real-
world complex system with relational information and can
be represented by a graph consisting of a set of vertices
(or nodes) and a set of edges (or connections) between
pairs of nodes. The presence of a connection between two
vertices means that there is some kind of relationship or
interaction between the nodes. In order to emphasize the
strength of the connectivity between nodes, one can assign
weights to each of the edges and the corresponding graph
is called a weighted graph. In the study of functional
brain networks, nodes represent the different brain regions
and the edges correspond to the functional connectivity
between these nodes which are usually quantified by the
magnitudes of temporal correlations in activity. Depending
on the measure, functional connectivity may reflect linear
interactions such as correlation or nonlinear interactions
such as phase synchrony [9]. Graph theory provides a way
to capture the topology of this network and to quantify the
multivariate relationships among neuronal activations across
brain regions as well as to suggest models for functional
brain networks which may allow us to better understand the
relation between network structure and the processes taking
place on these networks. One such model is the “small-
world” network introduced by Watts and Strogatz [16],
that demonstrates both clustered “cliquish” interconnectivity
within groups of nodes (like regular lattices) and a short path
length between any two nodes (like random graphs). This
is an attractive configuration for the functional architecture
of the brain, because small-world networks are known to
optimize information transfer, increase the rate of learning,
and support both segregated and distributed information
processing. Recently, there have been multiple functional
network studies using graph theory based on fMRI [17], EEG
[14, 18], and MEG data [12, 19] which have shown small-
world patterns in functional networks of healthy subjects.
Several studies have also shown how brain pathology, such
as schizophrenia and Alzheimer’s diseases, may interfere with
the normal small-world architecture [10–12, 14, 20].

Currently, topological features of functional brain net-
works such as clustering coefficient, path length, small world
parameter [21], modularity, global, and local efficiency are
defined over long periods of time, thus focusing on static
networks and neglecting possible time-varying properties
of the topologies [22–24]. This consideration might be
reasonable for anatomical connectivity; however, a single

graph is not sufficient to represent the communication
patterns of the brain and can be considered as an unreliable
snapshot of functional connectivity. Evidence suggests that
the emergence of a unified neural process is mediated by
the continuous formation and destruction of functional links
over multiple time scales [21].

In recent years, there has been an interest in character-
izing the dynamic evolution of functional brain networks.
Most of the existing approaches to dynamic network analysis
are either graph theory based such as direct extensions of
component finding [25–27] and community detection [28]
from the static to the dynamic case or are feature based
where features extracted from each graph in the time series
are used to form time-varying graph metrics [29, 30]. This
extension to dynamic networks reveals that the processing
of a stimulus involves optimized functional integration of
distant brain regions by dynamic reconfiguration of links.
More recently, the dynamic nature of the modular structure
in the functional brain networks has been investigated by
finding modules for each time window and comparing the
modularity of the partitions across time [31]. However, this
approach does not evaluate the dynamic evolution of the
clusters across time and is basically an extension of static
graph analysis for multiple static graphs. Mucha et al. [28]
proposed a new time-varying clustering algorithm which
addresses this issue by defining a new modularity function
across time. All of these module finding algorithms result in
multiple clustering structures across time and there is a need
to reduce this multitude of data into a few representative
networks or to quantify the evolution of the network in time
using reliable metrics. Therefore, these approaches do not
track the change in connectivity or clustering patterns and
cannot offer meaningful summarizations of time-varying
network topology.

