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Functional magnetic resonance imaging (fMRI) is recently developed and applied to measure the hemodynamic response related
to neural activity. The fMRI can not only noninvasively record brain signals without risks of ionising radiation inherent in other
scanning methods, such as CT or PET scans, but also record signal from all regions of the brain, unlike EEG/MEG which are biased
towards the cortical surface. This paper introduces the fundamental principles and summarizes the research progress of the last
year for imaging neural activity in the human brain. Aims of functional analysis of neural activity from fMRI include biological
findings, functional connectivity, vision and hearing research, emotional research, neurosurgical planning, pain management, and
many others. Besides formulations and basic processing methods, models and strategies of processing technology are introduced,
including general linear model, nonlinear model, generative model, spatial pattern analysis, statistical analysis, correlation analysis,
and multimodal combination. This paper provides readers the most recent representative contributions in the area.

1. Introduction

Functional magnetic resonance imaging (functional MRI
or fMRI) is based on the increase in blood flow to the
local vasculature that accompanies neural activity in the
brain. This results in a corresponding local reduction in
deoxyhemoglobin because the increase in blood flow occurs
without that similar magnitude in oxygen extraction. Deoxy-
hemoglobin is paramagnetic, and it alters the weighted MRI
signal and thus is sometimes referred to as an endogenous
contrast-enhancing agent. It also serves as the source of the
signal for fMRI. Using an appropriate imaging sequence,
human cortical functions can be identified without the use of
exogenous contrast-enhancing agents on a clinical strength
scanner. It has been confirmed that functional activity of the
human brain from the MR signal is in anatomically distinct
areas in the visual cortex, the motor cortex, and Broca’s
area of language-related activities. For example, Stroop test is
commonly used as a behavior-testing tool for psychological
examinations that are related to attention and cognitive
control of the brain [1].

Over 100 years ago, it has been known that changes in
blood flow and blood oxygenation (i.e., hemodynamics) are
closely linked to neural activities in the brain. When neural
cells are active, they increase the consumption of energy
from glucose and switch to less energetically effective, but
more rapid anaerobic glycolysis. The local response to this
energy consumption is to increase blood flow to regions of
increased neural activity, which occurs after a 1-2-second
delay. The hemodynamic response rises to a peak over 4–
6 seconds, before falling back to its baseline. This leads to
changes in local cerebral blood volume and local changes in
the concentration of oxyhemoglobin, which are detectable
through the paramagnetic effects [2].

fMRI is highly interdisciplinary, and many studies are
from several different fields, for example, physics (underlying
fMRI signals and understanding of the principles), psychol-
ogy (cognitive psychological, cognitive psychophysiological,
and psychophysical experiments for obtaining extra mea-
surements in addition to behavioral or electroencephalo-
graphic measurements), neuroanatomy (linking fMRI sig-
nals to understanding of the neuroanatomy), statistics (for
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correct observations and avoiding false-positive results), and
electrophysiology (neuronal behavior at the electrophysio-
logical level) [3].

In early 1990s, it has been recognized the potential
importance of blood-oxygen-level dependence (BOLD),
which is the MRI contrast of blood deoxyhemoglobin, for
functional brain imaging with MRI. The first successful
fMRI study was reported in Science journal by Belliveau
et al. in 1991 [4]. Now fMRI has come to dominate the
brain mapping field due to its relatively low invasiveness,
absence of radiation exposure, and relatively wide availability
[3]. Further, rapidly emerging studies correspond findings
between fMRI and conventional electrophysiological tech-
niques to locate specific functions of the brain [5]. Conse-
quently, the number of medical and research centers with
fMRI capabilities and investigational programs continues to
escalate [2]. Now BOLD-based fMRI becomes a powerful
tool for studying brain function not only locally but also
on the large scale [6]. The particular imaging methods and
procedures vary from every individual institute. Yet there is
no completely standardized package of software for clinical
use.

