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The development of DNA microarray makes researchers screen thousands of genes simultaneously and it also helps determine
high- and low-expression level genes in normal and disease tissues. Selecting relevant genes for cancer classification is an important
issue. Most of the gene selection methods use univariate ranking criteria and arbitrarily choose a threshold to choose genes.
However, the parameter setting may not be compatible to the selected classification algorithms. In this paper, we propose a
new gene selection method (SVM-t) based on the use of t-statistics embedded in support vector machine. We compared the
performance to two similar SVM-based methods: SVM recursive feature elimination (SVMRFE) and recursive support vector
machine (RSVM). The three methods were compared based on extensive simulation experiments and analyses of two published
microarray datasets. In the simulation experiments, we found that the proposed method is more robust in selecting informative
genes than SVMRFE and RSVM and capable to attain good classification performance when the variations of informative and
noninformative genes are different. In the analysis of two microarray datasets, the proposed method yields better performance in
identifying fewer genes with good prediction accuracy, compared to SVMRFE and RSVM.

1. Introduction

Feature selection is a critical issue for disease subtyping and
cancer classification. There are two goals when optimizing
classification procedures, attaining highest accuracy and
selecting smallest set of features. With the development of
microarray technology, experimenters can detect expression
profiles for more than ten thousands gene at a time. Classifi-
cation problem with such huge amount of genes lead to inef-
ficiency, inconsistency, and bias. There are many discussions
on reducing the features by univariate rankings of gene and
selecting the genes with highest rankings to build a classifier,
for example, t-statistics (Golub et al. [1], Furey et al. [2],
and Li et al. [3]) and F-score (Chen and Lin [4]) related
ranking methods. Feature selection is the most challenging
task in the pattern classification research especially for high-
dimensional data.

Depending on the classification algorithms, feature selec-
tion techniques can be classified into three main groups:
embedded, filter, and wrapper approaches. The filter meth-
ods rank features according to some criteria or indices of
relevance which are completely independent of the classifica-
tion algorithm such as P value. The filter approach is a stand-
alone prior step, regardless of which classification algorithm
will be used. Afterwards, the selected feature subset will be
applied to the classification algorithm. The effects of the
selected features on the performance of the algorithm are
not taken into account. Classical classification algorithms,
such as Fisher’s linear discriminant analysis and k-nearest
neighbour, often use the filter approach to select relevant
predictors prior to classification (Chen and Lin [4], Roep-
man et al. [5], Mark and Kung [6], Pavlidis et al. [7], and Yu
and Liu [8]). In the wrapper approach, the model selection
algorithms are wrapped in the search process of feature



2 Computational and Mathematical Methods in Medicine

subsets. This has the advantages that the feature selection
process can take into account feature dependencies while
building the classification model. However, these methods
have high computational complexity to repeatedly training
and testing predictors each time a new subset is defined. West
et al. [9] used binary regression coefficients as importance in
scoring genes to the contribution to the classification. Dı́az-
Uriarte and Alvarez de Andrés [10] proposed the use of Gini
index as variable importance to perform gene selection in the
classification algorithm of random forest. Sharma et al. [11]
proposed a wrapper-like feature selection method based on
null linear discriminant analysis (LDA) method. Embedded
methods are an integral part of feature selection techniques
and specific classification algorithms, for example, decision
trees or neural networks with regularization. In addition,
Sharma et al. [12] proposed a successive feature selection
algorithm to iteratively eliminate redundant features with
minimal information in terms of classification accuracy.
Their method combines filters and wrappers together to
search for the best top-r feature subset. A recent review
(Saeys et al. [13]) summarized many more feature selection
techniques and discussed their use for bioinformatics appli-
cations.

Over the recent years, support vector machine (SVM;
Cristianini and Shawe-Taylor [14]), a supervised machine
learning, is widely used in classification problem especially
with high-dimensional data such as microarray gene expres-
sion profile. SVM maps input data points to construct
maximal-marginal hyperplane in higher dimension space to
classify data with different class labels. The hyperplane is
constructed using only the support vectors (i.e., data that
lie on the margin). The general form of the hyperplane is
represented as

f (x) =
n∑

i=1

yiαiK(x, xi) + b, (1)

where the training set is of size n, xi is the input data of
sample i (i = 1, 2, . . . ,n), αi is the Lagrange multiplier solved
from the training set. yi ∈ (−1, 1) is the class label for sample
i,K(x, xi) is the kernel function, x is the variable vector of
a sample, and b can be viewed as intercept. The optimized
weight vector equals to

∑n
i=1 αi yiφ(xi), where αi is nonzero if

i belongs to support vector, otherwise αi equals to 0, and φ(·)
is a nonlinear mapping function from input space to feature
space.

Support vector machine has many applications and per-
forms very well on microarray related classification problems
(Furey et al. [2] and Brown et al. [15]). In addition, many
gene selection methods based on SVM have been proposed
previously. For example, Guyon et al. [16] proposed a sup-
port vector machine recursive feature elimination algorithm
(SVMRFE), which uses the coefficients of weight vector to
compute the feature ranking score. However, like the concept
of slope, the selected genes with higher coefficients of weight
means that they will have higher expression values compared
to nonselected genes. Hence, some noisy but high-expression
value genes have high possibility to be selected. On the
other hand, Zhang et al. [17] proposed the recursive SVM

feature selection (RSVM), which combines the weight and
data information (i.e., class mean) to formulate selection
criterion. Such method takes all data information into
consideration and the outlier data is also included. However,
such feature selection result is greatly affected by class
label assignment. There is no general rule for assigning the
positive and negative signs to the two classes. Hence, such
unstable criterion is difficult to use. Hence, we propose
a new feature selection criterion SVM-t based on the use
of t-statistics embedded in support vector machine. We
use the univariate ranking method on support vectors for
identifying significant genes and the backward elimination
procedure follows the workflow of RSVM with nested subsets
of feature. The aim of combining procedures is to identify
more significant genes among the nearest support vectors. In
this paper, we compare the performance of the three SVM-
based gene selection methods via extensive simulations and
real microarray data analyses.

