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This paper presents a novel maximum margin clustering method with immune evolution (IEMMC) for automatic diagnosis of
electrocardiogram (ECG) arrhythmias. This diagnostic system consists of signal processing, feature extraction, and the IEMMC
algorithm for clustering of ECG arrhythmias. First, raw ECG signal is processed by an adaptive ECG filter based on wavelet
transforms, and waveform of the ECG signal is detected; then, features are extracted from ECG signal to cluster different types of
arrhythmias by the IEMMC algorithm. Three types of performance evaluation indicators are used to assess the effect of the IEMMC
method for ECG arrhythmias, such as sensitivity, specificity, and accuracy. Compared with K-means and iterSVR algorithms, the
IEMMC algorithm reflects better performance not only in clustering result but also in terms of global search ability and convergence

ability, which proves its effectiveness for the detection of ECG arrhythmias.

1. Introduction

Electrocardiogram (ECG) is widely used in cardiology since it
consists of effective, simple, noninvasive, low-cost procedures
for the diagnosis of cardiovascular diseases (CVDs). Since
the state of cardiac heart is generally reflected in the shape
of ECG waveform and heart rate, ECG is considered to
be a representative signal of cardiac physiology, useful in
diagnosing cardiac disorders and detecting any arrhythmia
[1,2].

ECG arrhythmia can be defined as any of a group of
conditions in which the electrical activity of the heart is
irregular and can cause heartbeat to be slow or fast. It can
take place in a healthy heart and be of minimal consequence,
but they may also indicate a serious problem that leads
to stroke or sudden cardiac death. As ECG signal being
nonstationary signal, the arrhythmia may occur at random
in the time-scale, which means, the arrhythmia symptoms
may not show up all the time but would manifest at certain
irregular intervals during the day. Therefore, for effective

diagnostics, the variability of ECG signal may have to be
observed over several hours. For this reason, together with
the fact that the volume of the ECG data is enormous, the
study is tedious and time consuming. Thus, automatic and
computer-based detection and classification of arrhythmia is
critical in clinical cardiology, especially for the treatment of
patients in the intensive care unit [1].

In the recent years, several methods have been developed
in the literatures for detection and classification of ECG
arrhythmias. Artificial neural network (ANN) classification
method is one of the main methods for ECG arrhyth-
mia recognition. By integration of many data reduction
and feature extraction techniques, such as principal com-
ponent analysis (PCA), independent component analysis,
fuzzy logic, and wavelet transform (WT), improved ANN
techniques have been shown to be able to recognize and
classifty ECG arrhythmia accurately [3-7]. However, many
ANN algorithms suffer from slow convergence to local and
global minima and from random settings of initial values of
weights [7]. Since support vector machine (SVM) classifiers



do not trap in local minima points and need less training
input, various methods of SVM have been adopted for ECG
signals classification and proved to be effective [8-11].

Although many ECG arrhythmia classification methods
show good performance in the laboratory, there are only few
techniques gaining popularity in practical applications. One
of the main reasons is that most methods are supervised
methods which require multiple samples manually labeled
with the correct type of ECG signals in context. From
these samples, a supervised system can learn to predict the
correct sense of the similar ECG signal in a new context.
However, these data sets are labor intensive, time consuming,
and expensive to produce; thus, few data could be labeled
and may be only for several ambiguous types. Therefore,
using this technique to detect all kinds of arrhythmias is
not optimal in the diagnosis of cardiovascular arrhythmia.
Moreover, same state of cardiac heart presents different ECG
waveforms for different individual characteristics because
of the differences in their body, such as heart volume and
coronary artery. Even for the same individual, the waveforms
would present different shapes when the sample is involved
in different activity states, such as walking, running, and
sleeping. In order to address this problem, some methods
containing unsupervised techniques are developed to analyze
the ECG arrhythmia [4-6, 12-16], which do not need any
labeled training sample and can find out unknown ECG
arrhythmia. In these methods, the key point is the design of
an ideal clustering method, as the accuracy of cluster analysis
significantly affects the overall performance.