Recently, researchers in signal processing have addressed
problems in dynamic network analysis such as detection of
anomalies or distinct subgraphs in large, noisy background
[32] and tracking dynamic networks [33]. Simple approaches
such as sliding window or exponentially weighted moving
averaging have been proposed for inferring long-term infor-
mation or trends [34, 35]. However, these methods have
some disadvantages such as preserving historical affinities
indefinitely, which makes the network topology denser as
time evolves [34]. In this paper, we will contribute to this
line of work by finding the event intervals in functional brain
connectivity patterns, revealing the most relevant and infor-
mative information for each interval and summarizing brain
network activity with a few number of representative net-
works, similar to data reduction in signal processing where
the ideal summary should conserve the minimum redun-
dancy in representing the dynamics of the particular interval.
Recently, similar data reduction problems in psychophys-
iological studies involving evoked brain potential activity
across time, frequency, and space have been addressed [36,
37]. However, the work in this area focuses on reducing
activation patterns across time, frequency, and space using
a Bayesian classification approach [37]. Unlike this paper
which considers the activation of each electrode individually
in time- and frequency, our paper considers functional
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connectivity or multivariate relationships between electrode
pairs and tries to reduce this relational information using a
segmentation approach along time.

In this paper, we first construct time-varying graphs,
which are needed to describe the brain activity across time,
by quantifying the time-varying phase synchrony between
different electrodes of the EEG data [38]. Then, a framework
for summarizing or reducing the information in dynamic
brain networks into a few representative networks will be
proposed by computing the distances between subsequent
graphs, detecting changes in distances to determine the event
boundaries, and, finally, forming a key network for each
interval such that this key network summarizes the particular
interval with minimal redundancy.

2. Background

Phase synchrony is defined as the temporal adjustment of
the rhythms of two oscillators while the amplitudes can
remain uncorrelated. The first step in quantifying the phase
synchrony between two signals is to estimate the instan-
taneous phase of the individual signals, Φi(t,ω), around
the frequency of interest, ω. Once the phase difference,
Φi, j(t,ω) = |Φi(t,ω)−Φ j(t,ω)|, between the two signals, xi
and xj , is estimated, phase synchronization can be quantified
by means of the phase-locking value (PLV) which ranges in
[0, 1]:

PLVi, j(t,ω) = 1
K
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where K is the number of trials and Φk
i, j(t,ω) is the time-

varying phase difference estimate for the kth trial. If the
phase difference varies little across the trials, PLV is close to 1
which indicates high phase synchrony pair signals.

Two major approaches to extracting the instantaneous
phase are the Hilbert transform and the complex wavelet
transform. The Hilbert transform-based method obtains an
analytic form of the signal and estimates the instantaneous
phase from this analytic form [39]. However, one has to
ensure that the signal is composed of a narrowband of
frequencies and this requires the bandpass filtering of the
signal around a frequency of interest which is followed by
the application of the Hilbert transform to obtain the instan-
taneous phase. The second approach to phase synchrony
computes a time-varying complex energy spectrum using
the continuous wavelet transform (CWT) with a complex
Morlet wavelet [40]. The main drawback of this measure is
the nonuniform time-frequency tiling where the frequency
resolution is high at low frequencies and low at high
frequencies. Although this property is desirable in detecting
high frequency transients in a given signal, it inherently
imposes a non-uniform time-frequency resolution which
results in biased energy and phase estimates. In this paper,
we propose to use a new time-varying phase estimation
method based on the Reduced Interference Rihaczek (RID-
Rihaczek) distribution belonging to Cohen’s class [38]. This
distribution offers phase estimates with uniformly high time-
frequency resolution which can be used for defining time-

and frequency-dependent phase synchrony. Compared to the
existing measures, in our previous work we have shown
through both simulation and analysis that RID-Rihaczek-
based phase and phase synchrony estimators are more robust
to noise, have uniformly better time-frequency resolution
with less bias in extracting time- and frequency-dependent
phase, and perform superior at detecting actual synchrony
within a group of oscillators [38].

It is important to note some limitations of PLV that
have been investigated in recent work, specifically in the
context of intertrial phase synchrony [41]. Specifically, the
PLV cannot discriminate between additive versus phase-
resetting activation in ERPs from trial to trial, and thus is not
a reliable measure for studying event-related brain dynamics
(ERBD [42]). Some recent approaches based on t-statistics
type measures from complex time-frequency distribution
coefficients offer some methods to decompose constituent
contributions of amplitude and phase resetting to the PLV
for intertrial measures [43]. However, it is not clear what role
these components have in PLV when measuring functional
connectivity.

