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Automated hemorrhage detection and segmentation in traumatic pelvic injuries is vital for fast and accurate treatment
decision making. Hemorrhage is the main cause of deaths in patients within first 24 hours after the injury. It is very time
consuming for physicians to analyze all Computed Tomography (CT) images manually. As time is crucial in emergence medicine,
analyzing medical images manually delays the decision-making process. Automated hemorrhage detection and segmentation
can significantly help physicians to analyze these images and make fast and accurate decisions. Hemorrhage segmentation is a
crucial step in the accurate diagnosis and treatment decision-making process. This paper presents a novel rule-based hemorrhage
segmentation technique that utilizes pelvic anatomical information to segment hemorrhage accurately. An evaluation measure
is used to quantify the accuracy of hemorrhage segmentation. The results show that the proposed method is able to segment
hemorrhage very well, and the results are promising.

1. Introduction

Hemorrhage is the leading cause of death in patients with
traumatic pelvic fractures. These fractures are most often
associated with motor vehicle accidents, falling from heights,
and with crush injuries. The mortality rate for pelvic
fractures range from 5% to 15%, and the mortality rate for
pelvic fracture patients with hemorrhagic shock ranges from
36% to 54% [1, 2]. The majority of deaths caused due to
hemorrhage occur within the first 24 hours after the injury
[1, 3]. Hence, it is very important to quickly and accurately
identify the source of bleeding and control the hemorrhage
in a very short period.

The bleeding sites in the pelvic region originate from
the fractured bone, venuous plexus, major pelvic veins,
and/or damaged arteries [4, 5]. In recent years, contrast-
enhanced computed tomography (CT) has been widely used

by the radiologists for the examination of hemorrhage and
characterization of fractures in traumatic pelvic injuries [2–
4, 6]. However, depending on the CT slice thickness, it is
rather time consuming for the radiologists to examine all the
images, and it is often difficult to identify bleeding sites in
the first review of these images. As time is a crucial factor in
emergency medicine, there is a need for automated detection
of hemorrhage. Identification of the bleeding site alone is
not sufficient to assess the bleeding severity. Therefore, it
is valuable to segment the detected hemorrhage to see if
angiography is needed or not.

Detection and segmentation of hemorrhage in the pelvic
region is very challenging due to the injury severity, variation
in bleeding contrast from patient to patient, variation in
size and shape of the bone, and the presence of several
arteries in the region that may be injured. Due to the
location of bones and arteries in various locations within the
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image, the entire image must be searched for hemorrhage.
In addition, hemorrhage cannot be characterized by a single
gray level. The gray levels of hemorrhage depend on the
phase of CT scan. In the arterial phase (phase in which the
pelvic region is scanned soon after the injection of contrast
enhancer), the arteries in pelvic region are highlighted and
if any hemorrhage is present, it is also differentiable from
the soft tissues due to the contrast enhancer. But in the
veinal phase (phase in which the pelvic region is scanned
with some delay after the injection of contrast enhancer),
the hemorrhage is not much differentiable from the soft
tissues as the soft tissues start absorbing the enhancer. In
general, the hemorrhage gray levels vary from patient to
patient in a way that if a patient is bleeding heavily then
the hemorrhage is highlighted more than in the patient
where the bleeding is slow. Identification of hemorrhage
boundary is not easy as the variation in gray level between
the hemorrhage and the soft tissues does not vary much.
Also, the hemorrhage gray level is not constant throughout
the region. The gray level of hemorrhage is much higher
around the center of the hemorrhage and fades out around
the edges. Another important challenge is, the hemorrhage
can occur due to the fractured bones. Hence, it is important
to segment the hemorrhage region accurately when near
bone. To overcome these challenges, anatomical information
must be incorporated in the segmentation process.

Very few researchers have developed techniques for
hemorrhage segmentation in the pelvic region [7]. Previous
studies utilized a threshold-based method to segment hem-
orrhage. Furthermore, the method is only able to segment
hemorrhage located in one particular region in the image.
Even though there are very few studies on hemorrhage
segmentation in pelvic region, there are several studies on
medical image segmentation for various applications such
as vascular segmentation, bone segmentation, hemorrhage
segmentation, and so forth [8, 9]. Some of the existing
methods are threshold based methods, region growing
methods, clustering, markov random field (MRF) models,
artificial neural networks, deformable models, atlas-based
methods, level set methods, and so forth.

