
Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2013, Article ID 161357, 13 pages
http://dx.doi.org/10.1155/2013/161357

Research Article
Numerical Study of Magnetoacoustic Signal
Generation with Magnetic Induction Based on Inhomogeneous
Conductivity Anisotropy

Xun Li,1 Sanqing Hu,1 Lihua Li,2 and Shanan Zhu3

1 College of Computer Science, Hangzhou Dianzi University, Hangzhou 310018, China
2 College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
3 College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

Correspondence should be addressed to Xun Li; bouquet2001@gmail.com

Received 20 December 2012; Revised 18 February 2013; Accepted 18 February 2013

Academic Editor: Kumar Durai

Copyright © 2013 Xun Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Magnetoacoustic tomography with magnetic induction (MAT-MI) is a noninvasive imaging modality for generating electrical
conductivity images of biological tissues with high spatial resolution. In this paper, we create a numerical model, including a
permanent magnet, a coil, and a two-layer coaxial cylinder with anisotropic electrical conductivities, for the MAT-MI forward
problem. We analyze the MAT-MI sources in two cases, on a thin conductive boundary layer and in a homogeneous medium, and
then develop a feasible numerical approach to solve the MAT-MI sound source densities in the anisotropic conductive model
based on finite element analysis of electromagnetic field. Using the numerical finite element method, we then investigate the
magnetoacoustic effect of anisotropic conductivity under the inhomogeneous static magnetic field and inhomogeneous magnetic
field, quantitatively compute the boundary source densities in the conductive model, and calculate the sound pressure. The
anisotropic conductivity contributes to the distribution of the eddy current density, Lorentz force density, and acoustic signal.
The proposed models and approaches provide a more realistic simulation environment for MAT-MI.

1. Introduction

Since Henderson and Webster reported an impedance cam-
era to generate the electrical impedance image of the tho-
rax [1], it is of increasing interests to noninvasively mea-
sure the electrical impedance of biological tissues. Several
approaches, such as electrical impedance tomography (EIT)
[2, 3],magnetic induction tomography (MIT) [4, 5],magnetic
resonance EIT (MREIT) [6], magnetoacoustic tomography
(MAT) [7, 8], and Hall effect imaging (HEI) [9], have been
developed to image the electrical impedance distribution.
Among these technologies, EIT,MREIT, andMAT/HEI inject
electrical currents into the imaging object through the surface
electrodes, so that they have to face the “shield effect” [10,
11] caused by a low-conductivity tissue layer surrounding
the object and therefore have difficulties in imaging the

electrical impedance of deep biological tissue with high
spatial resolution. MIT excites the deep biological tissue
with time-variant magnetic field andmeasures the secondary
magnetic field produced by the eddy current to reconstruct
electrical impedance images. However, the inverse problem
in MIT, as in EIT, is an ill-posed problem.

Magnetoacoustic tomography with magnetic induction
(MAT-MI) is a newly proposed electrical impedance imaging
modality [11]. In MAT-MI, an object is placed in an external
static magnetic field B

0
and a time-variant magnetic field B

1

to induce the eddy currents J in the object.The eddy currents
are subject to Lorentz forces to induce sound vibrations in
the object. The emitted sound signals are detected around
the object to reconstruct the electrical impedance images
of the imaging object. Through combining magnetism and
sonography, MAT-MI can excite deep tissues and image the
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Figure 1: A tube on the boundary between two homogeneous
conducting media.

electrical impedance with high spatial resolution. As a result
of the sound measurement around the specimen, MAT-MI
has a well-posed inverse problem.

Similar to MAT/HEI, MAT-MI is based on the Lorentz
force-induced vibrations. The difference among them is
that MAT-MI uses time-variant magnetic field, while the
MAT/HEI applies current injection, and therefore the
MAT/HEI sound sources are only at the boundary between
regions of differing conductivity for a piecewise homoge-
neous isotropic conductor [7], while those of MAT-MI exist
everywhere in the conductor.

It is well known that some biological materials, such
as bone and skeletal muscle, are distinctly anisotropic [12].
Recently, several studies have been developed to explore
the effect of electrical anisotropy, such as the influence of
white matter anisotropy on EEG source localization [13],
inhomogeneous anisotropic cardiac tissues [14], and the
effect of conductivity anisotropy on EIT [15]. Another study
has reported that the diffusion anisotropy in breast cancer
is significantly different from that in normal tissue [16].
The water diffusion may have a relation with the electrical
conductivity in a tissue, and the conductivity tensor can be
obtained from the diffusion tensor [17]. It is obvious that
breast cancers may have different anisotropic conductivity
tensor from that of normal tissues.