Although the current fMRI uses BOLD as the method for
determining active areas as the result of various experiences,
the signals are relative and not individually quantitative. The
recent fMRI technology extends traditional anatomical MR
imaging from brain hemodynamics [7] or mental operations
to brain functions [8]. fMRI provides the ability to observe
both the structures and also which structures participate in
specific functions. fMRI provides high-resolution, noninva-
sive observation of neural activity. This ability to directly
observe brain function opens good opportunities to advance
our understanding of brain organization. This paper briefly
introduces the fundamental principles of fMRI and some
recent directions [2].

Integration of electroencephalography (EEG) and fMRI
has been pursued in an effort to achieve greater spatiotem-
poral resolution of imaging dynamic brain activity [9].
Recently, simultaneous EEG-fMRI measurements have been
used to investigate the relation between the two signals.
Previous attempts at the analysis of simultaneous EEG-
fMRI data reported significant correlations between regional
BOLD activations and modulation of both event-related
potential (ERP) and oscillatory EEG power, mostly in the
alpha but also in other frequency bands [10]. Functional
MRI has high spatial resolution but relatively poor temporal
resolution (in seconds). EEG directly measures the brain’s
electrical activity, giving high temporal resolution (in mil-
liseconds) but low spatial resolution. The two techniques are
therefore complementary and may be used simultaneously to
record brain activity. Recording an EEG signal inside an MRI
system is technically challenging. The MRI system introduces
artifacts into the EEG recording by inducing currents in the
EEG. This can happen through several different mechanisms.
An imaging sequence applies a series of short radiofrequency
pulses which induce a signal in the EEG system. The pulses
are short and relatively infrequent, so interference may be
avoided by blanking the EEG system during the transmission.
The EEG system also affects the MRI scan. Metal in the EEG

leads and electrodes can introduce susceptibility artifacts
into MR images. Care must be taken to limit currents
induced in the EEG leads via the MRI system, which could
heat the leads sufficiently to burn the subject [3].

Preliminary investigations of human brain mapping
with these procedures have yielded insights into the func-
tional organization of various sensory, motor, and language
systems. In fact, BOLD effects are measured using rapid
volumetric acquisition of images, with moderately good
spatial and temporal resolution. Images are usually taken
every several seconds, and the voxels in the resulting image
typically represent cubes of tissue about several millimeters.
Practically, the course of a BOLD response to a briefly
presented stimulus lasts about 15 seconds for the robust
positive response [3].

A typical procedure of clinical applications includes these
steps. (1) Image Acquisition. Images are acquired using a
weighted gradient echo sequence. The system is equipped
with echo planar options for rapid image acquisitions. Slice
thickness is usually set at 3–5 mm. Simultaneous images
are acquired on as many as tens of contiguous slices. (2)
Image Processing. Some processing programs are developed
as a stand-alone system outside of the scanner system. They
provide the computational capability to reconstruct the large
numbers of images and statistical analyses that identify the
active areas. (3) Task Procedure. Patients are positioned in
the scanner as for a conventional scan. During a functional
imaging series, tens of images are obtained. To identify brain
tissue involved in language, sensory, visual, auditory, hand
movement, and other targeted functions, the patient acts
accordingly during the activity epoch. The beginning and
end of this activity period are cued by a visual or auditory
signal. (4) Data Analysis. Statistical analyses are often used
to identify areas of the brain activated by specific tasks
and are based on a multistage comparison of stimulation
and resting intensity levels as well as multiple replications.
Figure 1 shows a reconstructed fMRI study for neural activity
analysis in our laboratory.

The scope of this paper is restricted to the most recent
fMRI research for imaging neural activity in the human
brain, mostly to introduce the research progress in 2010-
2011. Although fMRI has attracted many researchers as early
as since the 1980s, this paper concentrates on the most
recent contributions. Furthermore, we include only what
we believe to be representatives of important works and
trends from recent years. The paper has four more sections.
Section 2 introduces the relevant aims and applications
of neural activity analysis by fMRI. Section 3 summarizes
typical technologies in development. Section 4 is a discussion
and Section 5 is the conclusion.