Threshold-based methods are one of the simplest meth-
ods that are used for segmentation. In this method, the pixels
in the image are classified into groups based on a threshold
value. Though this method is simple, it is sensitive to noise
and intensity inhomogeneities, as it does not account for
spatial characteristics of an image [10, 11]. Region-growing
techniques are used to segment regions based on some
similarity criteria. In this technique, a single seed is selected
initially, and all the pixels around it are selected based on
some predefined criteria. The limitation of this method is
that it is susceptible to noise and partial volume effects [12,
13]. Clustering techniques like fuzzy c-means algorithms, K-
means clustering, Kernel based methods, and so forth are
unsupervised techniques developed for segmentation [14].
Though these techniques are computationally fast, they are
either sensitive to noise or intensity inhomogeneities as they
do not consider spatial context or depends on initialization.

Some researchers have used artificial neural networks
for the segmentation [15, 16]. Artificial neural networks

are parallel networks of processing elements that simulate
biological learning. These networks have high-parallel ability
and high interaction among the processing units enabling it
to model any kind of process. However, these networks need
to be trained beforehand, and the amount of time taken for
training may be very long, and the results of these networks
are influenced by initialization.

Deformable model techniques are other techniques that
are used for segmentation [17, 18]. These techniques use
closed parametric curves or surfaces that deform under
the influence of internal and external forces. These tech-
niques incorporate a smoothness constraint that provides
robustness to noise and spurious edges. However, the dis-
advantages include poor convergence to concave boundaries
and sensitivity to initialization. Level-set methods are other
techniques that are based on a moving contour as the zero-
level set of a time-evolving scalar function over a regular grid
[19, 20]. The curve is deformed according to a given set of
partial differential equations. Atlas-based methods are based
on a standard template or atlas [21, 22]. The atlas is created
based on the information of the anatomy that requires
segmentation. The created atlas is then used as a reference for
segmenting new images. The atlas-based methods are useful
only for the segmentation of structures that do not exhibit
great variation and are not extremely detailed.

Along with these segmentation techniques, there are
other techniques such as watershed techniques that use
concepts from edge detection and mathematical morphology
to partition image into homogeneous regions [23]. These
techniques suffer from over segmentation. However, recent
studies have developed improved methods to overcome some
of the drawbacks to segmentation [24, 25].

Some of these above mentioned techniques use a specific
criterion to segment regions which are not usually adaptable
to images with poor quality. However, incorporation of
anatomical information makes the approach more adaptable
to each and every image as the gray levels vary from image
to image within the same patient. This paper presents a
novel heuristic approach to segment hemorrhage which
utilizes artery and bone information to initially detect the
hemorrhage and then segments hemorrhage in multistages
through hemorrhage matching, rule optimization, and
region growing.

The rest of the paper is organized as follows. Section 2
describes the methodology used for the study. The results
section gives the results obtained using the described meth-
ods along with the data used for the study. This section
also discusses the obtained results. Finally, the conclusion
summarizes the work done and presents the future work for
the study.

2. Methods

Automated detection of the presence and extent of hemor-
rhage is extremely important for assessing injury severity and
for fast accurate decision making and treatment planning.
Hence, it is very crucial to utilize the artery and bone
information in order to detect and segment the hemorrhage.
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Figure 1: Schematic diagram of hemorrhage detection and seg-
mentation.

Figure 1 provides the schematic diagram of hemorrhage
detection and segmentation.

The proposed hemorrhage segmentation technique
involves locating the hemorrhage, hemorrhage matching,
support vector machine (SVM) based rule optimization for
determining hemorrhage regions under different cases, and
finally region growing to determine the hemorrhage pixels
missed even after the optimization. Each step in the process
is explained in detail in the following subsections.

2.1. Hemorrhage Detection. Hemorrhage detection is vital in
pelvic trauma to assess the injury severity and is the prepa-
ration step for hemorrhage segmentation. Our previous
work focused on the hemorrhage detection from pelvic CT
images [26, 27]. This work is a continuation of our previous
work on hemorrhage detection. Figure 2 shows the schematic
setup for hemorrhage detection. A brief description of our
previous work is provided below.

2.1.1. Preprocessing. The first step in the hemorrhage detec-
tion is to remove any artifacts such as tables, hands, cables,
and so forth from the pelvic CT images and extract the pelvic
region. This is achieved using morphologic operations and
blob analysis [26]. The next stage of hemorrhage detection is
to segment bone.