2. Materials and Methods

2.1. SVMRFE. In general, all classification problems can
be generalized to two-class classification problem. If there
are more than two-classes, the simplest and widely used
approach is the multiple one-against-all scheme. Hence,
multiple class problems can be reduced to multiple simple
two-class problem. Consider a binary decision function with
linear kernel, the function in (1) can be represented as:

sgn
(
f (x)

) = sgn(wx + b) = sgn

⎛
⎝

n∑

i=1

yiαi〈xi · x〉 + b

⎞
⎠,

(2)

where w is weight vector of the classifier. The optimized
weight vector equals to

∑n
i=1 αi yixi, where αi is nonzero if i

belongs to support vector, otherwise αi equals to 0. Hence,
for support vector machine, the binary decision function is
determined by the linear combination of support vectors.
The class of new sample x can be easily determined by the
sign of f (x). For achieving the objective of better feature
selection, Guyon et al. [16] proposed SVMRFE method
to find important gene subset for cancer classification. To
evaluate the importance of features, SVMRFE uses w2

i as
ranking criterion. Features with the smallest ranking scores
are eliminated. This criterion can also be interpreted as
weighted sums of support vectors [17]. In addition, based
on SVMRFE, Duan et al. [18] used cross-validation method
to estimate multiple w2

i and take signal-to-noise ratio of the
multiple weight value as the ranking criterion. Hence, the
multiple weights SVMRFE is robust to small perturbations
for single experiment.

2.2. RSVM. To enhance the robustness to noise and outliers,
Zhang et al. [17] proposed recursive support vector machine
(i.e., RSVM). They developed a feature selection method to
construct the stepwise classification rules and reduce the gene
numbers at the same time. From (2), one can obtain the
weight of specific feature. Unlike SVMRFE, RSVM selects
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important features by the value of the product of weight and
corresponding feature:

wj

(
m+

j −m−
j

)
, (3)

where wj denotes weight of the jth feature, m+
j and m−

j stand
for the means of feature j in the respective classes. This
method takes both the classifier information (i.e., weight)
and the data (i.e., class mean of two classes) into consider-
ation.

With the ranking score calculated from (3), we can set
a threshold to filter out any features with score below it
in the next steps. Furthermore, the classification can be
performed with the selected features step by step. After a
series of iterations with smaller and smaller feature sets,
the best rule is constructed by a prespecified number of
features selected from the highest selected-frequency list.
Finally, the best rule and number of selected features can
be decided simultaneously. However, such feature selection
result is greatly affected by class label assignment. We found
that different assignments of class labelling (+ or −) will
result in different selected gene sets. Hence, such unstable
criterion is ambiguous to use.

2.3. Proposed SVM-t Method. Support vector machine uses
only the information of support vectors to construct the
maximal separation hyperplane and determine the classes for
new samples. The support vectors, the set of closest points
between two classes, play an important role in SVMRFE
and RSVM for feature selection. These two methods use
the weights of corresponding features to build the selection
criteria; instead, we combined the univariate ranking meth-
ods (i.e., absolute t-statistics) with support vector machine.
The proposed method uses the most important subset (i.e.,
SVs) of the data points to construct the selection criteria
(4). In other words, we use the algorithm of support vector
machine as a sampling technique for data points of two
classes simultaneously. The standard two-sample t-statistic
is used as a surrogate statistic to evaluate the significant dif-
ferences between two classes. Our proposed method is easy
to implement and keeping the computational complexity
comparable to that of SVMRFE and RSVM. Therefore, with
the variation of samples, we can identify the most significant
differences for specific genes among the closest points:

∣∣∣t j
∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

(
u+
j − u−j

)

√((
s+
j

)2
/n+

)
+
((

s−j
)2
/n−

)

∣∣∣∣∣∣∣∣∣∣

, (4)

where n+ (resp., n−) indicates the number of support vectors
for class +1 (resp., −1). We can calculate mean u+

j (resp.,
u−j ) and standard deviation s+

j (resp., s−j ) by using only the
support vectors of feature j-labelled class +1 (resp., −1) to
obtain the score of each feature. The features with highest
scores are the features with most significant difference
between the two classes. It is intuitive to select features with
the highest score as our feature set.

However, there are some exceptions according to such a
criterion. We further break down the selection criterion into
four situations as follows:

(a) the data set can be well separated by two SVs. Both
classes have only one SV. Equation (4) can thus be
reduced as the difference of particular feature of SVs;

(b) one class has only one SV, and the other class has
more than one SV, and (4) becomes a single mean t-
test statistics. Considering class −1 with only one SV,
(4) reduces to

∣∣∣t j
∣∣∣ =

∣∣∣∣∣∣∣∣

(
u+
j − u−j

)

√(
s+
j

)2
/n+

∣∣∣∣∣∣∣∣
; (5)

(c) similar to (b), class +1 has only one SV. The selection
criterion is

∣∣∣t j
∣∣∣ =

∣∣∣∣∣∣∣∣

(
u+
j − u−j

)

√(
s−j
)2
/n−

∣∣∣∣∣∣∣∣
; (6)

(d) finally, in the most general condition, we usually en-
counter classification problems with more than one
support vectors for each class. For practical use, this
condition is more complicated than previous ones,
and selection criterion in (4) shall be used.

We follow the workflow of feature selection suggested in
[17] as in Figure 1. First, a monotone decreasing sequence
{dk, . . . ,d0} for the number of selected features is specified
where k is the total number of runs. After executing the
selection criteria for each run, the number of input features
dk will be determined. Secondly, the cross-validation method
is adopted to carry out gene selection procedure and execute
the SVM procedures with di features. For the comparison
among the difference of selection methods, we apply these
three different criteria in this step. For each run, the features
with top di+1 ranking scores are selected until the sequence
ends. Finally, the gene set with minimal CV error is selected.
The set with fewest genes will be chosen when ties occur for
CV errors.

3. Results

3.1. Simulation Experiments. First, we evaluate performance
of the three methods using simulated data sets. Our simula-
tion data contains different means and standard deviations
for informative and noninformative genes. We first generate
a training set with 100 samples (50 samples for each class),
each containing expression values of 1000 genes where 300 of
them are informative genes and the rest 700 noninformative
genes. To validate the selected gene sets, we also generate
another 1000 independent samples (500 samples for each
class). We performed 100 simulations for each data set and
used “Leave-one-out” version CV method. The following
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Table 1: Comparison of selection methods on simulation data 1.