2. Neural Activity from fMRI

2.1. Functional Connectivity. Functional connectivity mea-
sures based upon low-frequency BOLD fMRI signal fluc-
tuations have become a widely used tool for investigating
spontaneous brain activity. However, the precise relationship
between neural activity, the hemodynamic response and
fluctuations in the MRI signal is still unknown. Recent works
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Figure 1: Reconstructed fMRI study for neural activity analysis.

had shown that correlated low-frequency fluctuations in
the BOLD signal could be detected. Building on this pre-
liminary work, Williams et al. demonstrate that functional
connectivity observed in the rat depends strongly on the
type of anesthesia used [11]. Lin et al. find that functional
connectivity between cortical areas can be further revealed
from the imaged source signals using phase synchrony
measures [9]. Their approach is to image continuously
oscillatory activities and their functional connectivity. Such
ability promises to facilitate the investigation of the long-
term neural behaviors and large-scale cortical interactions
involved in spontaneous brain activity and cognition.

2.2. Biological Findings. Sparsity of the signal has been
shown to be more promising in [12]. This coincides with
biological findings such as sparse coding in the primary
visual area (V1) simple cells, electrophysiological experiment
results in the human medial temporal lobe, and so forth
A data-driven fMRI analysis is derived solely based upon
the sparsity of the signals [12]. Comparative experiments
have been done using canonical HRF, data-driven sparse
GLM, sICA using Infomax, sICA using FastICA, and PCA
(Figure 2). Khadka et al. attempted to find neural correlates
between the performed cognitive tasks and hemodynamic
signals detected by a diffuse optical tomography system [1].
The initial observation showed activation of oxyhemoglobin
concentration in Brodmann area 10 (BA10), which is consis-
tent with some results seen by positron emission tomography
(PET) and fMRI.

Many studies assume a simple relationship between
neural and BOLD activity, in spite of the fact that it is impor-
tant to elucidate how the “when” and “what” components
of neural activity are correlated to the “where” of fMRI
data. Murayama et al. conducted simultaneous recordings
of neural and BOLD signal fluctuations in V1 cortex of
anesthetized monkeys. They explored the neurovascular
relationship during periods of spontaneous activity. The
results showed a positive neurovascular coupling with a
lag of 4-5 seconds and a larger contribution from local

field potentials (LFPs) in the gamma range than from
low-frequency LFPs or spiking activity. The method also
detected a higher correlation around the recording site in
the concurrent spatial map, even though the pattern covered
most of the occipital part of V1 [6].

By integration of EEG source imaging and fMRI during
continuous viewing of natural movies, it is found the most
significant correlations in visual area V1. By calculating the
impulse response function (IRF) between the BOLD signal
and the estimated current density in area VI, it is found
that the IRF is very similar to that observed using combined
intracortical recordings and fMRI experiments in nonhuman
primates. Taken together, these findings open an approach to
noninvasive mapping of the brain. This is especially useful in
combined EEG/fMRI experiments, where one can potentially
study neural-hemodynamic relationships across the whole
brain volume [13].

2.3. Vision and Hearing Research. In the community, fMRI
has been applied for discovery of visual illusions, depth
perceptions, hearing, or language-specific areas. Visual per-
ceptual experiments have identified three types of neural
pathways that represent color. It might be expected that there
are neurons in the primary visual cortex that resemble the
three perceptual pathways. Engel et al. used fMRI to examine
responses in the human brain to a large number of colors. In
visual cortical areas V1 and V2, the strongest response is to
red-green stimuli, and much of this activity is from neurons
receiving opposing inputs from L and M cones [14].