2.1.2. Bone Segmentation and Masking. Once the pelvic
region is extracted, the pelvic bones are segmented. Figure 3
below shows the setup for bone segmentation. This involves
bone mask formation, edge detection, shape matching and
object recognition, edge merging, bone segmentation, and
masking. The bone mask is formed by setting a threshold
in order to separate bone regions from nonbone regions.
However, nonbone regions with gray levels greater than
the threshold may also be determined as bone regions at
this stage. These false bone regions are later eliminated in
the shape matching and object recognition phase. Canny
edge detection technique is used to determine the edges
of the obtained mask. This technique is used because of
its ability to detect true strong and weak edges. Once the
bone edges are determined, seed growing technique is used
to select pixels closer to the true edge of the bone region.
This gives the initial segmented bone image. Later, shape
matching is used to determine the best templates that match
these segmented regions in each image. These templates are

obtained from Visible Human Project dataset manually and
offline. A total of 73 templates are used for the study. The best
template detection helps determine the position of arteries
in the pelvic region, explained later. This process eliminates
the nonbone objects from the image by determining the
shape matching cost [28–32]. Hence, initial bone regions are
segmented.

After segmenting the bone regions, the edges of the
bones are determined using canny edge detection technique.
In some cases, the edges of the bones may not be fully
connected. In order to ensure better masking of the bone,
the edges of the bone in the current slice are merged with the
bone in the previous and the next slice. Since the study is not
about fracture detection, bone merging will have minimal
effect on the hemorrhage detection. The next step is final
bone segmentation. This is done in a way similar to that of
the initial bone segmentation using seed growing technique.
The final segmented bone is masked by setting its gray level
values to zero.

2.1.3. Artery Detection and Masking. The major arteries in
the pelvic region are aorta and its branches (common iliac
arteries). Since arteries and bleeding are of similar gray levels,
the detection of arteries will help estimate the bleeding gray
levels. Hence, the next step is to detect arteries in the pelvic
region. The aorta, common iliac arteries, and the external
iliac arteries are determined using template matching and
from segmented bone location [26, 29–31, 33]. The internal
iliac arteries are determined from the position of the external
iliac arteries. These detected arteries are then masked to avoid
any false hemorrhage detection.

2.1.4. Hemorrhage Detection. After masking the major
arteries, the image is searched for unwanted objects other
than hemorrhage. The unwanted objects are residual bone
pixels or any pixels that are left even after masking the
bone and arteries other than the hemorrhage pixels. They
are removed by using morphologic operations. After the
filtration of unwanted objects, the region in the image that
falls within the gray-level range of arteries is considered as
hemorrhage and its center coordinates are identified as the
centroid of the hemorrhage region [26, 30].

The hemorrhage detected may not be the complete
region of hemorrhage especially during the veinal phase. If
some of the hemorrhage pixels gray levels are similar to that
of soft tissues, especially during the veinal phase, then those
pixels would have been eliminated during the filtration of
unwanted objects. In addition, the gray levels of hemorrhage
that lie within artery gray levels and higher are considered as
hemorrhage. However to identify the hemorrhage severity,
the entire hemorrhage region must be known.

2.2. Hemorrhage Segmentation. Another important chal-
lenge is the identification of bleeding next to the bone, as the
hemorrhage can occur due to the fractured bones. Hence, it
is important to segment the hemorrhage region accurately
when present next to the bone. The proposed segmentation
process consists of hemorrhage matching, rule optimization,
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Figure 2: Schematic setup for hemorrhage detection.
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Figure 3: Bone segmentation setup.

and region growing, which are described in detail in the
following sub sections.

2.2.1. Hemorrhage Matching by Mutual Information Max-
imization. The first step of hemorrhage segmentation is
hemorrhage matching. The hemorrhage region detected
using the previously mentioned method does not contain
all the hemorrhage pixels especially the boundaries of
the hemorrhage. Hemorrhage matching helps identify the
threshold, that is, the optimum minimum gray level Gopt