In previous works, there are many theories and sim-
ulation models, as shown in Table 1, to study MAT-MI
principles.

In the present study, we analyze the MAT-MI sound
source densities in a homogeneous conducting medium and
on a thin conductive boundary layer and build amagnet and a
circular coil to produce inhomogeneous static magnetic field
and time-variantmagnetic field.We create a two-layer coaxial
cylinder with different anisotropic conductivity values and
solve the MAT-MI forward problem with the aid of the finite
element method (FEM). By comparing anisotropic conduc-
tive model with isotropic conductive model, we investigate
themagnetoacoustic effect of the conductivity anisotropy.We
also discuss the difference of sound signal generation between
MAT-MI and MAT/HEI.

2. Theory

According to the previous works [7, 11], MAT-MI wave
equation can be described as

∇
2
𝑝 −

1

𝑐2
𝑠

𝜕
2
𝑝

𝜕𝑡2
= ∇ ⋅ (J × B) , (1)

where 𝑝 is the acoustic pressure, 𝑐
𝑠
is the sound speed, J is

the induced eddy current density, and B is the magnetic flux
density including the static magnetic flux density B

0
and the

time varying magnetic flux density B
1
. The cross product

of J and B is the Lorentz force density, and the divergence
of the Lorentz force density is the sound source density.
Here, we study the sound source density on three conditions
including homogeneous isotropic conductingmedium, a thin
conductive boundary layer in the heterogeneous conducting
medium, and anisotropic conducting medium.

2.1. Homogeneous Isotropic Conducting Medium. In this case,
the conductivity 𝜎 is a constant in solving domain. We
assume that the electrical currents producing the time-
variant magnetic field are outside of the imaging object, so
that the curl of B is zero [7]. Then, we have [21]

∇ ⋅ (J × B) = (∇ × J) ⋅ B − J ⋅ (∇ × B) = (∇ × J) ⋅ B

= (∇ × 𝜎E) ⋅ B = −𝜎𝜕B
𝜕𝑡
⋅ B.

(2)

Since the static magnetic field is time invariant, the sound
source density is

∇ ⋅ (J × B) = −𝜎𝜕B1
𝜕𝑡
⋅ B. (3)

2.2. A Thin Conductive Boundary Layer in a Heterogeneous
ConductingMedium. When the conductivities are not homo-
geneous but changed abruptly, the eddy current densities and
the corresponding Lorentz force densities are not continuous
on both sides of the boundary layer. The source term, which
is the divergence of the Lorentz force density, should be
calculated in a different way. To solve the MAT-MI sources,
we assume a very small tube on the boundary layer and apply
theGauss theoremon the source term to avoid the divergence
on the jump discontinuity.

As shown in Figure 1, we consider a small tube on the
boundary layer between two homogeneous isotropic media
with conductivity values of 𝜎

1
and 𝜎

2
. e
𝑛
is the outward

normal to the tangent plane, 𝑆
1
and 𝑆

2
are the two surfaces

of the tube, and the outward normal to the 𝑆
1
and 𝑆

2
is,

respectively, in the same and opposite directions as e
𝑛
. 𝐽
1𝑛
,

𝐽
2𝑛

and 𝐽
1𝑡
, 𝐽
2𝑡
are, respectively, the normal and tangential

components of the eddy current densities, e
𝑡
is in the same

direction as 𝐽
1𝑡
and 𝐽
2𝑡
, and e

𝑡
󸀠 is orthogonal to both 𝐽

1𝑡
and

𝐽
1𝑛
.The thickness of the tubeΔ𝑙 is assumed to be infinitesimal.
Based on electromagnetic theory, the electromagnetic

field boundary conditions are as follows [25]:

𝐽
1𝑛
= 𝐽
2𝑛
, 𝐸

1𝑡
= 𝐸
2𝑡
. (4)
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Table 1: Numerical studies on MAT-MI.