In [15], multivoxel pattern analysis is applied to inves-
tigate the specificity of brain activation patterns induced
by acupuncture stimulations at a vision-related acupoint
(GB37) and a nearby nonacupoint (NAP). Results showed
that multiple areas could differentiate the neural response
patterns induced by stimulation at the two sites with higher
accuracy above the chance level [15]. Rauch et al. also
studied effects of the local anesthetic Lidocaine on BOLD
activity in V1 of nonhuman primates. Using independent
component analysis (ICA), they describe and quantify the
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Figure 2: Comparative experiments using the design matrices constructed by (a) canonical HRF, (b) data-driven sparse GLM, (c) sICA
using Infomax, (d) sICA using FastICA, and (e) PCA (Lee et al. 2011 [12] (2011 IEEE)).

pharmacodynamics and spatial distribution of Lidocaine
effects on visually evoked V1 BOLD signal in a dose-
dependent manner [16].

In [17], fMRI was used to investigate differences in
neural activity between subjects that can modulate their
tinnitus by jaw protrusion and normal hearing controls.
Lanting et al. measured responses to bilateral sound and
responses to jaw protrusion. The auditory system responded
to both sound and jaw protrusion [17]. In the experiments
by [18], participants identified speech sounds masked by
varying noise levels while blood oxygenation signals were
recorded with fMRI. Accuracy and response time were
used to characterize the behavior of sensory and decision
components of the perceptual system.

2.4. Emotional Research. Emotion plays a significant role
in goal-directed behavior, but people yet know very little
about its neural basis. In several psychological models the
cardinal dimensions that characterize the emotion space
are considered to be valence and arousal. In [19], 3T
fMRI was used to reveal brain areas that show valence-
and arousal-dependent BOLD signal responses. Influential
theories of human emotion argue that subjective feeling
states involve representation of bodily responses elicited
by emotional events. Individual differences in intensity of
emotional experience reflect variation in sensitivity to bodily
responses. Critchley et al. measured regional brain activity by
fMRI during an interoceptive task wherein subjects judged

the timing of their own heartbeats. They observed enhanced
activity in insula, somatomotor, and cingulate cortices [20].

2.5. Neurosurgical Planning. Since neurosurgery relies on a
precise delineation of the structural and functional aspects
of brain, the role for fMRI in neurosurgical planning is
very significant. The need for individualized maps of brain
function is enhanced when the presence of a tumor alters
the expected location of a function or when the location of
the tumor is in an area with an uncertain function. fMRI
does provide a source of precise functional and structural
information for neurosurgery [2]. Many examples illustrated
the potential advantage of functional and anatomical infor-
mation for surgical treatment of brain tumors.

Recently, a cohort of neurosurgical patients are partic-
ipants in a protocol at Columbia to evaluate the potential
applications of fMRI for neurosurgical planning. These
patients receive a standard battery of tasks targeted to localize
language, sensory, motor, and visual areas both as candidates
for surgery and as postsurgical patients. The objective of this
investigation is to determine the potential role of functional
mapping for neurosurgical procedures [2].

2.6. Pain Management. The experience of chronic and per-
sistent pain is a debilitating condition for which the role of
cortical processing is not well understood. The ability to use
environmental stimuli to predict impending harm is critical
for survival. Such predictions should be available as early
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as they are reliable. Chains of successively earlier predictors
are studied in terms of higher-order relationships and have
inspired computational theories such as temporal difference
learning. However, there is yet no adequate neurobiological
account of how this learning occurs. In [8], by fMRI study of
higher-order aversive conditioning, a computational strategy
is described that humans use to learn predictions about pain.

People have focused on the identification of cortical areas
that are modified by the reduction of pain following pain
therapy. Recent studies indicate that the cortical representa-
tion of sympathetically maintained pain involves specific and
identifiable cortical activity, as well as does the relief of that
pain achieved by a peripheral nerve block procedure. The
preliminary studies suggest a wide range of other approaches
using fMRI to investigate cortical representations of specific
pain types and, therefore, potential specific therapy options
[2].