Num.
of genes

RSVM SVMRFE SVM-t

Test (%) Rec (%) nSV Test (%) Rec (%) nSV Test (%) Rec (%) nSV

800 1.06± 0.37 98.97± 0.51 96.42± 0.08 1.07± 0.37 98.37± 0.63 98.25± 0.04 0.97± 0.37 99.59± 0.37 95.36± 0.07

600 0.94± 0.36 93.76± 1.26 92.90± 0.12 0.99± 0.39 92.49± 1.44 97.26± 0.09 0.67± 0.29 98.52± 0.61 87.45± 0.45

500 0.92± 0.38 87.38± 1.70 90.62± 0.16 0.95± 0.38 85.95± 1.91 95.96± 0.13 0.44± 0.24 96.96± 0.87 81.14± 1.09

400 1.02± 0.42 77.00± 2.05 84.91± 0.21 1.01± 0.38 76.34± 2.20 90.52± 0.20 0.19± 0.15 93.48± 1.34 71.48± 1.06

300 1.26± 0.54 63.12± 2.06 76.51± 0.29 1.31± 0.60 62.99± 2.09 80.02± 0.30 0.04± 0.07 84.28± 1.47 60.63± 0.91

200 2.14± 0.92 67.68± 2.89 61.99± 0.37 2.07± 0.93 68.56± 2.83 63.93± 0.40 0.04± 0.6 94.89± 1.78 49.37± 0.99

150 2.88± 1.13 71.35± 3.83 56.73± 0.40 2.61± 1.25 72.76± 3.70 59.05± 0.37 0.10± 0.12 97.79± 1.49 43.67± 1.21

100 4.36± 1.93 74.62± 4.75 43.35± 0.32 3.75± 1.76 77.62± 4.61 44.48± 0.28 0.53± 0.28 99.14± 1.05 36.07± 0.75

90 4.58± 2.02 76.32± 4.73 45.30± 0.30 4.01± 1.91 79.34± 4.77 46.57± 0.31 0.79± 0.34 99.14± 1.00 34.64± 0.82

80 5.20± 2.21 77.29± 4.85 42.66± 0.31 4.21± 1.86 81.33± 4.80 43.66± 0.32 1.14± 0.44 99.41± 1.01 32.81± 0.69

70 5.64± 2.61 78.84± 5.28 39.27± 0.33 4.47± 1.90 83.10± 5.12 40.04± 0.27 1.66± 0.58 99.60± 0.86 30.81± 0.54

60 6.41± 2.56 80.37± 5.39 35.21± 0.26 5.02± 1.97 85.62± 5.14 35.82± 0.32 2.57± 0.72 99.65± 1.04 28.62± 0.36

50 7.43± 2.57 82.44± 5.85 30.89± 0.27 5.77± 2.09 88.06± 5.67 31.21± 0.25 3.91± 0.89 99.62± 0.93 26.32± 0.41

Num. of genes: number of selected features in each recursive step. Results of 1000 features are the same and we do not list them here.
Test: test error rate.
Rec: the percentage of recovery informative genes (among 300 informative genes).
nSV: the average number of support vectors selected in each recursive step.

Define a list of feature numbers in
decreasing order: d0, d1, . . ., dk

Resample sample set by

LOO, M-fold, or bootstrap

levels, record prediction errors at each level

Calculate error rate at each di level

Optimal feature number d∗: the minimal

level with minimal CV2 error rate

Selected top features:

the top d∗ highest-frequency features

Finish?
No

Yes

Recursive feature selection at d0–dk

Figure 1: Workflow of feature selection. Workflow of the SVM-t
algorithm.

two simulation cases use the same aforementioned scheme
with varying parameter setting.

Simulation Case I. In this simulation, we separate the
informative gene set into two parts. The first 150 genes
independently follow the Gaussian distribution N(0.15, 0.5)
for class 1 and N(−0.15, 0.5) for class 2. On the contrary, the
last 150 genes are independently distributed from the Gaus-
sian distribution N(−0.15, 0.5) for class 1 and N(0.15, 0.5)
for class 2. The rest 700 “noninformative” genes indepen-
dently follow N(0, 1) distribution. Table 1 summarizes the
simulation result with 100 runs using average and standard
deviation of the 100 runs with the percentage of informative
genes coverage and the number of support vectors (SVs).
With this parameter setting, the informative genes cannot
be easily differentiated due to the small mean difference.
However, taking the standard deviation into consideration,
we found that the proposed method shows better results than
RSVM and SVMRFE.

In addition, we increase the standard deviation for
informative genes to 1 so that the difference of variation
effect between informative and noninformative genes is
reduced. Table 2 shows that RSVM yields better average test
error rate and selects more informative genes than SVMRFE
and the proposed method. However, the proposed method
selected fewer support vectors in each recursive step.

Based on the previous setting, we further increase the
variance of noninformative genes. We set the standard
deviation of noninformative gene twice as large as that of
informative genes and follows N(0, 2) distribution. Table 3
shows that all three methods give worse test error rates than
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Table 2: Comparison of selection methods on simulation data 2.

Num.
of genes

RSVM SVMRFE SVM-t

Test (%) Rec (%) nSV Test (%) Rec (%) nSV Test (%) Rec (%) nSV

800 6.15± 0.84 91.24± 1.55 96.60± 0.09 6.06± 0.85 90.48± 1.40 98.01± 0.06 6.24± 0.82 91.59± 1.32 96.02± 0.14

600 6.44± 0.88 80.45± 2.26 94.58± 0.14 6.28± 0.86 78.86± 2.27 97.60± 0.09 6.72± 0.88 81.19± 1.97 91.29± 0.41

500 6.64± 0.93 73.63± 2.39 92.98± 0.15 6.51± 0.91 71.95± 2.26 97.15± 0.10 7.15± 0.97 74.24± 2.14 87.72± 0.99

400 7.23± 1.04 65.58± 2.39 89.59± 0.25 7.11± 1.03 63.74± 2.45 95.19± 0.21 7.91± 1.23 65.67± 2.48 81.56± 1.58

300 8.07± 1.01 55.53± 2.18 83.60± 0.36 8.05± 1.19 53.62± 2.23 88.72± 0.30 9.13± 1.50 55.35± 2.40 73.08± 1.79

200 10.05± 1.48 63.29± 3.17 71.21± 0.51 10.32± 1.51 61.08± 3.11 74.08± 0.51 11.90± 1.59 62.46± 2.85 61.41± 1.52

150 11.80± 1.82 67.97± 3.52 65.14± 0.45 12.16± 1.83 65.53± 3.87 69.57± 0.45 14.16± 1.68 67.13± 3.29 54.77± 1.21

100 14.81± 1.92 74.24± 4.15 50.51± 0.40 15.37± 1.94 71.13± 4.12 52.82± 0.49 18.09± 2.04 72.74± 3.56 45.75± 0.50

90 15.70± 1.76 75.37± 4.17 52.23± 0.40 16.24± 1.93 72.36± 4.58 54.89± 0.43 19.28± 2.37 74.02± 3.98 43.81± 0.40

80 16.70± 1.87 76.80± 4.14 49.25± 0.46 17.34± 1.88 74.05± 4.72 51.68± 0.40 20.51± 2.26 75.19± 4.47 41.50± 0.39

70 17.94± 1.86 78.27± 4.40 45.24± 0.43 18.61± 1.85 75.73± 4.34 47.22± 0.38 22.13± 2.35 76.69± 4.50 39.12± 0.47

60 19.28± 1.87 80.15± 4.85 40.49± 0.41 19.91± 2.12 77.18± 4.83 42.17± 0.41 23.91± 2.36 77.63± 5.03 36.59± 0.66

50 21.21± 1.87 82.22± 4.79 35.40± 0.37 21.55± 1.94 79.06± 4.94 36.58± 0.36 25.83± 2.66 79.90± 5.59 33.86± 0.64

Num. of genes, Test, Rec, and nSV: the same as Table 1.