In this paper, we propose a novel immune evolution
maximum margin clustering method (IEMMC) for ECG
arrhythmias detection. Specifically, we decompose the ECG
arrhythmias diagnosis procedure into three steps, including
signal processing, feature extraction, and clustering. First, we
apply a wavelet transform based adaptive filter to remove
the noise and detect ECG waveform. Then, features are
extracted to represent ECG signal. Finally, we employ max-
imum margin clustering (MMC) method to recognize ECG
arrhythmias. Considering huge amount of ECG data and
expensive computation of traditional MMC algorithm [17],
we propose the IEMMC algorithm as the improvement of the
existing MMC and make it more suitable for the detection
of ECG abnormalities. Our key contribution is to utilize
immune evolutionary algorithm to perform optimization
directly on the nonconvex optimization problem formulated
by original MMC problem and find the optimal solution
which has maximum margin. Our IEMMC method avoids
the requirement of solving a nonconvex integer problem and
semidefinite programming (SDP) relaxations in the tradi-
tional MMC algorithm, which is computationally expensive
and time consuming. Due to the outstanding global search
ability and robustness of immune evolutionary algorithm,
performance of the IEMMC algorithm could maintain at a
high level even with a poor quality of random initialization,
and the astringency of the IEMMC method is also superior
to the existing approaches.

The rest of this paper is organized as follows. Section 2
describes our proposed ECG arrhythmias detection system,
including signal preprocessing, feature extraction, and the
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FIGURE 1: The automatic detection system for ECG arrhythmias.
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FIGURE 2: The adaptive ECG filter based on wavelet transforms.

[EMMC method for ECG arrhythmias. Then, the cluster
performance is examined through simulation experiments
in Section 3. Finally, the concluding remarks are given in
Section 4.

2. A Novel Automatic Detection
System for ECG Arrhythmias

The automatic detection system for ECG arrhythmias con-
sists of three stages and is constructed as shown in Figure 1.
The first stage is the preprocessing which includes filtering,
baseline correction, and waveform detection. The second
stage is the feature extraction which aims to find the best
coefficients set to describe the ECG signal. The last stage is
designed to cluster ECG periods using the IEMMC algorithm
according to the previously extracted features in order to
construct the arrhythmia classes.

2.1. Preprocessing

2.1.1. ECG Signal Filtering. ECG signals can be contami-
nated with several types of noise, such as motion artifact
(MA), electromyogram noise (EMG), and baseline wander-
ing (BW), which can affect the feature extraction algorithm.
So, the ECG samples should be preprocessed before feature
extraction and clustering. Due to the frequency spectrum
overlapping between ECG signal and noise like motion
artifact and baseline wandering which is less than 7 Hz, tradi-
tional wavelet decomposition and wavelet threshold method
would make ECG waveform distorted, such as the distortion
of P wave or T wave signal. For this situation, we apply
a wavelet transform based adaptive filter which combines
the advantages of wavelet transform and adaptive filtering
techniques to preprocess the ECG signal. The construction
of our ECG signal filter is demonstrated in Figure 2.

As Figure 2 shows, the procedures of the ECG signal filter
can be summarized as the following four steps.

(1) According to the sampling frequency of ECG signal,
the least wavelet decomposition level i could be
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TABLE 1: Nine features of ECG signal.

RR, (s) RR;l (s) QRS, (s) PR, (s) QT,, (s) ST, (s) R, (mv) P, (mv) T, (mv)

0.8477 0.8692 0.0742 0.1663 0.2930 0.2188 1.8149 0.0570 0.6817

0.9023 0.8931 0.0742 0.1445 0.2891 0.2148 1.6339 0.0142 0.5926

0.8594 0.8916 0.0781 0.1406 0.2852 0.2070 2.3085 0.0579 0.6125

0.8281 0.8034 0.0742 0.1663 0.2931 0.2109 2.1007 0.0469 0.6247

determined by separating ECG signal from high-
frequency noise. Then, the ECG signal with noise
could be wavelet decomposed into i scales.