2.7. Others. With the ability to image the entire 3D volume
of human brain, fMRI is capable of isolating many simulta-
neous and coordinated brain events. The multilevel view of
brain activity can include executive functions and high-level
cognitive tasks simultaneously with the inputs such as vision
and audition. Methods can also be developed to identify
brain structures involved with visual perception, language
generation, comprehension of sequential information as in
a video, the execution of visually guided responses, and
problem solving. These aspects of brain function have
not previously been scrutinized with such precision in
neuroscience [2]. Many more applications can be explored.
For example, Kannurpatti et al. studied neural and vascular
variability and the fMRI-BOLD response in normal aging
[21].

3. Processing Technology

3.1. Formulations and Basic Processing. Formulization and
basic fMRI processing technologies are always useful to bring
upgraded hardware and software. For example, fMRI is very
sensitive to artifacts created by head motion and magnetic
field deformation. It is thus necessary to attenuate these
artifacts in order to obtain correct activation patterns. A
model-based method is introduced in [22] to remove motion
artifacts in short-duration movements. The algorithm can
account for head movement and field deformations due
to movements within and outside of the field of view
[22]. On the other hand, the power of fMRI in assessing
neural activities is hampered by intersubject variations in
basal physiologic parameters, which may not be related
to neural activation but has a modulatory effect on fMRI
signals. Therefore, normalization of fMRI signals is useful in
reducing variations and improving sensitivity [23].

The common gradient-echo echo-planar imaging tech-
nique in fMRI is sometimes hampered by macroscopic field
inhomogeneities. This can affect the degree of signal change
that occurs in the images as a response to neural activation
and the subsequent blood oxygenation changes, that is, the
BOLD sensitivity. In [24], quantitative sensitivity maps are
calculated directly from gradient-echo field maps.

3.2. General Linear Model. To test for spatial heterogeneity, a
direct statistical measure is proposed in [25] for the existence
of distributed spatial patterns applicable to fMRI datasets.
They extend the univariate general linear model (GLM)
[12], typically used in fMRI analysis, to a multivariate case.
Contrasting maximum likelihood estimations of different
restrictions on this multivariate model can be used to
estimate the extent of spatial heterogeneity. The test statistic
is assessed using simulated time courses derived from real
fMRI data followed by analyzing data from a real fMRI
experiment [25].

3.3. Nonlinear Model. The signals and images acquired
through this imaging technique demonstrate the brain’s
response to prescheduled tasks. Several studies on BOLD
signal responses demonstrate nonlinear behavior for a
stimulus. Taalimi and Fatemizadeh propose a mathematical
approach for modeling BOLD signal activity, which is able
to model nonlinear behaviors of physiological systems [26].
A nonlinear auto regressive moving average model is used
to describe the mathematical relationship between output
signals and predesigned tasks. Parameters can be used to
distinguish between rest and active states of a brain region.

3.4. Generative Model. Generative models, such as the
most typical ICA methods, can be used for the observed
multivariate data in a large database of samples. ICA can
separate a multivariate signal into additive subcomponents
supposing the mutual statistical independence of the non-
Gaussian source signals [16]. It is a special case of blind
source separation and has been broadly applied to fMRI due
to its capacity to separate spatially or temporally independent
components. However, the assumption of independence has
been challenged by recent studies, and, therefore, ICA does
not guarantee independence of simultaneously occurring
distinct activity patterns [12]. Missimer et al. compared two
data-driven methods of statistical image analysis, principal
component analysis (PCA) and ICA, in identifying neural
networks related to the transient occurrence of phosphenes
experienced by a patient subsequent to a brain infarct
[27].

ICA of fMRI time series reveals distinct coactivation
patterns in the resting brain representing spatially coherent
spontaneous fluctuations of the fMRI signal. Among these
patterns, the default-mode network has been attributed to
the ongoing mental activity of the brain during wakeful
resting state [28].