Table 3: Comparison of selection methods on simulation data 3.

Num.
of genes

RSVM SVMRFE SVM-t

Test (%) Rec (%) nSV Test (%) Rec (%) nSV Test (%) Rec (%) nSV

800 26.39± 1.65 86.52± 1.60 97.68± 0.04 26.66± 1.76 84.41± 1.75 98.63± 0.03 26.13± 1.65 91.56± 1.38 97.07± 0.05

600 27.36± 1.64 67.53± 2.06 96.16± 0.1 27.99± 1.70 65.72± 2.26 98.41± 0.04 25.46± 1.74 81.20± 2.09 91.60± 0.29

500 28.63± 1.72 56.83± 2.18 95.08± 0.11 29.12± 1.67 55.57± 2.27 98.17± 0.05 25.05± 1.70 74.70± 2.08 87.77± 1.05

400 30.42± 1.91 44.77± 2.40 92.24± 0.16 30.76± 1.95 44.57± 2.34 96.53± 0.10 24.31± 2.17 66.70± 2.15 80.84± 1.18

300 32.98± 1.98 32.58± 2.30 87.17± 0.20 33.05± 2.21 32.90± 2.41 90.65± 0.25 23.30± 2.29 56.71± 2.19 71.85± 1.17

200 36.59± 2.21 30.20± 3.00 74.61± 0.30 36.49± 2.08 31.66± 2.84 76.09± 0.31 22.26± 2.53 65.50± 2.95 60.63± 0.66

150 38.31± 2.04 29.55± 3.65 68.60± 0.33 38.09± 2.22 31.37± 3.61 71.66± 0.35 21.60± 2.93 71.07± 3.79 54.36± 0.48

100 40.85± 2.20 27.15± 4.50 53.31± 0.33 40.37± 2.45 30.40± 4.40 54.78± 0.33 21.53± 3.19 77.63± 4.91 46.03± 0.49

90 41.27± 2.19 27.43± 4.76 54.61± 0.30 40.63± 2.52 30.49± 5.09 56.22± 0.30 21.90± 3.37 78.89± 5.06 44.07± 0.54

80 41.62± 1.96 27.61± 4.88 51.27± 0.30 40.61± 2.39 31.05± 5.44 52.55± 0.30 22.44± 3.51 80.35± 5.32 41.95± 0.56

70 41.99± 2.40 27.56± 5.29 47.08± 0.28 41.17± 2.61 31.47± 5.84 48.03± 0.32 22.90± 3.41 81.69± 5.40 39.66± 0.64

60 42.51± 2.16 26.98± 5.34 42.10± 0.27 41.56± 2.56 31.90± 6.17 42.73± 0.27 24.18± 3.12 83.02± 5.41 36.98± 0.63

50 42.99± 2.56 26.84± 6.27 36.77± 0.27 41.53± 2.71 32.52± 6.59 37.05± 0.27 25.56± 3.30 84.58± 6.10 34.18± 0.66

Num. of genes, Test, Rec, and nSV: the same as Table 1.
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Figure 2: Stability of feature selection for switching class labels. Grey vertical and solid black lines represent frequencies of selected features
for different class labels. The first 150 genes and the last 150 genes are discriminative genes.
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Table 4: Comparison of selection methods on simulation data 4.

Num.
of genes

RSVM SVMRFE SVM-t

Test (%) Rec (%) nSV Test (%) Rec (%) nSV Test (%) Rec (%) nSV

800 0.00± 0.00 100.00 93.82± 0.09 0.00± 0.00 100.00 96.88± 0.06 0.00± 0.00 100.00 92.54± 0.10

600 0.00± 0.00 99.95± 0.13 88.22± 0.15 0.00± 0.00 99.88± 0.19 94.37± 0.13 0.00± 0.00 100.00 82.03± 0.77

500 0.00± 0.00 99.68± 0.32 82.72± 0.20 0.00± 0.00 99.39± 0.45 90.14± 0.17 0.00± 0.00 99.99± 0.06 73.90± 1.23

400 0.00± 0.00 98.02± 0.77 70.36± 0.24 0.00± 0.00 96.80± 1.01 77.60± 0.28 0.00± 0.00 99.94± 0.14 61.64± 0.83

300 0.00± 0.00 87.36± 1.37 57.45± 0.32 0.00± 0.00 85.18± 1.43 63.84± 0.39 0.00± 0.00 97.26± 0.76 46.16± 0.33

200 0.00± 0.00 94.49± 1.63 46.07± 0.31 0.00± 0.00 93.15± 1.58 48.56± 0.32 0.00± 0.00 99.94± 0.18 37.89± 1.60

150 0.00± 0.00 96.91± 1.61 42.99± 0.33 0.00± 0.00 96.60± 1.80 45.50± 0.35 0.00± 0.00 99.96± 0.16 33.85± 2.04

100 0.00± 0.00 98.66± 1.28 33.32± 0.29 0.00± 0.00 98.72± 1.36 34.71± 0.32 0.00± 0.00 99.89± 0.35 27.87± 1.13

90 0.00± 0.00 99.03± 1.09 36.60± 0.31 0.00± 0.00 98.92± 1.31 38.08± 0.35 0.00± 0.00 99.88± 0.44 26.93± 1.30

80 0.00± 0.00 99.33± 1.07 34.94± 0.28 0.00± 0.00 99.35± 0.98 36.35± 0.29 0.00± 0.00 99.90± 0.34 25.55± 1.13

70 0.01± 0.02 99.43± 0.97 32.49± 0.29 0.01± 0.02 99.60± 0.86 33.62± 0.33 0.01± 0.03 99.90± 0.42 23.97± 0.95

60 0.01± 0.04 99.55± 0.88 29.40± 0.27 0.02± 0.04 99.53± 0.92 30.31± 0.32 0.03± 0.06 99.88± 0.43 22.30± 0.67

50 0.03± 0.07 99.76± 0.71 25.91± 0.26 0.04± 0.07 99.78± 0.69 26.65± 0.29 0.09± 0.1 99.84± 0.55 20.47± 0.48

Num. of genes, Test, Rec, and nSV: the same as Table 1.