for segmenting the hemorrhage region. This is accomplished
using the mutual information maximization (MIM). First,
a window of size q × q in the preprocessed CT image
is selected as a region of interest (ROI) S around the
centroid of the detected hemorrhage. The range [Gmin,Gmax]
of the hemorrhage gray levels are then determined from
the detected hemorrhage. Then a gray level Gmi, where
Gmin ≤ Gmi ≤ Gmax is chosen as the minimum gray
level and all the pixels in ROI S that lie within [Gmi,Gmax]
are chosen as hemorrhage pixels. Morphologic operations
are performed to eliminate any nonhemorrhage regions in
each of these determined hemorrhage images. This obtained
hemorrhage image is individually compared to the initial
detected hemorrhage image using mutual information (MI)
technique in order to find the amount of information each
image contains about the detected hemorrhage [34]. This
MI is calculated between the previously detected hemorrhage
image and the hemorrhage images obtained for different
gray level ranges. The cut-off gray level that contains the
maximum information about the detected hemorrhage is
considered as the optimum minimum gray level Gopt at this
stage. The mutual information in this process is determined
in the following manner. Let Cd be the detected hemorrhage
image from the previous section, and let {B1, . . . ,Bi, . . . ,Bm},
where i = 1, 2, . . . ,m be the hemorrhage regions obtained

with the initial cutoff that ranges within [Gmin,Gmax]. The
mutual information between images Cd and Bi is determined
using

MI (Cd,Bi) = H (Cd) + H (Bi)−H (Cd,Bi), (1)

where H(Cd), and H(Bi), are the entropies of images Cd and
Bi, and H(Cd,Bi) is their joint entropy, and are computed as
follows:

H (Cd) = −
∑

c

PCd (c) logPCd (c),

H (B i) = −
∑

b

PBi(b) log PBi (b),

H (Cd,Bi) = −
∑

c,b

PCd ,Bi(c, b) log PCd ,Bi (c, b),

(2)

where, PCd (c), PBi(b) denote individual probability distribu-
tions. PCd ,Bi(c, b) denotes the joint probability distribution of
the images.

The cut-off gray level for which the mutual information
between Cd and Bi is maximum, is the optimum gray level
Gopt and the image is the optimum image at this stage
of segmentation. This process is called mutual information
maximization. The pixels within the image that lie within
[Gopt,Gmax] are considered as hemorrhage pixels, and Gopt

is considered as the minimum hemorrhage gray level from
now on. However, Gopt may not be the actual minimum
gray level of hemorrhage as these cut-off gray levels are
from the detected hemorrhage and may not include all the
hemorrhage pixels such as boundary pixels which might have
gray levels less than Gopt. From now on, the hemorrhage
region is denoted by R. These undetermined hemorrhage
pixels are segmented using the method explained in the
following subsection.



Computational and Mathematical Methods in Medicine 5

2.2.2. Support Vector Machine-Based Rule Optimization for
Hemorrhage Segmentation. The utilization of pixel gray
levels alone is not enough to determine whether a pixel is
hemorrhage or not. Hence, there is a need for incorporation
of pixel information such as location, gradient, and so forth
around the detected hemorrhage region to properly classify
hemorrhage pixels from the nonhemorrhage pixels. This
incorporation must be adaptable depending on whether the
hemorrhage pixel is in the neighborhood of all hemorrhage
pixels or soft tissue pixels. This study incorporates pixel gray
levels, distance of the pixel from the hemorrhage foci (the
pixel with maximum gray level), the gray level variation
within the selected window, and the magnitude of the
gradient of each pixel within the selected window in order
to achieve better segmentation.

(1) Rule Generation. Let Bopt be the hemorrhage region
image obtained using MIM technique. Let Topt be the
boundary of the hemorrhage region in image Bopt and
p(xi, yj) be the hemorrhage pixel of Topt. A window W
of size m × m (m < q) is selected around pixel p(xi, yj).
There are three cases that need to be considered for an
optimum segmentation: (1) the selected window W contains
all hemorrhage pixels with gray levels within [Gopt,Gmax], (2)
the majority of the pixels in W being hemorrhage pixels and
with gray levels ≥Gopt, and (3) the majority of the pixels in
W (being hemorrhage or soft tissue pixels) with gray levels
<Gopt. Therefore, heuristic rules need to be generated for
each case in order to optimally segment hemorrhage from
nonhemorrhage pixels. The rule for each case is given as
follows.

Case 1. W containing all hemorrhage pixels with gray levels
within [Gopt,Gmax].

If the window contains all pixels with gray levels within
[Gopt,Gmax], then all these pixels are hemorrhage pixels and
can be added to the hemorrhage region R. So the rule in this
case is that the pixel must satisfy the below condition in order
to be added to region R.