Time invariant
magnetic field

Static magnetic
field

Model Sound source
Conductivity Structure

Xu and He 2005 [11] H H H and Iso A sphere Analytical solution

Li et al. 2006 [18]
Li et al. 2007 [19] H H Inh and Iso

A two-layer
concentric
sphere

Numerical solution based on
magnetic vector potential and
electrical scalar potential method

Brinker and Roth
2008 [20] Inh H H and Ani A uniform sheet

of tissue

Analytical and numerical
solutions based on magnetic
vector and electrical scalar
potential method

Li et al. 2009 [21] Inh H Inh and Iso

Two-layer
eccentric
spheres; a
circular coil

Numerical solution based on
finite element method

Li and He 2010 [22] Inh H Inh and Iso
2D conductive
sample; coil

group

Numerical solution based on
finite element method

Li 2010 [23] Inh H Inh and Iso
Human breast
and tumors; a
circular coil

Analytical solution for
homogeneous medium and
conductivity boundary;
numerical solution based on
finite element analysis

Zhou et al. 2011 [24] Inh H Inh and Iso
Breast tumor
model; a

circular coil

Analytical and numerical
solutions using finite element
method

∗H denotes homogeneous; Inh denotes inhomogeneous; Iso denotes isotropic; Ani denotes anisotropic.

Due to themagnetic field continuity across the boundary,
we have

B
1
= B
2
= B, (5)

where B
1
and B

2
are the magnetic field on both sides of the

boundary layer.
Thus, the Lorentz force density, the cross product of the

eddy current density J and magnetic flux density B on the
boundary layer, can be written in the orthogonal coordinates
system (e

𝑛
, e
𝑡
, e
𝑡
󸀠) as follows:

J × B =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

n t t󸀠
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𝐽
𝑡
0
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𝑛
𝐵
𝑡
𝐵
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󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝐽
𝑡
𝐵
𝑡
󸀠n − 𝐽

𝑛
𝐵
𝑡
󸀠t + (𝐽

𝑛
𝐵
𝑡
− 𝐽
𝑡
𝐵
𝑛
) t󸀠.

(6)

Applying the Gauss theorem, we have

∫
𝑉

∇ ⋅ (J × B) 𝑑𝑉 = ∮
𝑆

(J × B) 𝑑𝑆. (7)

In the case of the small tube as shown in Figure 1, we have
Δ𝑙 → 0 and

∮
𝑆

(J × B) 𝑑𝑆 = ∫
𝑆
1

𝐽
1𝑡
𝐵
𝑡
󸀠n ⋅ 𝑑𝑆

1
+ ∫
𝑆
2

𝐽
2𝑡
𝐵
𝑡
󸀠n ⋅ 𝑑𝑆

2

= (𝜎
1
− 𝜎
2
) 𝐸
1𝑡
𝐵
𝑡
󸀠𝑆
1
,

(8)

where e
𝑡
󸀠 is in the same direction as e

𝑡
× e
𝑛
.

Then, we have the sound source of the small tube on the
boundary layer as follows:

∫
𝑉

∇ ⋅ (J × B) 𝑑𝑉 = (𝜎
1
− 𝜎
2
) 𝐸
1𝑡
𝐵
𝑡
󸀠𝑆
1
. (9)

From formula (9), we can compute the sound sources
on the boundary layer through the outward normal to the
boundary surface, the intensity, and direction of the E and
B. Zhou et al. got the same result as formula (9) [24].

2.3. A Thin Conductive Boundary Layer in the Anisotropic
Conducting Medium. Considering the MAT-MI sound
source in a homogenous anisotropic conducting medium,
the conductivity value 𝜎 is not a constant but a tensor. We
have

∇ ⋅ (J × B) = ∇ ⋅
{

{

{

([

[

𝜎
𝑥𝑥
𝜎
𝑥𝑦
𝜎
𝑥𝑧

𝜎
𝑦𝑥
𝜎
𝑦𝑦
𝜎
𝑦𝑧

𝜎
𝑧𝑥
𝜎
𝑧𝑦
𝜎
𝑧𝑧

]

]

[

[

𝐸
𝑥

𝐸
𝑦

𝐸
𝑧

]

]

) × B
}

}

}

. (10)

We will introduce a numerical solution of this case by using
finite element interpolation in Section 3.3.1.

On the boundary layer, the electromagnetic field bound-
ary conditions are the same as described in formula (4), and
we can use the same method as illustrated in Section 2.2 to
analyze the MAT-MI sound source on the boundary layer in
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an anisotropic heterogeneous conducting medium.Then, we
have

∫
𝑉

∇ ⋅ (J × B) 𝑑𝑉

= 𝐵
𝑡
󸀠𝑆
1
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𝑡
,

(11)

where 𝐸
1𝑡𝑥

, 𝐸
1𝑡𝑦
, and 𝐸

1𝑡𝑥
are the decomposition of the

tangential component of the electric field in the Cartesian
coordinate system.