Table 5: Comparison of selection methods on simulation data 5.

Num.
of genes

RSVM SVMRFE SVM-t

Test (%) Rec (%) nSV Test (%) Rec (%) nSV Test (%) Rec (%) nSV

800 0.05± 0.07 98.09± 0.78 92.07± 0.08 0.05± 0.07 97.26± 0.90 95.12± 0.07 0.05± 0.07 98.44± 0.70 91.05± 0.11

600 0.06± 0.08 94.89± 1.14 88.21± 0.13 0.04± 0.06 93.00± 1.37 93.74± 0.10 0.05± 0.07 95.35± 1.09 83.85± 0.72

500 0.06± 0.08 91.47± 1.39 85.42± 0.15 0.05± 0.07 88.91± 1.76 92.29± 0.12 0.06± 0.08 92.08± 1.58 79.30± 1.23

400 0.06± 0.08 86.07± 1.81 80.50± 0.17 0.06± 0.08 82.49± 2.00 88.29± 0.17 0.08± 0.09 85.86± 1.90 72.49± 1.66

300 0.07± 0.08 75.82± 2.03 73.51± 0.24 0.08± 0.10 71.78± 2.15 80.72± 0.28 0.11± 0.11 75.15± 2.00 63.95± 1.81

200 0.17± 0.13 87.61± 2.00 61.22± 0.29 0.21± 0.16 82.71± 2.30 65.46± 0.33 0.30± 0.24 85.78± 2.35 53.12± 1.72

150 0.34± 0.21 92.33± 2.23 56.24± 0.30 0.40± 0.20 88.59± 2.51 60.89± 0.31 0.69± 0.37 90.68± 2.67 47.09± 1.60

100 1.17± 0.44 96.48± 1.99 43.75± 0.32 1.28± 0.38 93.68± 2.59 46.26± 0.35 2.15± 0.65 94.29± 2.63 38.94± 0.68

90 1.45± 0.47 97.01± 2.11 46.10± 0.26 1.63± 0.49 94.88± 2.49 48.90± 0.34 2.74± 0.74 95.09± 2.71 37.32± 0.63

80 1.90± 0.59 97.83± 1.97 43.71± 0.32 2.08± 0.56 95.70± 2.49 46.21± 0.31 3.52± 0.88 95.88± 2.92 35.30± 0.45

70 2.51± 0.65 98.26± 1.88 40.37± 0.30 2.79± 0.67 96.49± 2.66 42.40± 0.32 4.60± 1.06 96.74± 2.50 33.16± 0.32

60 3.52± 0.71 98.82± 1.54 36.36± 0.31 3.72± 0.82 97.33± 2.48 37.93± 0.30 5.92± 1.25 97.52± 2.59 30.80± 0.39

50 4.94± 0.87 99.10± 1.46 31.99± 0.26 5.00± 0.89 98.32± 2.00 33.11± 0.29 7.93± 1.43 97.88± 2.46 28.32± 0.45

Num. of genes, Test, Rec, and nSV: the same as Table 1.

before because of the more complex nature of the simulation
scheme. The coverage percentages of informative genes by
RSVM and SVMRFE decrease with the decreasing gene
levels, but the proposed method maintains high coverage
percentages of informative genes. Besides, the test error rate
of proposed method stays at around 25% which is lower than
the error rates of RSVM and SVMRFE.

Simulation Case II. Here, we increase the mean values of the
informative genes from 0.15 to 0.25 and keep the distribution
of the 700 “noninformative” at N(0, 1). In Table 4, we find

that this simulated data is well separated with the higher
difference between the two classes. The test error rate and
percentage of selected informative genes are comparable
among the three methods. The prediction results are almost
perfect (i.e., test errors are nearly zero) for all conditions in
this simulation. The proposed method utilizes fewer support
vectors than the other two methods though.

We further set standard deviation of noninformative to
1 to eliminate the variation effect between informative and
noninformative genes. The result in Table 5 is very similar
to that of Table 2 with lower test error rates for the three
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Table 6: Comparison of selection methods on simulation data 6.

Num.
of genes

RSVM SVMRFE SVM-t

Test (%) Rec (%) nSV Test (%) Rec (%) nSV Test (%) Rec (%) nSV

800 4.96± 0.90 96.92± 0.90 96.88± 0.07 5.02± 0.91 95.78± 1.07 98.43± 0.04 4.72± 0.86 98.63± 0.64 95.99± 0.07

600 4.91± 0.96 87.79± 1.62 94.16± 0.11 5.09± 1.03 86.10± 1.66 97.77± 0.07 3.86± 0.83 95.76± 1.11 88.66± 0.44

500 5.30± 1.05 79.05± 1.97 92.60± 0.13 5.46± 1.15 77.77± 2.11 97.07± 0.11 3.06± 0.75 92.73± 1.29 83.23± 1.19

400 5.88± 1.28 67.74± 2.33 88.34± 0.21 6.10± 1.31 67.05± 2.56 93.20± 0.20 2.09± 0.72 87.26± 1.66 74.71± 1.06

300 7.34± 1.64 64.62± 2.63 81.00± 0.29 7.44± 1.62 64.78± 2.97 83.88± 0.27 1.22± 0.53 92.60± 2.10 64.77± 1.00

200 9.99± 1.98 56.40± 2.97 66.42± 0.36 9.85± 2.05 57.43± 2.98 68.16± 0.35 0.85± 0.46 88.83± 1.94 53.17± 0.80

150 11.91± 2.41 58.77± 3.58 60.70± 0.37 11.40± 2.24 60.39± 3.62 63.23± 0.38 1.00± 0.51 93.74± 2.25 46.96± 0.83

100 14.84± 2.91 60.30± 4.22 46.77± 0.30 13.49± 2.82 64.10± 4.28 47.76± 0.35 2.19± 0.78 96.98± 2.36 39.08± 0.48