R =
{

pixel : p(xr ,ys) | Gopt ≤ p
(
xr , ys

) ≤ Gmax

}
(3)

Case 2. W containing a majority of hemorrhage pixels, that
is, more pixels with gray levels ≥Gopt.

If the window contains a majority of (i.e., >50%) hemor-
rhage pixels with gray levels≥Gopt, then the probability of the
rest of the pixels within the neighborhood being hemorrhage
is high. As a result, the neighborhood will be dominant
with hemorrhage pixels. As the neighborhood is dominant
with hemorrhage pixels, pixel gray level and the distance
of the pixel from the foci are incorporated into the rule in
this case. These parameters are only considered because the
variation in magnitude of the gradient and the variation
between the pixel gray levels will not add any advantage
in differentiating hemorrhage pixels from soft tissue pixels.
Each of the parameters used will have a certain weightage
which needs to be incorporated for determining hemorrhage
pixels. Therefore, the rule is if the pixel satisfies the condition

given in (4), then it is considered as hemorrhage pixel and is
added to region R.

R =
{

pixel : p(xr ,ys) | w1 × p
(
xr , ys

)

+w2 ×D
(
xr , ys

)
+ b > 0

}
,

(4)

where D(xr , ys) is the distance between the pixel in the
window and the foci (x f , yg), and is given by

D
(
xr , ys

) =
√(

x f − xr
)2

+
(
yg − ys

)2
(5)

and w1 and w2 are the weights and b is the bias.
In order to achieve proper segmentation, these weights

need to be optimized. An SVM-based dual Lagrangian
technique is used to determine the optimized weights and
bias. This optimization technique is explained in the later
subsections.

Case 3. W containing a majority of pixels (soft tissue or
hemorrhage) with gray levels <Gopt.

If the window contains more (i.e., >50%) pixels (soft
tissue or hemorrhage) with gray levels <Gopt, then the
probability of the rest of the pixels within the neighborhood
being hemorrhage is lower. Hence, it is required for the
algorithm to be more restrictive in this case when compared
to the other two cases. Hence, inclusion of magnitude of
gradient and the gray level variation within the window along
with the pixel gray level and its distance from the foci will
help avoid oversegmentation which is crucial. Therefore, the
rule associated with this case is

R =
{

pixel : p(xr ,ys) | w3 × p
(
xr , ys

)
+ w4 ×D

(
xr , ys

)

+ w5 ×V
(
xr , ys

)
+ w6

×
∣∣∣∇ f(xr ,ys)

∣∣∣ + b1 > 0
}

,

(6)

where,

V
(
xr , ys

) = p
(
xb, yb

)− p
(
xr , ys

)
, (7)

where p(xb, yb) is the gray level of the center coordinate
of window W ,V(xr , ys) is the difference in gray level of
the center coordinate and the gray level of the pixel in the
window. The magnitude of the gradient of each pixel is given
in

∣∣∣∇ f(xr ,ys)
∣∣∣ =

√√√√
(
∂ f

∂xr

)2

+

(
∂ f

∂ys

)2

. (8)

If a pixel in the selected window satisfies the above men-
tioned condition, then it is considered as hemorrhage and
is added to the existing hemorrhage region R.

The weightage of the parameters given in (6) must be
determined for each image as these can vary among different
images. The weights w3 through w6 and the bias b1 are later
optimized using SVM-based dual Lagrangian optimization
technique.
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(2) SVM Based Rule Optimization. The weights used in the
previously mentioned rules must be optimized to ensure
proper segmentation. These weights must be optimized for
each image as these can vary from image to image within
the same patient. An SVM-based Lagrangian function in
the dual space is used to optimize the weights and the bias.
The optimization is solved by the saddle point of Lagrange
function in the dual space. For optimization, the data for
soft tissue pixels is selected outside the boundary Topt, and
the data for hemorrhage pixels is selected from the pixels
within the boundary. The selection of these pixels outside the
boundary and within the boundary will facilitate the process
of identifying the gray level of the boundary pixels. A tenfold
cross-validation is used for training and testing the data in
order to determine the optimum weights and bias for each
of the parameters used in the study. The size of the data set
for training and testing depends on the size of the boundary
of the hemorrhage in each image. The weights and the bias
are optimized separately for each case. For solving with the
Lagrangian in dual space, Karush-Kuhn Tucker conditions
for the optimum of a constraint function are considered in
the study [35].