2.4. Solution of the Wave Equation. Applying Green’s func-
tion, we have the solution of the MAT-MI wave equation in
free space [11] as follows:

𝑝 (r, 𝑡)

= −
1

4𝜋
∮
𝑉

𝑑r󸀠

× ∫

∞

−∞

∇r󸀠 ⋅ (J (r
󸀠
, 𝑡
󸀠
)×B (r󸀠, 𝑡󸀠))

𝛿 (𝑡
󸀠
−𝑡 +

󵄨󵄨󵄨󵄨󵄨
r−r󸀠󵄨󵄨󵄨󵄨󵄨 /𝑐𝑠)

󵄨󵄨󵄨󵄨r − r󸀠
󵄨󵄨󵄨󵄨

𝑑𝑡
󸀠
,

(12)

where 𝑉 is the source domain, r󸀠 is a sound point source,
r is a point detecting the sound radiation from the sound
point sources, 𝑡 is the time to detect the sound signal, and 𝛿
is a Dirac Delta function. Using the previous formula, we can
compute the sound pressure radiated out from the sources.

3. Simulation Study

In the previous studies, numerical simulations were con-
ducted on solid models with isotropic conductivity [21, 23,
24] or a uniform sheet with homogeneous conductivity
anisotropy [20], under homogeneous static magnetic field. In
the present study, we adopt a permanent magnet to produce
a more realistic and complex inhomogeneous static magnetic
field and conduct numerical simulations on a conductor
with inhomogeneous anisotropic conductivities. Based upon
the present models, we perform the electromagnetic anal-
ysis using the finite element method software ANSYS and
calculate the sound source densities in the homogeneous
anisotropic medium on the conductivity boundary and the
spatial distribution of the acoustic pressure. Finally, we com-
pare the eddy currents, Lorentz forces, MAT-MI sources, and
sound pressure of the anisotropic and isotropic conductive
models to investigate the effect of conductivity anisotropy on
the MAT-MI signal generation.

3.1. Model. The current simulation models include a two-
layer conductive cylinder, a magnet, a real shape coil, and

Coil
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𝜎2
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𝑧
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Figure 2: Model geometry.

the surrounding water and air media. Figure 2 shows the
coaxial cylindrical model together with the coil and magnet
models. In the conductive models, the radii of the inner and
outer layer cylinders are, respectively, 10 and 50mm, and the
anisotropic conductivity values of the inner and outer layers
are, respectively, 𝜎

1
= [𝜎
1𝑥
= 0.25, 𝜎

1𝑦
= 0.125, 𝜎

1𝑧
= 0.2]

and 𝜎
2
= [𝜎
2𝑥
= 0.04, 𝜎

2𝑦
= 0.1, 𝜎

2𝑧
= 0.2] S/m. The

conductivity of the two layers in the 𝑥 direction 𝜎
1𝑥
and 𝜎
2𝑥
is

the same as the isotropic conductivity values adopted in the
previous work [19], and the difference between 𝜎

1𝑦
and 𝜎
2𝑦

is
much smaller than that between 𝜎

1𝑥
and 𝜎

2𝑥
. This allows us

to investigate the change of the eddy current density caused
by the electrical anisotropy through comparing with those
induced in the isotropic conductive models. The cylindrical
shape of the conductor is similar to the columnar phantom
employed in previous MAT-MI experiments [19, 26–28]. The
width, length, and height of the permanent magnet are,
respectively, 50, 50, and 30mm. The coil has a height of
10mm,with an inner radius and an outer radius of 45mmand
55mm, respectively. The water surrounding the conductive
model is a cylinder with a radius of 80mm and a height of
70mm.The conductivity value of the water 𝜎

𝑤
is 0.4 S/m.The

coil, magnet, and water are surrounded by the cylindrical air
medium with a radius of 200mm and a height of 300mm.

Taking the center of the underside of the two-layer coaxial
cylinder as the origin, the bottom of the coil is 95mm above,
and the top of the magnet is 30mm below the origin.The top
and bottom of the water are, respectively, 60mm above and
10mm below the origin. The coil, two-layer coaxial cylinder,
andwater and airmodels are symmetric with respect to the 𝑧-
axis, and the magnet is symmetric about the plane 𝑥 = 0 and
𝑦 = 0. The symmetry of the solid model allows us to explore
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Figure 3: Meshed grids of the coil, permanent magnet, and two-
layer coaxial cylindrical conductive models.

the effect of the electrical anisotropy specifically.The injected
currents into the coil obey a quasi-step function described as