90 15.62± 3.17 61.60± 4.68 48.39± 0.29 13.62± 2.90 65.53± 4.86 49.56± 0.30 2.67± 0.95 97.36± 2.11 37.39± 0.58

80 15.85± 3.37 63.10± 5.30 45.47± 0.33 14.23± 3.15 67.33± 5.37 46.45± 0.33 3.43± 0.90 97.93± 2.02 35.39± 0.41

70 16.70± 3.62 64.47± 5.78 41.75± 0.31 14.67± 3.46 69.53± 5.70 42.48± 0.31 4.30± 1.03 98.19± 1.90 33.25± 0.36

60 17.56± 3.88 65.48± 6.38 37.47± 0.29 15.25± 3.55 71.52± 5.99 37.87± 0.28 5.69± 1.29 98.65± 1.75 30.95± 0.38

50 18.80± 4.01 66.70± 6.91 32.81± 0.28 15.78± 3.54 74.04± 6.63 33.03± 0.29 7.42± 1.32 99.10± 1.67 28.44± 0.41

Num. of genes, Test, Rec, and nSV: the same as Table 1.

methods. With decreasing gene number, RSVM gives better
average test error rate than SVMRFE and proposed method.
The percent of selected informative genes are comparable
among the three methods which may due to the higher dif-
ference of informative genes between two classes. In addition,
our proposed method also selected fewer support vectors.

Finally, we set the standard deviation of noninformative
gene twice as large as that of informative genes with distribu-
tion N(0, 2). The three methods all yield higher test error rate
than previous settings but the proposed method performs
better than RSVM and SVMRFE with significant margins for
such complex simulation data.

Stability of Feature Selection. To investigate the stability of
feature selection, we perform 200 times of simulation case
I with switched class labels. The frequency plot of selected
features in Figure 2 shows that different class labels in RSVM
will result in selecting the different sets of features, while our
proposed method does not alter the frequencies of selected
features by switching the class labels. In addition, the RSVM
tends to select noninformative genes much more frequently
than our approach. Figure 3 plots the Jaccard’s coefficient
of RSVM to comparing the similarity of feature selections
between two switched class labels over 200 simulations.
We observe that the class labelling in RSVM is crucial
for achieving better agreement of feature selection. The
low Jaccard’s coefficient reveals that there is heterogeneity
between two different class labels for some simulations. In
contrast to the RSVM, our proposed method is independent
of the class labels and appears to be better than RSVM for
selecting a small number of discriminative genes.

3.2. Application on the Human Breast Cancer Data. We next
evaluated performance of the three methods by using two
microarray datasets. The first dataset is from Affymetrix
DNA microarray analysis of a series of primary breast cancer
samples [9]. This data contains gene expression profiles of
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Figure 3: Jaccard’s coefficients over 200 simulations for RSVM.

7129 detected probe sets for 49 samples (24 ER positive and
25 negative patients). Preprocessings including background
correction, normalization, PM correction and expression
summary were conducted, and the gene expression levels
were log2-transformed. All 7129 genes were included in the
gene selection process. The minimal gene number is set at
5 with decreasing ration 0.85 for generating the decreasing
gene selection sequence (Table 6).

Table 7 shows that RSVM selects fewer discriminant
genes than SVMRFE and the proposed method. However,
in earlier recursive steps, the proposed method attains the
minimal CV error rate (2.04%). Proposed method may select
more significant genes than SVMRFE and RSVM in the first
few iterations. Taking also gene number into consideration
we may choose 10 genes with CV error rate (8.16%) as our
solution. SVMRFE can also attain CV error rate (8.16%)
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Table 7: The CV results on the breast cancer dataset.

Num. of genes
RSVM SVM-RFE SVM-t

CV2 Mean SV CV2 Mean SV CV2 Mean SV

7129 8.16% 47.02 8.16% 47.02 8.16% 47.02

6060 8.16% 45.94 8.16% 47.02 6.12% 46.88

5151 8.16% 45.31 8.16% 47.02 6.12% 44.88

4378 8.16% 44.55 8.16% 47.02 6.12% 42.84

3721 8.16% 43.20 8.16% 47.00 6.12% 39.55

3163 8.16% 41.98 8.16% 47.00 4.08% 37.41

2689 8.16% 40.92 8.16% 46.84 2.04% 35.67

2286 10.20% 39.63 10.20% 46.78 2.04% 35.18

1943 10.20% 38.41 12.24% 46.61 4.08% 34.31

1652 10.20% 37.47 12.24% 46.06 4.08% 32.43

1404 10.20% 36.41 12.24% 45.39 4.08% 32.31

1193 12.24% 35.31 12.24% 44.80 6.12% 30.90

1014 12.24% 34.12 12.24% 44.39 6.12% 30.24

862 12.24% 33.04 12.24% 43.14 6.12% 29.76

733 12.24% 32.10 12.24% 42.27 4.08% 29.02

623 12.24% 30.84 10.20% 41.31 6.12% 27.10

530 12.24% 30.10 12.24% 40.96 6.12% 26.16

450 12.24% 29.29 12.24% 39.49 6.12% 24.35

382 12.24% 29.00 10.20% 38.04 8.16% 23.37

325 10.20% 28.78 12.24% 37.49 8.16% 22.33

276 10.20% 28.14 10.20% 36.59 6.12% 20.78

235 12.24% 27.55 12.24% 35.27 6.12% 19.94

200 10.20% 26.67 12.24% 34.14 8.16% 19.24

170 10.20% 25.98 10.20% 33.53 8.16% 18.14

144 14.29% 25.12 12.24% 31.67 10.20% 17.94

122 14.29% 23.84 12.24% 30.67 12.24% 17.63

104 12.24% 22.12 12.24% 29.65 12.24% 17.53

88 10.20% 21.02 14.29% 27.67 14.29% 16.76

75 10.20% 20.39 14.29% 25.92 12.24% 16.78

64 12.24% 19.39 8.16% 24.61 14.29% 16.43

54 12.24% 18.37 8.16% 22.14 18.37% 16.33

46 10.20% 18.10 8.16% 21.57 20.41% 15.57

39 14.29% 16.61 10.20% 19.24 16.33% 15.57

33 14.29% 15.55 10.20% 16.86 16.33% 15.04

28 16.33% 13.98 10.20% 15.96 16.33% 14.31

24 16.33% 13.04 10.20% 15.02 18.37% 13.69

20 12.24% 12.02 8.16% 12.78 22.45% 13.39

17 10.20% 11.20 14.29% 11.65 22.45% 12.76

14 8.16% 10.29 12.24% 10.59 12.24% 12.43

12 6.12% 9.16 14.29% 9.73 14.29% 12.04

10 4.08% 8.35 14.29% 8.69 8.16% 12.16

8 6.12% 7.29 16.33% 7.51 10.20% 12.22

7 6.12% 7.22 16.33% 6.86 16.33% 12.86

6 8.16% 6.29 16.33% 6.20 12.24% 13.43

5 4.08% 5.98 18.37% 6.20 12.24% 13.63

Num. of genes: the number of selected genes in the recursive steps. CV2: total cross-validation error rate (CV2 error rate). Mean SV: mean number of support
vectors used in the cross-validation at each level.
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Table 8: Selected biomarkers on the breast cancer dataset.