With those conditions, the dual Lagrangian is given as
follows:

Ld(α) =
n∑

i=1

αi − 1
2

n∑

i, j=1

yi y jαiαjxixj , (9)

where, αi are the Lagrange multipliers, and x and y are the
inputs and the labels and n is the dimensionality of the input.

The inputs in this study are pixel gray level, distance of
pixel from the foci, magnitude of the gradient, and the gray
level variation. If it is Case 2, there are only 2 input variables.
The labels are the classes. In this study, there are two classes:
hemorrhage and nonhemorrhage class.

This standard quadratic optimization problem is
expressed in matrix notation and formulated as follows:

Maximize Ld(α) = −0.5αTHα− 1Tα,

subject to yTα = 0, 0 ≤ α ≤ C,
(10)

where H is the Hessian matrix (Hij = yi y jxixj), C is the

penalty parameter, and 1 is a unit vector 1 = [1 1 · · · 1]T .
C is chosen as the upper bound of α because with C the
influence of training data points that remain on the “wrong”
side of a separating nonlinear hypersurface is limited. Also,
the width of the soft margin is controlled by a corresponding
C. Large C leads to small number of misclassifications,
smaller margin and vice versa. In our study, C is considered
to be greater than zero and less than infinity for feasibility.
The penalty parameter is optimized using 10-fold cross-
validation technique. Solution α0 from the above equation

determines the parameters of the optimal hyperplane w0 and
b0 as given in

w0 =
Nsv∑

i=1

α0i yixi,

b0 = 1
Nfsv

⎛
⎝
Nfsv∑

s=1

(
1
ys
− xTs w0

)⎞
⎠,

(11)

where w0 and b0 are the optimized weights and bias, Nsv

denotes the number of support vectors, and Nfsv denotes the
number of free support vectors.

In (11), the support vectors are only used because the
Lagrange multipliers are zero for nonsupport vectors. Finally,
with the optimal weights and bias, the decision hyperplane
d(x) is determined using

d(x) =
n∑

i=1

w0ix + b0, (12)

where x is the test data.
The output of the test data is determined by using an

indicator function given in

iF = sign(d(x)). (13)

The number of wrongly classified pixels are determined by
comparing the test output with the desired output. The
obtained optimized weights and bias are used to determine if
a pixel is a hemorrhage pixel or not. The optimized weights
are used in the rules, and the pixels in each window W are
considered as hemorrhage if they satisfy the optimized rules.
However, there is a slight chance of missing the hemorrhage
pixels which are outside the boundary and are not located in
the selected window. Hence, it is required to include these
pixels in the hemorrhage region. Region growing process
is used to grow the region around the already determined
hemorrhage region R to determine any hemorrhage pixels
that are missed during the optimization process. This is
described in the following subsection.

2.2.3. Region Growing. The region growing process is the
final phase of hemorrhage segmentation. This process is
used to determine any missed hemorrhage pixels that are
located outside the boundary of R. Figure 4 shows the region
growing process used in this study. The region growing
process consists of several steps. First, the boundary of the
segmented hemorrhage R from the previous phase is used to
select a window of size m ×m around each boundary pixel.
If the percent of total number of pixels within that window
that satisfy the conditions described earlier are > η, the pixel
factor, then the threshold t1 for the window is determined
using

t1 = me1 + std1, (14)
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Figure 4: Region growing process.

where me1 and std1 are the mean and standard deviation of
the gray levels of all the nonbackground pixels in the window
and are given by

me1 =
∑m

x=1

∑m
y=1 f

(
x, y

)

m×m− Card(S)
,

std1 =
√√√√
∑m

x=1

∑m
y=1

(
f
(
x, y

)−m1
)2

m×m− Card(S)
,

(15)

and S = {(x, y) | f (x, y) = 0} is the set of pixels located in
the background having zero gray level. Card(S) denotes the
cardinality of set S.

If any of the pixels that lie outside the boundary and
within the window satisfy t1, then they are considered as
hemorrhage pixels and are added to the existing hemorrhage
region R. This entire region growing process is repeated for
all the boundary pixels. This complete process constitutes
one epoch. If the growth rate of hemorrhage region is >0 in
the current epoch, then the entire process is repeated starting
from selecting the boundary of the hemorrhage region, else
the region growing process is stopped. The growth rate in
each epoch is calculated using

Growth rate = Ec − Ep

Ec
× 100, (16)

where Ec is the total area of the hemorrhage by the end of
current epoch, and Ep is the total area of the hemorrhage
by the end of previous epoch. The total region-grown by the
end of the region growing process is considered as the final
segmented hemorrhage.