(2) After wavelet decomposition and removal of precise
components containing high-frequency noise signal,
we set the approximate components E; which contain
ECG signal without high-frequency noise as the
primary input signal of the adaptive filter.

(3) Inline with spectrum relations between various wave-
form and low-frequency noise, such as baseline drift
and motion artifact, the least wavelet decomposition
level j which can separate ECG signal from low-
frequency noise would be determined. By wavelet
decomposition of E, into j scales, the left approximate
components E, containing baseline drift, motion
artifact, and other low-frequency interference would
be taken as the reference input signal of the adaptive
filter.

(4) Least mean squares (LMS) adaptive filtering is used
to preprocess the primary input signal and get clear
ECG signals.

2.1.2. Waveform Detection. The waveform detection of the
ECG signal is the very basis of feature extraction. There
are actually three separate algorithms, each of which is
designated to detect certain waveform of ECG signal.

(1) R Detection. The detection of QRS complex takes a vital
role in ECG waveform detection. In order to achieve QRS
complex detection, R wave must be located at first. According
to the fact that R wave boasts the largest slope, difference
of ECG amplitude array is generated to make R peaks more
noticeable. Then, a practically lower limit is employed to
remove unrelated noisy peaks from the signal. In order
to avoid interference of big T wave, the relative refractory
period, which lasts 200 ms after R peak is detected, should
be skipped. Meanwhile, every RR interval should be judged
in case of escaped inspection of R peak.

(2) QS Detection. After finishing the positioning of R wave,
Q and S peaks can be identified in accordance with the
morphological characteristics. Q and S peaks occur around
the R peak within 0.1 second. The turning point connecting
baseline and falling edge is just the Q peak. Similarly, S peak
could be found in the right side.

(3) P and T Wave Detection. In the light of waveform
characteristics of the normal ECG signal, it is found that P
wave, QRS wave, and T' wave appear alternately. Besides, the

gap between the peak of P wave and QRS is no more than
0.16 seconds. This suggests that the maximum voltage point
within 0.16 seconds before the Q peak shall be P peak, while
the maximum voltage point between S peak and the next P
peak shall be the T peak.

2.2. Feature Extraction. Feature extraction is a process to
determine the best coefficients which could describe the ECG
waveform accurately. In order to extract the best features that
represent the structure of the ECG signals, nine times domain
coefficients belonging to two succeeding ECG periods are
considered, as shown in Table 1. The first row in the table is
the name of the features, while the rest show the value of each
feature. All features are listed as follows:

(a) normalized RR interval between the acquired R wave
and the preceding R wave (RR,);

(b) normalized RR interval between the acquired R wave
and the following R wave (RR;);

(c) normalized QRS interval of the acquired beat (QRS,,);
(d) normalized PR interval of the acquired beat (PR,);

(e) normalized QT interval belonging to the acquired
beat (QT,,);

(f) normalized ST interval of the acquired beat (ST,,);
(g) normalized R amplitude of the acquired beat (R,);
(h) normalized P amplitude of the acquired beat (P,);
(i) normalized T amplitude of the acquired beat (T},).

QRS interval is calculated as the time interval between
Q wave and S wave. PR interval is calculated as the time
interval between the P peak and the R peak. ST interval is
calculated as the time interval between S wave and T peak.
QT interval is measured as the time interval between T wave
and the onset time of the Q wave. From the medical point
of view, the detection of arrhythmia depends on two or more
ECG signal periods. The previous period of an ECG signal has
many indicators of current arrhythmia. So, in our approach,
two QRS periods’ parameters RR,, and RR, are considered to
be the features of ECG signal. R amplitude is measured as the
distance between the peak of the R wave and the baseline. P
amplitude and T amplitude are measured in the same way.

2.3. Clustering Method for ECG Arrhythmia

2.3.1. Maximum Margin Clustering. The MMC extends the
theory of SVM to the unsupervised scenario, which aims to
find a way to label the samples by running SVM implicitly
with the maximum margin over all possible labels [18].