A data-driven approach is proposed in [9], which starts
with using ICA to decompose the spatiotemporal EEG data
into a linear combination of scalp potential maps and time
courses. The time course of each independent component is
used to construct a regressor to fit the fMRI time series. The
resultant fMRI map then feeds back as a spatial constraint
to the estimation of the source distribution underlying
the corresponding component map. The estimated source
distributions multiplied by the corresponding component
time courses are summed across all components, giving rise
to the reconstructed spatio-temporal activity [9].
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3.5. Spatial Pattern Analysis. Much current works in fMRI
employ multivariate machine-learning approaches (e.g., sup-
port vector machines, SVMs) to detect distributed spatial
patterns from the temporal fluctuations of the neural
signal. The aim is not classification, but investigation of
multivariate spatial patterns, which pattern classifiers detect
only indirectly [25]. These analyses demonstrate the utility
of the measure of heterogeneity as well as considerations
in its application. Measuring spatial heterogeneity in fMRI
may have potential uses for better characterising neuro-
logical conditions such as stroke and Alzheimer’s disease
[25].

By combination of simultaneous EEG-fMRI imaging
information and using multivariate machine-learning-based
regression, De Martino et al. find that it is possible to predict
EEG power oscillations from simultaneously acquired fMRI
data during an eyes-open/eyes-closed task using either the
original channels or the underlying cortically distributed
sources as the relevant EEG signal for the analysis of mul-
timodal data [10].

The cause of the detected brain activity relies on the
anatomy. Diffusion tensor MR imaging as a noninvasive
modality providing in vivo anatomical information allows
determining neural fiber connections which leads to brain
mapping. The main drawback of reliable fiber mapping is
the correct detection of the orientation of multiple fibers
within a single imaging voxel. Duru and Ozkan propose a
method based on linear data structures to define the fiber
paths regarding their diffusivity [29].

3.6. Statistical Analysis. Statistical methods are a valuable
tool for decoding information from neural imaging data
[30]. The noisy signal and the limited number of training
patterns that are typically recorded from fMRI pose a
challenge for the application of statistical learning methods
in data analysis. For a typical fMRI scan, the 3D volume of
the head is imaged every one or two seconds, producing a few
hundred to a few thousand complete images per scanning
session. Because of practical limitations of the scanner, small
motions on the part of the subject and the subject’s pulse and
respiration will affect the images. After reconstruction, the
scanning session consists of a series of 3D images. The most
common tasks to perform on these images are corrections
for motion and physiological effects. Outlier removal and
spatial and temporal filtering may be performed. A variety
of methods are used to correlate the voxel time series
with the task to produce maps of task-dependent activation
[3]. Multivariate statistical analysis is applied to compare
multivariate data and establish the quantitative changes and
differences between groups under investigation on their
characteristics. PCA displays the original variables in a space,
thus reducing the dimensionality of the data and allowing the
visualization of a large number of variables.

Kangjoo et al. propose a statistical analysis method
for fMRI to overcome the drawbacks of conventional
data-driven ICA. A compressed sensing-based data-driven
sparse GLM is proposed that enables estimation of spatially
adaptive design matrix as well as sparse signal components

that represent synchronous, functionally organized and inte-
grated neural hemodynamics. Furthermore, a minimum-
description-length (MDL-) based model order selection rule
is shown to be essential in selecting unknown sparsity
level for sparse dictionary learning. Lee et al. propose a
method that can adapt individual variation better than
the conventional ICA methods do [12]. In fact, statistical
parametric mapping is applied with a GLM expressed as

yi = Dxi + εi, i ∈ [1,N], (1)

where D denotes the regressors and xi denotes the corre-
sponding response signal strength at the ith voxel. In the
standard GLM model, the design matrix D is a predefined
matrix. In [12], the data-driven sparse GLM assumes D as
an unknown global dictionary, of which atom is assumed to
indicate a principally dominant neural response in a small set
of synchronous neural dynamics.