2.3. Evaluation Measure for Segmentation. Once the hem-
orrhage is segmented, a suitable measure is required to
quantify the accuracy of segmentation. This study utilizes
a measure called missegmented area. The missegmented
area measure represents the uncommon area of segmented
region (i.e., the pixels of segmented region that are not a
true hemorrhage) compared to the gold standard area of
segmented hemorrhage. If A1 and A2 are the areas of actual
and the segmented region, the missegmented area of the two
regions is defined as

Cardinality {K}
Cardinality {A1} × 100, (17)

where

K = {pixels : p | p ∈ A1 ∪ A2, p /∈ A1 ∩ A2
}
. (18)

Based on this measure, the segmented hemorrhage will
be classified into three categories: good, acceptable, and
unacceptable through consultation with a trauma physician
and a radiologist, who identified actual hemorrhage contour
as the ground truth.

The segmented regions with missegmented area <10%
will be classified as good, and regions with missegmented
area between 10% and 20% will be considered as acceptable,
and finally any region with missegmented area greater than
20% will be considered as unacceptable. These ranges for
good, acceptable, and unacceptable are used in the study
based on the discussion with expert radiologists who utilize
these ranges to determine if a region is properly segmented or
not and how severe the bleeding is. The numerical values of
K itself are not considered in this study as the radiologists
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Figure 5: Proposed method performance for hemorrhage segmen-
tation.

are not concerned about the numerical values because
these values do not provide any additional information to
radiologists about the injury severity.

3. Results and Discussion

3.1. Dataset. The dataset for the study is obtained from
Carolinas Health System and Virginia Commonwealth Uni-
versity Medical Center. The data is collected from twelve
pelvic trauma patients with each scan consisting of 30 to
70 images with a total of 515 images. These twelve patients
exhibit very mild to severe hemorrhage and these patients
are selected at random. From the discussion with expert
radiologists, it has been found that these number of images
selected are sufficient to validate the performance of the
proposed method. A statistical t-test is conducted in addition
to see if the total number of images used in the study is
statistically significant or not. A P value < 0.05 is considered
as statistically significant, and a greater value is considered
statistically not significant. These images chosen are axial CT
images with 5 mm slice thickness.

3.2. Results and Discussion. The proposed method is tested
on twelve pelvic trauma patients who exhibit mild to severe
bleeding. The total number of images used for the study from
these twelve patients is 515 images. The dimensions of each
image are 512 × 512 pixels. A P value of 0.0029 is obtained
using the t-test showing that the selected number of images is
statistically significant to test the proposed method. The CT
scan include both images taken during arterial phase and the
veinal phase. The hemorrhage is more distinguishable in the
arterial phase than in the veinal phase.

The ROI size q × q in the hemorrhage matching section
is chosen as 100. This value is chosen because a smaller
window size may not contain the entire hemorrhage region
and if a larger size is chosen, then the nonhemorrhage tissues
might be present along with the hemorrhage region making
hemorrhage segmentation much complicated. During the
rule optimization, the values chosen initially for the penalty
parameter C are 0.1, 0.01, and 0.001. The optimal C value
obtained is different for each image in the patient. It is
dependent on the accuracy of classification. The penalty
parameter for which the accuracy is maximum is chosen
as the optimal penalty parameter. For the region growing
process, the window size m is chosen as 3. The pixel factor
η is chosen as 50. This value is selected because, in order

for the algorithm to be restrictive in region growing, it is
required to consider a window that is dominated by the
hemorrhage pixels. If the value is chosen lower than this, the
probability of oversegmentation might increase, and if the
value is chosen higher than this value, then the algorithm
becomes too restrictive and might leave hemorrhage pixels
out affecting the segmentation.

Figure 5 shows the hemorrhage segmentation results.
The proposed method is able to segment the hemorrhage
very well for 94.28% of the cases used in the study. These
cases are considered as good as the missegemented area is
<10%. The overall average missegmented area is 5.3% For
3.01% of the cases, the segmented hemorrhage is acceptable.
The average missegmented area in these acceptable cases is
14.47%. For the remaining 2.71% of the cases, the segmented
hemorrhage is unacceptable, and the average missegmented
area is 26.52%.