𝐽 (𝑡) =

{{{{

{{{{

{

𝐽end 𝑡 ≥ 𝑇end,

(𝑡 − 𝑇start) ∗ 𝐽end

𝑇end − 𝑇start
𝑇start < 𝑡 < 𝑇end,

0 𝑡 ≤ 𝑇start,

(13)

where 𝑇start and 𝑇end are the time to begin and finish the
electrical current injection, 𝑇end − 𝑇start = 5𝐸 − 6 s, and
𝐽end = 3𝐸+ 8A/m

2 is the magnitude of the current density at
the end of the current injection. The sound speed is assumed
to be homogeneous and isotropic in all the media and is set
to be 1500m/s.We create the solidmodels in ANSYS,meshed
the coil and magnet with hexahedrons, and meshed the
conductive cylinders, water, and air media with tetrahedrons.
The meshed grids of the coil, magnet, and two-layer coaxial
cylindrical conductive models are shown in Figure 3.

In order to evaluate the impact of the conductivity
anisotropy on the magnetoacoustic signals, we adopt an
isotropic conductive model sharing the same geometry with
the aforementioned model. The isotropic conductivity values
of the inner and outer cylinders are, respectively, 0.25 and
0.04 S/m, which are the same as those adopted in the previous
isotropic conductive model [19].

3.2. Procedure

(1) Performing the FEM electromagnetic analysis,
obtaining the Lorentz force density F on every node,
eddy current density J andmagnetic flux densityB on

every element. And extracting the elements neigh-
boring to the boundary layer and the corresponding
nodes of the elements on the boundary layer.

(2) Calculating the sound source density in the finite
elements in the homogeneous medium and in the
small tubes on the conductivity boundary.

(3) Regarding the sound sources in the elements and
tubes as point sources, assuming the sound speed in
the solving domain is a constant 𝑐

𝑠
= 1500m/s, and

applying the discrete form of formula (12) to calculate
the sound field as follows:

𝑃 (r, 𝑡) = − 1
4𝜋

𝑀

∑

𝑗=1

∇ ⋅ (J
𝑗
(r󸀠
𝑗
, 𝑡 − 𝑅/𝑐

𝑠
) × B
𝑗
(r󸀠
𝑗
, 𝑡 − 𝑅/𝑐

𝑠
))

𝑅
,

(14)

where𝑀 is the number of the point sources, 𝑅 = |r − r󸀠|.

3.3. Sound Source

3.3.1. Source in the Homogeneous Medium. For the MAT-MI
source density in the homogeneous anisotropic conducting
medium, we have

∇ ⋅ (J × B) = ∇ ⋅ F = 𝜕𝐹𝑥
𝜕𝑥
+

𝜕𝐹
𝑦

𝜕𝑦
+
𝜕𝐹
𝑧

𝜕𝑧
. (15)

After performing the finite element analysis of electro-
magnetic field, we have the nodal solutions of the Lorentz
force density. We apply the FEM interpolation to the Lorentz
force density in each element to count the sound source
density.

As shown in Figure 4, in a first-order tetrahedral element,
F
1
, F
2
, F
3
, and F

4
are the nodal solutions of the Lorentz force

density, and F(𝑥, 𝑦, 𝑧) is the Lorentz force density on a point
in an element. Using the finite element interpolation [29], we
have

F (𝑥, 𝑦, 𝑧) = a𝑒 + b𝑒𝑥 + c𝑒𝑦 + d𝑒𝑧, (16)

where a𝑒, b𝑒, c𝑒, and d𝑒 are vectors as a𝑒 = [𝑎𝑒
𝑥
, 𝑎
𝑒

𝑦
, 𝑎
𝑒

𝑧
] and

so on. All the vectors are determined by the coordinates of
the four tetrahedral vertices and the nodal solutions of the
Lorentz force density F. Substituting (16) into (15), we have

∇ ⋅ (J × B) = ∇ ⋅ F = 𝑏𝑒
𝑥
+ 𝑐
𝑒

𝑦
+ 𝑑
𝑒

𝑧

=
1

6𝑉𝑒
(

4

∑

𝑗=1

𝑏
𝑒

𝑗
𝐹
𝑥𝑗
+

4

∑

𝑘=1

𝑐
𝑒

𝑗
𝐹
𝑦𝑗
+

4

∑

𝑗=1

𝑑
𝑒

𝑗
𝐹
𝑧𝑗
) ,

(17)