2.1. RID-Rihaczek Distribution. Rihaczek distribution is a
complex time-frequency distribution that provides both a
time-varying energy spectrum as well as a phase spectrum
with good time-frequency localization for phase modulated
signals [44] and is defined as

Ci(t,ω) = 1√
2π

xi(t)X∗i (ω)e− jωt, (2)

where xi(t) is the signal and Xi(ω) is its Fourier transform.
The time- and frequency dependent phase estimate based on
this distribution can be found as

Φi(t,ω) = arg
[

Ci(t,ω)
|Ci(t,ω)|

]

= φi(t)− θi(ω)− ωt, (3)

where φi(t) and θi(ω) refer to the phase in the time and the
frequency domains, respectively. Once the phase estimate in
the time-frequency domain is obtained, the phase difference
between two signals, xi(t) and xj(t), can be computed as

Φi, j(t,ω) = arg

[

Ci(t,ω)
|Ci(t,ω)|

C∗j (t,ω)

|Ci(t,ω)|

]

=
(

φi(t)− φj(t)
)

−
(

θi(ω)− θj(ω)
)

.

(4)

For multicomponent signals, cross-terms occur at the
same time- and frequency locations as the original signals
and will lead to biased energy and phase estimates. In
order to eliminate these cross-terms, we proposed a reduced
interference version of the Rihaczek-distribution, which is
referred to as RID-Rihaczek, by applying a Choi-Wiliams



4 Computational and Mathematical Methods in Medicine

(CW) kernel function to filter the cross-terms in the ambi-
guity domain [45, 46]:

Ci(t,ω)

=
∫ ∫

exp
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− (θτ)2

σ

)
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j
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2

)
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Rihaczek kernel

A(θ, τ)e− j(θt+τω) dτdθ,

(5)

where exp( j(θτ/2)) is the kernel function for the Rihaczek
distribution and A(θ, τ) = ∫ xi(u + τ/2)x∗i (u− τ/2)e jθudu is
the ambiguity function of the signal, xi(t).

3. Dynamic Network Summarization

Let G = {Gt}t=1,2,...,T be a time sequence of weighted and
undirected graphs where Gt is an N × N weighted and
undirected graph at time t, T is the total number of time
points, and N is the number of nodes within the network.
The connectivity strength or the edge between nodes i and
j at time t is represented by Gt(i, j) and is in the range of
[0, 1].

We propose a dynamic graph summarization framework
consisting of constructing time-varying graphs from pair-
wise phase synchrony measure, identifying event windows,
revealing the most important and informative connectivity
patterns to summarize each event window with a key graph
and to describe the dynamic evolution of the network over
time.

3.1. Forming Time-Varying Graphs via Phase Synchronization.
In order to describe the evolution of time-varying connectiv-
ity patterns in the brain network, we first need to obtain the
time-varying graphs. We quantify the bivariate relationship
between nodes within the network and construct the time-
varying graphs by considering the average synchrony within
a frequency band at a certain time as

Gt
(

i, j
) = 1

W

ωb∑

ω=ωa

PLVi, j(t,ω), (6)

where Gt(i, j) represents the connectivity strength between
the nodes i and j within the frequency band of interest,
[ωa,ωb], and W is the number of frequency bins in that
band. In this paper, our focus is to evaluate the dynamics
of the networks over time and the proposed framework
is designed accordingly. However, one can extend this
framework to consider each time and frequency bin sepa-
rately to evaluate the network changes over both time and
frequency.