Danmei et al. propose using prior knowledge based on
the behavioral performance of human observers to enhance
the training of SVMs. They collect behavioral responses from
human observers performing a categorization task during
fMRI scanning and use the psychometric function generated
based on the observers behavioral choices as a distance
constraint for training an SVM. It is found that the behavior-
constrained SVM outperforms SVM consistently [30], where
the discrimination function is expressed as

f (x) = wx + b. (2)

Its parameters are optimized through minimizing a cost
function. In nonlinear cases, the solution is reformulated as

f (x) =
∑

i∈SV
ai yiK(xi, x) + b, (3)

where K(xi, x) is the kernel function.
The ultimate goal of fMRI data analysis is to detect

correlations between brain activation and the task the subject
performs during the scan. The BOLD signature of activation
is relatively weak, however, so other sources of noise in
the acquired data must be carefully controlled. A series of
processing steps must be performed on the acquired images
before the actual statistical search for task-related activation
can begin [3].

3.7. Correlation Analysis. The precise relationship between
neural signals and BOLD is an open problem. In general,
changes in BOLD signal are well correlated with changes in
blood flow. Numerous studies during the past decades have
identified a coupling between blood flow and metabolic rate,
that is, the blood supply is tightly regulated in space and time
to provide the nutrients for brain metabolism [3].

Murayama et al. explored the neurovascular relationship
during periods of spontaneous activity by using temporal
kernel canonical correlation analysis, which is a multivariate
method that can take into account any features in the signals
that univariate analysis cannot. The method detects filters
in voxel space and in frequency time space that maximize
the neurovascular correlation without any assumption of a
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hemodynamic response function. The results are consistent
with those of previous studies and represent the multi-
variate analysis of intracranial electrophysiology and high-
resolution fMRI [6].

To analyze EEG data in natural setting, Whittingstall et
al. developed an ICA-based method to reject EEG artifacts
due to blinks, subject movement, and so forth. They calculate
the EEG source strength of the artifact-free data at each time
point of the movie within the entire brain volume using low-
resolution electromagnetic tomography. This provided for
every voxel in the brain an estimate of the current density
at every time point. A correlation is carried out between the
time series of visual contrast changes with that of EEG voxels
[13].

While current data indicate that local field potentials,
an index of integrated electrical activity, form a marginally
better correlation with blood flow than the spiking action
potentials that are most directly associated with neural
communication [15], no simple measure of electrical activity
yet can provide an adequate correlation with metabolism and
the blood supply across a wide dynamic range. Presumably,
this reflects the complex nature of metabolic processes, which
form a superset with regards to electrical activity. An initial
small, negative dip before the main positive BOLD signal is
more highly localized and also correlates with measured local
decreases in tissue oxygen concentration. One problem with
this technique is that the early negative BOLD signal is small
and can only be seen using larger scanners with magnetic
fields of at least 3 Tesla. Further, the signal is much smaller
than the normal BOLD signal, making extraction of the
signal from noise very difficult. Also, this initial dip occurs
within 1-2 seconds of stimulus initiation, which may not be
captured when signals are recorded at long repetition [3]. An
event-related fMRI study was designed in [31] to dissociate
the neural correlates of two putative key functions, volitional
saccade generation and inhibition of reflexive saccades, and
to investigate their interaction.

3.8. Multimodal Combination. Multimodal imaging tech-
niques rely on the assumption of a common neuronal source
for different recorded signals. In order to maximally exploit
the combination of these techniques, we need to understand
the coupling between EEG and fMRI BOLD signals. Beyond
the correlation of the two measured brain signals, the ability
of predicting the signal in one modality using information
from the other modality is studied in [10]. Lin et al. report
a data-driven approach to image spatio-temporal features
of neural oscillatory activity and event-related activity from
continuously recorded EEG and fMRI signals [9]. Lanting
et al. studied multimodal integration of somatosensory jaw
protrusion and sound [17]. Having simultaneously recorded
EEG and fMRI data, the final hurdle is to coregister the two
datasets, as each is reconstructed using a different algorithm,
subject to different distortions [3].