where 𝐹
𝑥𝑗
, 𝐹
𝑦𝑗
, and 𝐹

𝑧𝑗
are the three Cartesian components

of the nodal values of the Lorentz force and 𝑏𝑒
𝑗
, 𝑐
𝑒

𝑗
, and 𝑑𝑒

𝑗

are the coefficients determined from the expansion of the
determinants of the elemental interpolation [29]. Through
computing formula (17), we can analyze the MAT-MI sound
source density in a homogeneous anisotropic conducting
medium based on the solutions of the finite element analysis.
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3.3.2. Source on the Conductivity Boundary. Considering a
tiny tetrahedral element neighboring to the boundary, we
apply formula (11) to solve the MAT-MI sound source on the
conductivity boundary. Since the numerical solutions of the
electromagnetic analysis satisfies the boundary conditions as
described in formulas (4) and (5), we assume that the electric
field E andmagnetic flux densityB in the tetrahedral element
which have three nodes adhering to the boundary are closely
approximate to those of the points on the boundary surface.
And then, we adopt the elemental solutions of the E and B to
compute the sound sources on the boundary and decompose
them, as shown in Figure 5, to compute the 𝐸

𝑡
and 𝐵

𝑡
󸀠 . The

procedure is as follows:

(1) Extracting three nodes of the element on the bound-
ary layer and computing the area of the triangle 𝑆 and
the outward normal e

𝑛
.

(2) Decomposing the B into the orthogonal components
𝐵
𝑛
and B

𝑇
, where the B

𝑇
is the projection of the B on

the tangent plane.
(3) Mapping the E onto the e

𝑛
and computing the 𝐸

𝑛
, 𝐸
𝑡
,

and e
𝑡
.

(4) Orthogonally decomposing B
𝑇
into the 𝐵

𝑡
and 𝐵

𝑡
󸀠 .

(5) Calculating the sound sources in accordance with
formula (11).

4. Results

In this simulation study, we employ a real shape coil and a
permanent magnet to produce the inhomogeneous magnetic
field and static magnetic field and perform an electromag-
netic field finite element analysis on the conductive models
with electrical anisotropy. The numerical simulations are
performed in SI system (international systems of units),
and the units of the magnetic flux density, eddy current
density, Lorentz force density, and sound pressure are, respec-
tively, Tesla (T), Ampere/m2 (A/m2), Newton/m3 (N/m3),
and Pascal (Pa). The inhomogeneous magnetic flux density
produced, respectively, by the coil, the magnet, and both the
coil and magnet is shown in Figure 6. The distribution of the
eddy current density in the inner cylinder and both the inner
and outer cylinders is illustrated in the𝑥 = 0,𝑦 = 0, and 𝑧 = 0
planes. From Figure 7, it is obvious that the distribution of
the eddy current density strongly respond to the anisotropic
conductivity so as to cause an apparent aberration in the 𝑥- 𝑦
plane.

Figure 8 shows the Lorentz force densities evoked in the
conductive cylinders. Generally, the Lorentz force densities of
the points neighboring to the boundary are larger than those
in deep parts of the conductor because of the “skin effect”
of the eddy current density. The force densities in the inner
cylinder on the 𝑥 direction are vastly smaller than those on
the 𝑦 direction. Since the conductor and the magnetic field
are basically symmetric, only the anisotropic conductivity
contributes to the asymmetric distribution of the Lorentz
force density.

The MAT-MI source densities in the homogeneous
anisotropic conducting medium and on the boundary layer

(𝑥4, 𝑦4, 𝑧4)

(𝑥3, 𝑦3, 𝑧3)

(𝑥2, 𝑦2, 𝑧2)

(𝑥1, 𝑦1, 𝑧1)

F4

F3

F2

F (𝑥, 𝑦, 𝑧)

F = (𝐹1𝑥, 𝐹1𝑦, 𝐹1𝑧)

Figure 4: The nodal solutions of the Lorentz force density in a
tetrahedral element.

𝐸𝑛

𝐸𝑡

𝐵𝑛

𝐵𝑡

A tetrahedral element Boundary

𝜎1

𝜎2

𝐵𝑇

B

E 𝐵𝑡󳰀

Figure 5: Orthogonal decomposition of E and B on the boundary
surface.

are shown in Figure 9. The boundary source densities are
closely associated with the magnetic field B, the electric field
E, and the surface orientation. MAT-MI induces high source
densities on the boundary of inner cylinder, which is in the
deep part of the models. This indicates that MAT-MI can
excite deep materials and therefore have a potential to image
deep structures of biological tissues.