3.2. Event Interval Detection. Once the time-varying graphs
are obtained, we need to identify meaningful time intervals
which may account for the underlying neurophysiological
events such as error-related negativity or Pe event-related
potential elicited in the process of decision making. For
this purpose, we propose to quantify the change in node i’s

connectivity with other nodes from time point t to t + 1
as

dt, t+1(i) = ∥∥gi(t + 1)− gi(t)
∥
∥∞

= max
k

{∣
∣
∣gki (t + 1)− gki (t)

∣
∣
∣

}

, k = 1, 2, . . . ,N ,

(7)

where gki (t) is the kth element of ith row of Gt and dt, t+1(i)
is in the range of [0, 1]. l∞ norm highlights the maximum
change in a node’s connectivity from time t to t + 1
instead of the average change in the node’s connectivity
and, thus, is better at filtering out connections that are
insignificant for that particular node. The average distance,
Dt, t+1, between the graphs Gt and Gt+1 is then defined
as

Dt, t+1 = 1
N

N
∑

i=1

dt, t+1(i). (8)

In order to detect the abrupt changes in the distance measure
Dt, t+1 at any time, we propose to employ a standard change
detection algorithm based on adaptive thresholding:

I(t, t + 1) =
{

1, if
∣
∣Dt, t+1 − μt

∣
∣ ≥ 2σt

0, if
∣
∣Dt, t+1 − μt

∣
∣ < 2σt,

(9)

where an event boundary is detected, I(t, t + 1) = 1,
depending on the deviation of Dt,t+1 from the moving
average, μt = (1/δ)

∑δ
k=1 Dt−k, t−k+1. Adaptive thresholding

value, 2σt , is based on the standard deviation, σt =
√

(1/δ)
∑δ

k=1(Dt−k, t−k+1 − μt)
2, and the length of the moving

average window, δ, can be chosen based on the sampling
frequency and total number of time samples, T .

3.3. Key Graph Estimation Using Principal Component Analy-
sis. After determining the event intervals, we need to form
key graphs which best summarize the particular intervals.
For this purpose, we need to distinguish between transient
(high variance) and stationary (low variance) interactions
within a given time interval and obtain a key graph which
captures the transient or dynamic interactions. The ideal key
graph should describe dynamic behavior of the particular
interval with minimal redundancy. This is analogous to
finding signal components that have low and high variance
in a given data set and this separation in terms of variance
is usually addressed through principal component analysis
(PCA). Hence, we propose to employ PCA in order to
extract key graphs and summarize the dynamics of the event
intervals with minimal redundancy.

Let G1,G2, . . . ,GM be the set of M graphs that com-
pose an event interval that we try to summarize. Since
the graphs are undirected and symmetric, we create vec-
tors, z1, . . . , zM, to equivalently represent the graphs where
zi is obtained by stacking the columns of the upper
triangular portion of Gi and has the dimensions

(
N
2

)
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by 1. Hence, we compute the sample covariance matrix
as:

C = 1
M − 1

M
∑

i=1

(zi − z)(zi − z)T , (10)

where z = 1/M
∑M

i=1 zi.
Let the eigenvalues of the

(
N
2

) × (
N
2

)

matrix C be
denoted by λ1, . . . , λ(N

2

) and arranged in decreasing order,

λ1 ≥ λ2 ≥ · · · ≥ λ(N
2

), so that λ1 = λmax. The associated

eigenvectors are used to construct an
(
N
2

)× ( N2
)

matrix V =
[v1, . . . , v(N

2

)]. We can then write the eigendecomposition

equation as CV = VΛ where Λ is a diagonal matrix defined
by the eigenvalues of matrix C.

In order to ensure minimal redundancy, we need to
project the original data set, z1, . . . , zM, onto a few prin-
cipal components which correspond to the eigenvectors,
[v1, . . . , vL], with the largest L eigenvalues such that

∑L
i=1 λi

∑

(
N
2

)

i=1 λi

× 100 ≥ ξ (11)

the cumulative energy represented by these principal com-
ponents account for some certain percentage, ξ, of the total
energy in the data set. In this paper, we use ξ = 90% to obtain
a projected set of vectors as

pi = [v1, . . . , vL]Tzi, i = 1, . . . ,M. (12)

The projected vectors are transformed to the original space
as

z̃i = [v1, . . . , vL]pi

= [v1, . . . , vL][v1, . . . , vL]Tzi.
(13)

Hence, the new set of vectors, z̃1, . . . , z̃M, conserves 90%
of the total energy within the particular event interval
and contains only the most relevant information about the
network dynamics. For each event interval, we compute the
mean vector:

z̃ = 1
M

M
∑

i=1

z̃i, (14)

which will be reshaped such that it constitutes the upper
triangular part of the symmetric key graph.