Probe Id Rank Gene title Gene symbol t-statistics P value

X03635 at 1 Estrogen receptor 1 ESR1 9.509 4.08E−09

U79293 at 2 Thrombospondin, type I, domain containing 4 THSD4 8.198 2.21E−07

U39840 at 3 Forkhead box A1 FOXA1 7.149 4.78E−06

X17059 s at 5 N-acetyltransferase 1 (arylamine N-acetyltransferase) NAT1 7.175 4.78E−06

L08044 s at 10 Trefoil factor 3 (intestinal) TFF3 6.328 4.14E−05

X83425 at 12 Basal cell adhesion molecule (Lutheran blood group) BCAM 6.028 1.08E−04

M59815 at 14 Complement component 4A (Rodgers blood group) /// complement
Component 4B (Childo blood group)

C4A /// C4B 5.927 1.27E−04

X76180 at 17 Sodium channel, nonvoltage-gated 1 alpha SCNN1A 5.796 1.69E−04

X53002 s at 63 Integrin, beta 5 ITGB5 4.639 2.71E−03

U52522 at 70 ADP-ribosylation factor interacting protein 2 (arfaptin 2) ARFIP2 4.533 3.51E−03

Rank: gene-ranking is computed using P values.

with 20 selected genes and RSVM can attain minimal error
rate (4.08%) with 5 genes. For gene number fewer than 20,
proposed method has higher number of support vectors than
SVMRFE and RSVM, and these two methods have almost
identical number of support vectors. Table 8 shows that
proposed method selected 10 genes with P value < 0.0004.

3.3. Application on the Lung Cancer Data. The second dataset
is a lung cancer dataset used in CAMDA 2003 [19]. Gene
expression profiles of 7129 genes for 86 lung cancer patients
(67 stage I and 19 stage III tumors) are available for analysis.
Similar preprocessing and parameter setting to the breast
cancer analysis are adopted.

Error rates shown in Table 9 tell us that this lung cancer
data is more difficult than the breast cancer data for pre-
dicting the disease subtypes. SVM-RFE and RSVM can only
reach error rate at above 20%, while the proposed method
attains CV error rate below 10% at several feature levels.
Table 10 shows the selected genes by the proposed method,
and most of them have P values less than 0.05.

4. Discussion

The proposed SVM-t method is a multivariate feature selec-
tion approach in which sample heterogeneity is accommo-
dated during a sequential backward elimination process. The
method could benefit from the use of support vectors on
the hyperplane of SVM and select a group of informative
genes with aids in improving classification performance.
The use of support vectors for feature selection is intuitive
because they play an important role for building the decision
function in SVM. For the linear SVM, the feature dimensions
corresponding to the support vectors are also critical for
classification by the property of linearity. Therefore, we
consider trimmed t-statistics which compare group mean
values after removing the nonsupport vectors and show that

these have higher power to identify relevant features than the
other two SVM-based approaches in case of high noise.

The result for simulation studies show that all three
feature selection methods of SVMRFE, RSVM, and the pro-
posed method have good performance when the distribution
of differentially expressed genes is much different from noise
genes. The influences could be attributed to two sources:
the magnitude of difference and variance of gene expression
levels between two classes. When fixing the magnitude of
difference, the result is greatly affected by the variance. With
identical variance of informative and noninformative genes,
RSVM performs better result since it gives more weights to
informative genes (i.e., genes with higher difference between
the two classes become more important in this case). On the
other hand, when considering distinct variances of informa-
tive and noninformative genes, the proposed method outper-
forms RSVM and SVMRFE. Moreover, the proposed method
is able not only to select more informative genes with lower
test error rate than RSVM and SVMRFE but also to accom-
modate heterogeneity within the complex clinical samples.

In applications, we use two published microarray da-
tasets to evaluate the performance of the three methods
via leave-one-out cross-validated accuracy. We can find that
proposed method can consistently select a smaller subset
of informative genes with good prediction accuracy. Both
the proposed method and RSVM outperform SVMRFE for
applications on the two datasets.

All SVM-based feature selection methods under compar-
isons select features based on the support vectors in the linear
SVM. Ideally, SVMs can use a proper kernel function to map
the data into a separating hyperplane in the feature space
when the data points are not linearly separable. However, the
corresponding property between support vectors and feature
dimensions in the nonlinear SVM is far from being clear and
some further work is required in order to fully understand
this issue. In addition, it is well known that applying proper
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Table 9: The CV results on the lung cancer dataset.