Multiplying the boundary source density with the area
of the surfaces and the source density in the homogeneous
anisotropic conductingmedia with the volume of the tetrahe-
dral elements and assuming that there is no sound reflection
between the water and air, we compute the sound pressure
in the two-layer coaxial cylinder and water medium. The
pressure on the planes 𝑧 = 25mm, 𝑥 = 0, and 𝑦 = 0 is shown
in Figure 10.

From Figure 11(a), we can see that the distribution of the
eddy current density is symmetric because of the symmetry
of the model, magnetic field, and the isotropic conductivity.
Comparing Figures 11(a) and 11(b) with Figures 7 and 8, the
conductivity anisotropy alters the distribution of the eddy
current density and Lorentz force density in the conductor.
The distribution of the sound source density in the isotropic
conductive model, as shown in Figure 11(c), is similar to that
in the anisotropic conductor, as shown in Figure 9. Due to the
similar source densities, the sound pressure distributions for
the isotropic and anisotropic conductive models are almost
same, as shown in Figures 10 and 11(d).

We measure and compare the time sequences of the
acoustic signal simulated on a point from the anisotropic
and isotropic conductive models, as shown in Figure 12. The
coordinates of the point are (0, 150, 25)mm. From Figure 12,
we can see that the two signals have similar waveform shapes.
In addition, there are some differences between the signals
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Figure 6: Magnetic flux density in the coaxial cylinder produced, respectively, by (a) magnet, (b) coil, and (c) both magnet and coil. The unit
of magnetic flux density is Tesla (T).

from the two models. Since the geometry of the model and
the magnetic field are the same, the only thing contributing
to the previous differences is the conductivity of the material.
In other words, the different conductive properties in the
twomodels, which are, respectively, anisotropic and isotropic
conductivities, lead to such differences.

5. Discussions

In this simulation study, we have conducted numerical sim-
ulations on the conductive models with electrical anisotropy,
the real shape coil and magnet, and calculated the MAT-MI
sound source densities on the conductivity boundary. The
conductivity anisotropy changes the intensity of the bound-
ary source densities through influencing the eddy current
density distribution. The effect of the electrical anisotropy
in MAT-MI signal generation is not negligible. Despite of
the high intensity of the boundary sources, the MAT-MI
acoustic signals contain the signals radiated from the sources
in the homogeneous conductive media. So, we may eliminate
the impact of the boundary sources as much as possible
and use weak signal detection technology to extract the
useful information to reconstruct the sound sources in the
homogeneous medium.

Through comparing the MAT-MI sound sources and
signals from the isotropic and anisotropic conductivemodels,
we can find that the electrical anisotropy changes the source
densities and the magnitude of the acoustic pressure signals.

To investigate the MAT-MI source, the present and
previous works start from the divergence of the Lorentz
force density (J × B), which may cause singularity problem

on the boundary, to explore the magnetoacoustic effect of
biological tissues with magnetic induction. In fact, we can
further perform finite element analysis of acoustic vibrations
and radiations to avoid solving the divergence on the discon-
tinuity.

In order to study the magnetoacoustic effect of the elec-
trical anisotropy, the present simulation conductive model is
symmetric and comparatively simple. We can further create
more realistic and complex breast model, including subcu-
taneous fat, duct system, mammographic texture, Cooper’s
ligaments, pectoralis muscle, skin, and abnormalities, as the
breast phantom modeled for mammography [30].

Since MAT/HEI has a similar imaging principle to MAT-
MI, we can further study and understand the magnetoa-
coustic signal generation through comparing MAT/HEI and
MAT-MI. MAT injects electrical current to an object under
a static magnetic field to evoke vibrations, while MAT-MI
imposes time-variant magnetic field on the object under the
static magnetic field to generate acoustic signals. The current
injection inMAT/HEI and themagnetically induced currents
inMAT-MImake a difference in theMAT/HEI andMAT-MI
acoustic signals. The basic difference between MAT/HEI and
MAT-MI is shown in Table 2.

In a homogeneous isotropic conducting medium,
neglecting the secondary magnetic field produced by the
injected currents, the curl of the current density J is equal
to zero in MAT [7]. Due to magnetic induction, the curl
of the current density J in MAT-MI is associated with the
electrical conductivity 𝜎 and the partial derivative of the
magnetic flux density B with respect to time 𝑡 [21]. So, there
is noMAT/HEI source evoked in the homogeneous isotropic
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Figure 7: The distribution of eddy current density in the inner and outer cylinders on the planes 𝑧 = 0, 𝑥 = 0, and 𝑦 = 0. The unit of eddy
current density is Ampere/m2 (A/m2).
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Figure 8:The distribution of Lorentz force density in the inner and outer cylinders on the planes 𝑧 = 0, 𝑥 = 0, and 𝑦 = 0. The unit of Lorentz
force density is Newton/m3 (N/m3).

conductive domain. On the contrary, MAT-MI generates
the acoustic vibrations in the whole homogeneous isotropic
medium.