3.4. Significance Testing for the Key Graph Estimation. Since
the distribution of the interactions under the null hypothesis
which form a key graph for a particular interval cannot
be obtained analytically, we resort to generating random
networks to derive this distribution. For each key graph
extracted for a given time interval, we derived an ensemble
of 2000 surrogate time-varying networks by randomly
reshuffling the edge weights [15]. The key graph estimation
algorithm is applied to each surrogate time-varying graph
set in each interval which resulted in 2000 surrogate key

graphs. In order to compare the original key graphs with the
ones obtained from the surrogate data sets, we selected two
different P-values, P < 0.01 and P < 0.001, to determine the
significant interactions at 99% and 99.9% significance levels,
respectively.

4. Data

4.1. EEG Data. To evaluate the performance of the proposed
measure in summarizing the event intervals with biological
data, we use a set of EEG data containing the error-related
negativity (ERN). The ERN is an event-related potential that
occurs following performance errors in a speeded reaction
time task [47, 48]. The ERN is observed as a sharp negative
trend in EEG recordings which typically peaks from 75–
80 ms after the error response. Previously reported EEG data
from 62 channels were utilized [49]. This study included 90
(34 male) undergraduate students. (Two of the original 92
participants were dropped due to artifacts rendering compu-
tation of the PLV values problematic.) Full methodological
details of the recording are available in the previous report
[49]. The task was a common speeded-response letter (H/S)
flanker, where error and correct response-locked trials from
each subject were utilized. A random subset of correct trials
was selected, to equate the number of errors relative to
correct trials for each participant. Before computing the
phase-synchrony measures, all EEG epochs were converted
to current source density (CSD) using published methods
[50, 51]. This was done to accentuate local activity (e.g., to
better index small world properties) and to attenuate distal
activity (e.g., volume conduction).

There has been longstanding interest in time-frequency
representations of the ERN [36, 52, 53]. It has now been
established that the time-frequency energy in the ERN
occurs in the theta band (4–8 Hz) of the EEG, occurring
medial frontally. This activity has been shown to have
primary sources in the anterior cingulate cortex (ACC)
[54–56]. Observations of similar theta activity across a
number of different tasks has been reported, suggesting that
midline frontal theta activity may serve related roles across a
number of cognitive processes [57]. New attention has been
focused on the functional connectivity occurring during
the ERN, to better understand the role of medial-frontal
theta activity in functional networks subserving cognitive
control. Cavanagh and colleagues [58], for example, found
evidence that lateral-prefrontal cortex (lPFC) activity was
phase synchronous with medial-frontal theta, supporting the
idea that medial-prefrontal (mPFC) and lPFC regions are
functionally integrated during error processing. By assessing
medial-frontal regions active during the ERN in relation
to diffusion tensor imaging (DTI), new work has also
helped demonstrate how mPFC regions are highly integrated
with other prefrontal areas during control processing [59].
Together, advances in this area support the view that medial-
frontal sources serve as a central region of activity during
error processing, and that phase-synchrony measures of theta
activity can index this functional integration. At the same
time, work in this area is nascent, and new research into
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the nature of this functional integration is important. The
proposed approach is a graph-based data-driven approach
to characterizing functional connectivity, and can offer a
new look at network patterns occurring during the ERN.
Thus, while the primary aims of the current report are
methodological (i.e., developing a method for characterizing
time-varying graphs), we hypothesize that the medial-frontal
region will play a central functional role during the ERN,
and will have significant integration with frontal areas,
including lateral frontal. Such findings can offer support that
the proposed time-varying graph approach produces effects
consistent with current theoretical and empirical work in the
field.