Figures 6 and 7 show the results of segmented hemor-
rhage. These are some of the cases where hemorrhage is
very well segmented. The results show that the proposed
method has segmented hemorrhage very well. Figures 6(c)
through 6(e) gives the segmentation results at various stages
of segmentation, that is, segmentation results after hemor-
rhage matching using MIM, rule optimization, and region
growing. The percentile of hemorrhage area grown from
the results of MIM technique to optimization technique is
24.6% and the percentile of hemorrhage area grown from the
optimization to region growing is 3.53%. These results show
that the rule optimization helps in determining hemorrhage
accurately, and the region growing helps determine the
missing hemorrhage pixels.

In the case of patient in Figure 7, the percentile of
hemorrhage area grown from the results of MIM technique
to optimization technique is 22.3% and the hemorrhage area
is not grown during the region growing process as all the
hemorrhage pixels are identified in the earlier stage itself.

Figure 8 shows the segmentation results of hemorrhage
located next to the bone. This segmentation is considered
as acceptable. As hemorrhage is located next to the bone,
the gray levels of the faded bone edges might be similar
to hemorrhage gray levels. The use of distance information
and gray level variation information helped in differentiating
the hemorrhage from the bone regions for majority of the
pixels. However for few pixels, the proposed method is
unable to differentiate between the hemorrhage and bone
pixels. Figures 8(c) through 8(e) shows the performance
of proposed method at various stages. In these figures,
the percentile of hemorrhage area grown from the results
of MIM technique to optimization technique is 25.42%.
And the percentile of hemorrhage area grown from the
optimization to region growing is 0.56%. The hemorrhage
area grown through region growing is much less in this case.
It can be observed from this that the rule optimization has
segmented most of the hemorrhage pixels.

The results are validated on the basis of assessment
and evaluation made by the radiologists on the CT images.
The proposed method is able to segment hemorrhage
very well for majority of the cases. The segmentation is
unacceptable in few cases which may be due to the bridging
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(a) Detected hemorrhage (b) Segmented hemorrhage

(c) Segmented image after hemor-
rhage matching

(d) Segmented image after rule
optimization

(e) Segmented image after Region
growing

Figure 6: Sample hemorrhage segmentation results.

(a) Detected hemorrhage (b) Segmented hemorrhage

(c) Segmented image after hemor-
rhage matching

(d) Segmented image after rule
optimization

(e) Segmented image after region
growing

Figure 7: Sample hemorrhage segmentation results.
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(a) Detected hemorrhage (b) Segmented hemorrhage

(c) Segmented image after hemor-
rhage matching

(d) Segmented image after rule
optimization

(e) Segmented image after region
growing

Figure 8: Sample segmentation results for hemorrhage located next to bone.

of hemorrhage pixels through soft tissue pixels. Hence, these
few pixels are left out during the segmentation. Increasing
the size of selected window might help segment these pixels.
However, the tradeoff is, it might lead to oversegmentation.
Incorporating pixel information into the rule optimization
helps to differentiate the hemorrhage from soft tissue and
bone region. The optimization technique is able to segment
hemorrhage edges very well. The region growing process is
able to determine the missed hemorrhage pixels. In addition,
the proposed method is able to segment hemorrhage edges
that may not be measurable through visual inspection.
The overall processing time of hemorrhage detection and
segmentation for each slice in a scan is a few seconds
when run on a Intel(R)Core(TM)i7-2600 CPU@3.40 GHz
machine. This is much faster than the manual hemorrhage
detection that takes more than a minute for each slice. The
entire process is fully automated. Automated detection with
relatively high speed helps physicians make fast and accurate
diagnostic decisions and treatment planning which is very
crucial for traumatic pelvic injuries.

4. Conclusions and Future Work

This paper presents a fully automated hemorrhage seg-
mentation technique that consists of hemorrhage matching,
rule optimization, and region growing. These techniques
incorporate the pixel gray level information, magnitude
of the gradient, distance measure, and the gray level
variation for segmentation. The results show that the

proposed method is capable of segmenting hemorrhage well.
Automated hemorrhage segmentation, once verified with
more data, will be an important component of computer-
assisted decision making system. Future work will focus
on the quantitative measurement of hemorrhage such as
determining hemorrhage volume, identifying the location of
hemorrhage with respect to the bone, and so forth on the
basis of larger data set.
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