Mathematically, given a point set y = {x;,...,x,} and
their labels y = {y;,...,»,} € {-1,+1}", SVM seeks a
hyperplane f(x) = w’¢(x) + b by solving the following
optimization problem:

1o %
min—|w|”+C ) ¢
mins el +C Q5

sty (wT¢> (x) + b) >1-¢, ®

£&>0,i=1,...,n

where ¢(:) is a nonlinear function that maps the data samples
in a high dimensional feature space and makes the nonsep-
arable problem in the original data space to be separable in
the feature space. The &; values are called slack variables, and
C > 0 is a manually chosen constant.

Different from SVM, where the class labels are given and
the only variables are the hyperplane parameters (w, b), MMC
aims at finding not only the optimal hyperplane (w*,b"),
but also the optimal labeling vector y [17]. Originally, this
task was formulated in terms of the following optimization
problem [18]:

min min—|w||”+C
yef- L+1'w,bE 2 " ” Zg

sty (wT¢ (x) + b) >1-¢, @

£>0,i=1,...,n, C>0.

However, the previous optimization problem has a triv-
ially “optimal” solution, which is to assign all data to the same
class and obtain an unbounded margin. Moreover, another
unwanted solution is to separate a single outlier or a very
small group of samples from the rest of the data. To alleviate
these trivial solutions, Xu et al. [18] imposed a class balance
constraint on y,

—t<ey<e, (3)

where £ > 0isa constant to control the class imbalance, which
could bound the difference in class size and avoid assigning
all patterns to the same class, and e is an all-one vector.

The MMC method often outperforms common clustering
methods with respect to the accuracy [17, 18]. It can be
expected that the detection of ECG arrhythmia by using
the MMC algorithm will achieve a high level of accuracy.
However, applying the approach requires solving a noncon-
vex integer problem, which is computationally expensive,
and only small data sets can be handled by the MMC
method so far. At present, various optimization techniques
have been applied to handle this problem. Xu et al. [18]
proposed to make several relaxations to the original MMC
problem and reformulate it as a SDP problem, which can
then be solved by standard SDP solvers such as SDPT3
and SeDuMi. Valizadegan and Jin [19] further proposed
the generalized MMC algorithm which reduces the scale
of the original SDP problem significantly. To make MMC
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method more practical, Zhang et al. [17] put forward a
method which iteratively applied an SVM to improve an
initial candidate obtained by a K-means preprocessing step.
Recently, Zhao et al. [20] proposed a cutting plane MMC
method based on constructing a sequence of intermedi-
ate tasks and each of the intermediate tasks, was solved
using constrained concave-convex procedure. Although the
recently proposed approaches have improved the efficiency
of the MMC method, the application of these methods has
not always been guaranteed. For example, as an iterative
approach, the performance of iterSVR algorithm [17] which
begins with assigning a set of initial labels is crucial for the
quality of initialization. Random initialization will usually
result in poor clustering.

2.3.2. Maximum Margin Clustering with Immune Evolution.
The concept of SVMs can be considered to be a special case
of regularization problems in the following form:

inf - L(y,,f(x )+ Alflz (4)

feHn

where A > 0 is a fixed real number, L : Y xR — [0,00) is
a loss function measuring the performance of the prediction
function f on the training set, and | f IIf{ is the squared norm
in a reproducing kernel Hilbert space H ¢ R* = {f :
X — R}induced by a kernel function. In the SVM approach
(1), the hinge loss L, (y, f) = max{0,1 — yf(x)} with y €
{—1, +1} is used. Instead of using the hinge loss, our approach
penalizes overconfident predictions by using the square loss

Ly, f) = (y - f(x))* leading to

mm ||w|| +— Zn
(5)

s.t. yi((qub(x,-))+b) =1-n i=1...,n

So, in our MMC algorithm, we aim at finding a solution
for

. 15 Cx )
min H%M@=EWH+EZW
i=1

ye{-1+1}"w,b

sty ((wT¢ (x,-)) + b) =1-1, (6)

In order to solve problem (6), the original non-convex
problem is considered to be a special case of optimization
problem, and immune evolutionary algorithm is proposed
to find optimal solution. Recent studies have shown that the
immune evolutionary algorithm possesses several attractive
immune properties that allow evolutionary algorithms to
avoid premature convergence and improve local search capa-
bility [21-25]. By utilizing powerful global search capability
and fast convergence of the immune evolutionary algorithm,
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IEMMC could avoid SDP relaxations and find optimal
solution of the MMC method efficiently.