5. Results

5.1. Event Intervals. In this paper, we analyzed data from
90 subjects corresponding to the error responses. For each
subject, time- and frequency dependent phase synchrony
between all possible electrode pairs is computed by RID-
Rihaczek-based PLV measure and time-varying graphs,

G
(q)
t , t = 1, . . . , 256, for the qth subject are constructed

using (6) where the number of nodes, N , is equal to 62, the
frequency band of interest is the theta band (4–8 Hz), and the
sampling frequency is 128 Hz. Furthermore, a mean time-
varying graph sequence, Gt, is computed over all subjects
as

Gt = 1
90

90
∑

q=1

G
(q)
t , (15)

and the event interval detection algorithm is applied to
this average sequence, Gt , where the length of the moving
average window, δ, is chosen as 2.5% of the sampling period.
The value of δ is selected such that the window length is
able to both detect the abrupt changes in the connectivity
patterns and prevent oversmoothing. Different values of
moving average window can be chosen depending on the
sampling frequency or the application type. We identified
6 different key event intervals based on the proposed
change detection algorithm which roughly correspond to the
stimulus processing (−1000 to −102 ms), pre-ERN (−101 to
0 ms), ERN (1 to 117 ms), post-ERN (118 to 259 ms), Pe
(260 to 461 ms), and intertrial (462 to 1000 ms) intervals,
respectively, as shown in Figure 1.

The detected event intervals are consistent with the
speeded reaction-time task as the subjects respond to the
stimulus at time 0 ms. The first interval indexes complex
processing of the imperative stimulus before making a
response. The Pre-ERN and Post-ERN intervals, just before
and after the ERN, index activity around the incorrect
motor response. Importantly, the ERN interval (117 ms time
window after the response) and Pe interval (260–461 ms time
window) are detected successfully by the event detection
algorithm. The Pe (error-positivity) interval corresponds to
a P3-like component observed subsequent to the incorrect
response [60, 61]. However, measures of P3 energy generally
show activity in lower frequency delta bands (e.g., [62–65]),
rather than the currently measured theta activity.

−1000−800 −600 −400 −200 0 200 400 600 800 1000
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Figure 1: Event interval detection: 6 event intervals are identified
which roughly correspond to the stimulus processing (−1000 to
−102 ms), pre-ERN (−101 to 0 ms), ERN (1 to 117 ms), post-ERN
(118 to 259 ms), Pe (260 to 461 ms), and intertrial (462 to 1000 ms)
intervals, respectively. The subjects respond to the stimulus at time
0 ms where the response is represented by the red spike.

5.2. Key Graphs. For each event interval detected from
the mean time-varying graph sequence, Gt, M vectors,
z1, . . . , zM, corresponding to the upper triangular part of
the graph, sequences in that interval are formed and the
(
N
2

) × ( N2
)

covariance matrix is computed as given in (10)
where M corresponds to the number of graphs that compose
the particular event interval and N is the number of nodes
within the network (N = 62). Note that M will change for
each time interval. For instance, for this particular study
M = 115 for the stimulus processing, M = 13 for the
pre-ERN, M = 15 for the ERN, M = 18 for the post-ERN,
M = 26 for the Pe and M = 69 for the inter-trial intervals.
The L largest eigenvalues for that event interval are selected
such that a 90% energy threshold is satisfied using (11). A
corresponding mean vector, z̃, which constitutes the upper
triangular part of the symmetric key graph for the particular
event interval is obtained using (14). Furthermore, we
compared the extracted key graphs with the ones obtained
from the surrogate time-varying graphs and identified the
interactions which are statistically significant as described
in Section 3.4. For each event interval, Figure 2 shows
the interactions which are significant at two different
significance levels where the interactions with P < 0.01 and
P < 0.001 are represented in blue and red colors, respectively.
As one can see from Figure 2, ERN interval has much more
significant connections compared to the Pre-ERN and
Post-ERN intervals as expected because of the complex
activity associated with the error commission. In particular,
the frontal electrodes (F5, FZ, F2, and F4) have significant
connections with the central electrode (FCz) with P < 0.001,
consistent with previously observed interactions in theta
band between medial prefrontal cortex (mPFC) and lateral
prefrontal cortex (lPFC) during error-related cognitive
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Figure 2: For each event interval, a key graph is obtained using the framework described in Section 3. We compared the extracted key graphs
with the ones obtained from the surrogate time-varying graphs and identified the interactions which are significant. Using each key graph,
the interactions which are found to be significant at two different levels, P < 0.01 and P < 0.001, are represented in blue and red colors,
respectively.