Num. of genes
RSVM SVM-RFE SVM-t

CV2 Mean SV CV2 Mean SV CV2 Mean SV

7129 22.09% 51.34 22.09% 51.34 22.09% 51.34

6060 20.93% 46.78 22.09% 51.35 20.93% 50.85

5151 20.93% 45.07 22.09% 51.40 19.77% 50.20

4378 20.93% 44.24 22.09% 51.42 18.60% 49.24

3721 20.93% 43.99 22.09% 51.35 15.12% 48.22

3163 20.93% 43.53 22.09% 51.34 15.12% 47.60

2689 20.93% 43.38 22.09% 51.36 15.12% 47.38

2286 20.93% 43.12 20.93% 51.86 15.12% 46.71

1943 22.09% 43.17 20.93% 52.79 12.79% 46.05

1652 22.09% 43.26 20.93% 52.51 12.79% 45.10

1404 22.09% 43.12 20.93% 51.84 13.95% 43.78

1193 22.09% 42.87 20.93% 52.33 10.47% 42.60

1014 22.09% 42.86 20.93% 51.15 8.14% 41.84

862 22.09% 42.24 22.09% 51.64 8.14% 41.50

733 22.09% 41.47 22.09% 52.21 9.30% 41.03

623 22.09% 41.55 23.26% 51.72 12.79% 40.07

530 22.09% 40.85 23.26% 51.28 11.63% 39.71

450 22.09% 40.40 23.26% 50.59 10.47% 39.20

382 22.09% 39.08 23.26% 50.70 9.30% 38.34

325 22.09% 38.62 23.26% 50.77 11.63% 37.43

276 22.09% 38.52 24.42% 49.21 9.30% 36.62

235 22.09% 38.71 24.42% 48.27 11.63% 36.06

200 22.09% 37.28 24.42% 47.67 12.79% 35.59

170 22.09% 36.33 24.42% 45.84 12.79% 35.13

144 22.09% 36.19 23.26% 44.64 15.12% 33.88

122 24.42% 35.43 24.42% 42.81 15.12% 33.48

104 24.42% 34.30 24.42% 40.87 15.12% 32.59

88 24.42% 32.87 29.07% 39.02 16.28% 31.99

75 24.42% 31.28 26.74% 36.56 17.44% 31.92

64 26.74% 29.84 25.58% 34.08 16.28% 31.80

54 26.74% 27.41 25.58% 30.07 17.44% 31.97

46 26.74% 25.94 26.74% 27.50 15.12% 31.90

39 25.58% 24.42 25.58% 25.10 12.79% 32.30

33 23.26% 22.53 29.07% 23.09 11.63% 32.66

28 20.93% 20.42 26.74% 19.87 15.12% 32.97

24 20.93% 18.86 24.42% 19.31 13.95% 33.16

20 23.26% 16.94 25.58% 16.59 16.28% 33.51

17 23.26% 15.83 24.42% 15.71 16.28% 33.58

14 22.09% 16.42 23.26% 16.15 17.44% 34.08

12 24.42% 17.72 26.74% 17.03 16.28% 34.55

10 25.58% 19.76 26.74% 19.95 13.95% 35.15

8 24.42% 22.45 29.07% 22.60 15.12% 36.01

7 24.42% 23.64 27.91% 24.16 16.28% 36.44

6 29.07% 25.35 27.91% 25.97 17.44% 36.87

5 27.91% 27.86 30.23% 28.73 18.60% 37.50

Num. of genes: the number of selected genes in the recursive steps. CV2: total cross-validation error rate (CV2 error rate). Mean SV: mean number of support
vectors used in the cross-validation at each level.
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Table 10: Selected biomarkers on the lung cancer dataset.

Marker Rank Gene title Gene symbol t-statistics P value

D13705 s at 1 Cytochrome P450, family 4, subfamily A, polypeptide 11 CYP4A11 5.743 9.52E−04

HG1103-HT1103 at 2 — — −5.434 1.77E−03

X07618 s at 5 Cytochrome P450, family 2, subfamily D, polypeptide 6 CYP2D6 4.785 9.89E−03

Z71460 at 9 ATPase, H+ transporting, lysosomal V0 subunit a1 ATP6V0A1 4.644 0.0124

AFFX-HUMGAPDH/M33197 M at 10 Glyceraldehyde-3-phosphate dehydrogenase GAPDH −4.496 0.0131

M37583 at 13 H2A histone family, member Z H2AFZ −4.445 0.0132

AFFX-HUMGAPDH/M33197 5 at 19 Glyceraldehyde-3-phosphate dehydrogenase GAPDH −4.161 0.0153

AFFX-HUMRGE/M10098 3 at 20 — — 4.098 0.0153

D13748 at 22 Eukaryotic translation initiation factor 4A, isoform 1 EIF4A1 −4.245 0.0153

HG2279-HT2375 at 23 — — −4.099 0.0153

L14922 at 26 Replication factor C (activator 1) 1, 145 kDa RFC1 −4.138 0.0153

U37143 at 35 Cytochrome P450, family 2, subfamily J, polypeptide 2 CYP2J2 4.245 0.0153

HG1153-HT1153 at 48 — — −4.031 0.0157

HG651-HT5209 s at 49 — — 3.995 0.0157

X01677 f at 60 Glyceraldehyde-3-phosphate dehydrogenase GAPDH −4.008 0.0157

U25433 at 65 CATR tumorigenicity conversion 1 CATR1 3.971 0.0161

U38864 at 70 Zinc finger protein 212 ZNF212 3.941 0.0166

X77584 at 100 Thioredoxin TXN −3.807 0.0186

AFFX-HUMGAPDH/M33197 3 at 101 Glyceraldehyde-3-phosphate dehydrogenase GAPDH −3.774 0.0191

L34060 at 103 Cadherin 8, type 2 CDH8 3.789 0.0191

U96769 rna1 at 108 Chondroadherin CHAD 3.782 0.0191

HG2855-HT2995 at 122 — — −3.714 0.0205

U66617 at 128 SWI/SNF related, matrix associated, actin dependent
regulator of chromatin, subfamily d, member 1

SMARCD1 3.706 0.0205

U77970 at 191 Neuronal PAS domain protein 2 NPAS2 3.544 0.0237

L25085 at 195 Sec61 beta subunit SEC61B −3.535 0.024

D45248 at 243 Proteasome (prosome, macropain) activator subunit 2
(PA28 beta)

PSME2 −3.407 0.0285

U55764 at 273 Sulfotransferase family 1E, estrogen-preferring, member
1

SULT1E1 3.359 0.0303

J03258 at 295 Vitamin D (1,25-dihydroxyvitamin D3) receptor VDR −3.314 0.0316

L19067 at 430
v-rel reticuloendotheliosis viral oncogene homolog A,
nuclear factor of kappa light polypeptide gene enhancer
in B-cells 3, p65 (avian)

RELA −3.106 0.0424

D38583 at 433 S100 calcium binding protein A11 S100A11 −3.098 0.0431

HG2815-HT2931 at 475 — — −3.039 0.0469

U20350 at 610 Chemokine (C-X3-C motif) receptor 1 CX3CR1 2.891 0.0567

U08815 at 772 Splicing factor 3a, subunit 3, 60 kDa SF3A3 2.743 0.0683

Rank: gene-ranking is computed using P values.

kernel functions and parameters to a specific real database
remains challenging, and the number of support vectors that
compose the decision function increases dramatically when
the decision manifold becomes complicated. Therefore, our
approach is limited to the use of linear SVM here and
considers it as an alternative approximation to the real
dataset. However, if the objective is to select relevant features
for better classification performance, rather than to provide
insights into relative importance of features in the feature

space, then our approach provides an alternative solution.
Further work will be focused on the impact of our trimmed
t-statistics on the use of nonlinear SVMs for classification of
nonlinear datasets.
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