By combining the neural and hemodynamic recordings
in multiple modalities, we can get better insight into how
and where the brain processes complex stimuli, which is
especially useful for dealing with different neural diseases.
However, due to different spatial and temporal resolutions,

the integration of EEG and fMRI recordings is not straight-
forward. One fundamental obstacle is that paradigms used
for EEG experiments are usually event related, while fMRI
is not limited in this regard. Furthermore, integration of
the EEG signal directly with the BOLD signal is useful, by
estimating the underlying IRF that relates the BOLD signal
to the underlying current density [13].

4. Discussion

The main advantages of fMRI to image brain activity related
to a specific action or sensory process include. (1) The signal
does not require injections of radioactive isotopes. (2) The
total scan time required can be very short, for example, in
1-2 minutes. (3) The in-plane resolution of the functional
image is generally about 1 × 1 mm2. To put these advantages
in perspective, functional images obtained by the earlier PET
method require injections of radioactive isotopes, multiple
acquisitions, and long imaging times. Further, the resolution
of PET images is much larger than that in usual fMRI
images. Additionally, PET usually requires that multiple
individual images are combined in order to obtain a reliable
signal. Consequently, information on a single patient is
compromised and limited to a finite number of imaging
sessions, and thus it is not optimally suitable to assist in a
neurosurgical or treatment plan for specific individuals [2].

Many difficulties still exist in the fMRI technology.
The images produced must be interpreted carefully, since
correlation does not imply causality, and brain processes are
complex and often nonlocalized. Statistical methods must be
carefully used because they can produce false positives. The
BOLD signal is an indirect measure of neural activity, which
is susceptible to be influenced by nonneural changes in the
body. It is difficult to interpret positive and negative BOLD
responses. BOLD signals are most associated with the input
to a given area rather than with the output. It is possible that a
BOLD signal exists in an area even without a concrete activity
there.

The BOLD response reaches to a peak in about 5 seconds
after neuronal firing begins and fMRI has poor temporal
resolution. It is, therefore, difficult to tell BOLD responses
with different events occurring in a short period, although
good experimental design can reduce this problem. Some
researchers attempt to combine fMRI signals that have
relatively high spatial resolution with signals recorded with
other techniques, for example, EEG or magnetoencephalog-
raphy (MEG), which have higher temporal resolution but
worse spatial resolution. fMRI has often been used to show
activation localized to specific regions, thus minimizing the
distributed nature of processing in neural networks. The
BOLD response can be affected by a variety of factors,
for example, drugs, substances, age, brain pathology, local
differences in neurovascular coupling, attention, amount of
carbon dioxide in the blood, and so forth. For these reasons,
functional imaging provides insights into neural processing
that are complementary to insights of other studies in
neurophysiology [3].

The aim of this paper is to introduce the most recent
work of fMRI and potential future applications, for example,
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neurosurgical planning and risk assessment, strategies for
the treatment of chronic pain, seizure localization, and
understanding of the physiology [2]. Although fMRI has
been developed in many years as a relatively mature approach
to estimation and diagnosis, problems still exist in its analysis
in biomedical engineering. Researchers are exerting efforts in
improving all simple and complex aspects.

5. Conclusion

Functional magnetic resonance imaging has been widely-
used for detection of the brain’s neural activity. This paper
summarizes the annual progress for biomedical applications.
Typical contributions are addressed for biological findings,
functional connectivity, vision and hearing research, emo-
tional research, neurosurgical planning, pain management,
and so forth. Representative contributions are listed to show
a general overview of new results in 2010-2011. Processing
technology for solving fMRI problems is summarized. Par-
ticularly, introduced models and strategies include general
linear model, nonlinear model, generative model, spatial
pattern analysis, statistical analysis, correlation analysis, and
multimodal combination.
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