control processes [58], whereas the other event intervals do
not include such interactions among frontal and central sites.
During the Pe, on the other hand, we observe significant
connections only among the parietal and occipital-parietal
electrodes with P < 0.01 and P < 0.001. Hypotheses about
theta activity during the Pe are underdeveloped in the
literature, because P3-related activity generally occurs at
lower frequencies (e.g., 0–3 Hz, as described above). Thus,
while the observed pattern of effects could be interpreted, it is
more reasonable to note that this interval contains the fewest
connections between nodes among the identified intervals.

We also focused on the change in connectivity for FCz
electrode with the remaining 61 electrodes within the key
graphs for Pre-ERN, ERN, and Post-ERN intervals and
compared these connectivity values to identify if FCz has
stronger connectivity during the ERN interval compared to
the Pre-ERN and Post-ERN intervals. We used a Welch’s
t-test at 5% significance level to test the null hypothesis
that the connectivity strengths from different key graphs

are independent random samples from normal distributions
with equal means. For both comparisons, Pre-ERN versus
ERN and Post-ERN versus ERN, the null hypothesis is
rejected where FCz has a larger mean connectivity for
the ERN interval indicating that the central electrode has
significantly larger connectivity with the rest of the brain
during the ERN interval. Moreover, we compared the
connectivity values for Pre-ERN and Post-ERN where there
is no significant difference between the connectivity values
from these intervals.

6. Conclusions

In this paper, we proposed a new framework to summarize
the dynamic evolution of brain networks. The proposed
approach is based on finding the event intervals and revealing
the informative transient or dynamic interactions within
each interval such that the key graph would summarize
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the particular interval with minimal redundancy. Expectable
results from the application to real EEG data containing the
ERN supports the effectiveness of the proposed framework in
determining the event intervals of dynamic brain networks
and summarizing network activity with a few number of
representative networks.

Future work will concentrate on exploring different event
interval detection and key graph extraction criteria such as
entropy-based divergence measures and Bayesian approaches
such as the one discussed in [37], which may result in an
improved performance in summarizing dynamic networks.
Furthermore, the proposed framework will be extended
to compare the dynamic nature of functional networks
for error and correct responses to get a more complete
understanding of cognitive control. In addition, we will
employ the proposed framework to analyze data in other
frequency bands including delta, which may be more central
to activity during the Pe interval. Future work will also
consider exploring single-dipole [56, 66] and distributed-
dipole [67] source solutions to the inverse problem for
extending our proposed dynamic functional connectivity
analysis framework to the source domain. Finally, we will
explore different group analysis methods to consider the
variability across individual subjects and possibly reveal the
distinctive network features for each subject rather than
averaging the time-varying graphs from all subjects.
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Psychophysiology, vol. 19, no. 4, pp. 319–329, 2005.

[62] E. M. Bernat, S. M. Malone, W. J. Williams, C. J. Patrick, and
W. G. Iacono, “Decomposing delta, theta, and alpha time-
frequency ERP activity from a visual oddball task using PCA,”
International Journal of Psychophysiology, vol. 64, no. 1, pp. 62–
74, 2007.

[63] T. Demiralp, A. Ademoglu, Y. Istefanopulos, C. Başar-Eroglu,
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