On the conductivity boundary, both MAT/HEI and
MAT-MI obey the same electromagnetic field boundary

conditions, so we can use the same approach, as described
in the Section 2.2 to solve the divergence of the Lorentz
force. Roth et al. studied the MAT source and put forward
that the curl of the eddy current density J is nonzero only
at the boundary, that there is no source on the surface
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Figure 9: Sound source density distribution in the inner cylinder and both the inner and outer cylinders on the planes 𝑧 = 25mm, 𝑥 = 0,
and 𝑦 = 0. The unit of the boundary source density is Pa/m, and that of the homogeneous source density is Pa/m2.
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Figure 11: Numerical simulations on the cylindrical conductive models with isotropic conductivities. (a) Eddy current density, (b) Lorentz
force density, (c) sound source density on the planes 𝑧 = 25mm, 𝑥 = 0, and 𝑦 = 0, and (d) sound pressure on the plane 𝑧 = 25mm at time
𝑡 = 20, 30, 40, and 50 𝜇s.The units of eddy current density, Lorentz force density, boundary source density, homogeneous source density, and
sound pressure are, respectively, Ampere/m2 (A/m2), Newton/m3 (N/m3), Pascal/m (Pa/m), Pascal/m2 (Pa/m2), and Pascal (Pa).
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Figure 12:The time sequences of the acoustic signal obtained on a point whose coordinates are (0, 150, 25)mm.The unit of acoustic pressure
signal is Pascal (Pa).

Table 2: Comparisons of MAT and MAT-MI sound generation in an inhomogeneous isotropic conductive medium.

Boundary conditions Sound sources
Homogeneous Boundary

MAT/HEI 𝐸
1𝑡
= 𝐸
2𝑡
, 𝐽
1𝑛
= 𝐽
2𝑛

(∇ × J) = 0
∫
𝑉
∇ ⋅ (J × B) 𝑑𝑉 = e

𝑡
󸀠 ((𝜎
2
− 𝜎
1
) 𝐸
1𝑡
𝑑𝑆) ⋅ B

MAT-MI 𝐵
1𝑛
= 𝐵
2𝑛
, 𝐻
1𝑡
= 𝐻
2𝑡

(∇ × J) = −𝜎𝜕B1
𝜕𝑡

that is perpendicular to the applied magnetic field B, and
that the component of the magnetic field that is perpen-
dicular to a surface has no contribution to the source [7].
From the formula described in Table 2, for the MAT/HEI
and MAT-MI boundary source density, it is clear that the
intensity of the source density is zero when the dot product
of the e

𝑡
󸀠 , which is a vector on the boundary surface,

and B is equal to zero. If we decompose B into three
orthogonal components 𝐵

𝑛
, 𝐵
𝑡
, and 𝐵

𝑡
󸀠 , e
𝑡
󸀠 and 𝐵

𝑛
are

perpendicular, and the corresponding dot product is zero,
that is, 𝐵

𝑛
contributes nothing to the source. Obvi-

ously, formula for the MAT-MI and MAT/HEI bound-
ary sources analyzed in this paper is well consistent with
the previous conclusions, and furthermore, with the ana-
lytical expression of formula, we can solve the intensi-
ties of the MAT-MI source densities on the boundary
for biological tissues or phantom with arbitrary geome-
try.



12 Computational and Mathematical Methods in Medicine

In summary, we have created a magnet, a coil, and a two-
layer coaxial cylindrical conductive model to conduct sim-
ulations for MAT-MI forward problem under conditions of
inhomogeneous static magnetic field, inhomogeneous time-
variant magnetic field, and conductivity anisotropy. We have
also quantitatively computed the MAT-MI boundary source
densities and the source densities inside the homogeneous
conducting medium. To the best of our knowledge, it is
the first time that MAT-MI forward problem is solved in a
conductive specimen with conductivity anisotropy together
with a permanent magnet. The present models and the
simulation approach based on the finite element method
enable us to investigate MAT-MI signal generation in a more
practical simulation environment, such as arbitrary geomet-
ric configurations of anisotropic and isotropic conductive
model, inhomogeneous static magnetic field produced by
a permanent magnet, and various types of time-variant
magnetic field generated by a coil or coil set, and so on.
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