The Process of IEMMC Algorithm. The framework of our
IEMMC algorithm is given by Algorithm 1.

Algorithm 1 (Maximum Margin Clustering with Immune
Evolution).

Step 1. Generate a set of candidate solutions P = {y,,...,
Ymar) € {=1,+1}", composed of the subset of memory cells
P, added to the remaining P, (P = P, + P,). P should
fulfill the balance constraint (3) and [|y; — yjll > t,, t,is the
suppression threshold.

Step 2. Compute the affinity values F(y) for each y; € P.

Step 3. Determine the N, best individuals, P, of the popula-
tion P,, based on an affinity measure. Perform clone selection
on the population P, to generate a temporary population of
clones P".

Step 4. Determine the N,, best individuals, P, of the
remaining population P, — P,, based on an affinity measure.
Apply mutation to the antibodies population P,,, where the
hypermutation is proportional to affinity of the antibody. A
maturated antibody population P,, is generated.

Step 5. Re-select the improved individuals from P and P, to
compose the memory set and the population P,.

Step 6. Perform receptor editing, replace some low affinity
antibodies of the population P, by randomly created new
antibodies, maintaining its diversity.

Step 7. If termination conditions are not satisfied, go to Step 2.
Step 8. Return the best individual y;,.

The starting point is generating a set of candidate
solutions P = {y1,..., Yyt S {-1,+1}", composed of
the subset of memory cells P, added to the remaining
P. (P = P, + P,). Each of these individuals constitutes a
possible solution for optimization problem (6). Throughout
our IEMMC algorithm, we ensure that only valid individuals
are created; that is, individuals y should fulfill the balance
constraint (3). In Step 2, the affinity value F(y) is computed
for each of the initial individuals, where

F(y) = exp(-minJ (y,w,b)). (7)

Depending on the affinity values, the copies of the antibodies
are generated, and clone selection is performed on superior
individuals. In Step 4, mutation process is applied to the
antibodies. If the affinity value of the new antibody is
better than that of original value, new antibody is stored
in the place of the original one; otherwise, old antibody
is kept in population. After the mutation process, receptor
editing is applied to the antibody population. In the receptor
editing process, a percentage of antibodies in the antibody
population are replaced by randomly created new antibodies.

When the best individual satisfies termination condition, y;
would be returned.

Fitness Computation. For fixed solution y, the problem
formulated in the function (6) could be solved by the standard
SVM learning algorithm. So, we can compute (w, b) from the
Karush-Kuhn-Tucker (KKT) conditions as usual to maximize
margin between clusters. But this solution (w, b, y) is not the
optimal clustering solutions for problem (6). Therefore, we
continue to find a better bias b and cluster label y by fixing w
and minimizing problem (6) which is reduced to

n;,ibn; (w-¢(x;) +b- J’i)2

sty € {xl}, ®

i=1,...,n —ESeTySE.

Then, problem (8) can be solved without the use of any
optimization solver by the following proposition. At first,
we sort w’ ¢(x;) and use the set of midpoints between any
two consecutive w’ ¢(x;) values as the candidates of b. From
these candidates of b, the first (n — [)/2 and the last (n —[)/2
of the candidates should be removed for not satisfying the
class balance constraint (3). For each remaining candidate,
we determine y = sign(wT(p(x) + b) and compute the
corresponding objective value in (8). Finally, we choose b and
corresponding y that has the optimal objective. Since both w
and b have been determined, fitness value F(y) for the new
individual y can be obtained by F(y) = exp(— min J(y, w, b)).

3. Experiment and Results

3.1. Experimental Data. Experimental data of ECG arrhyth-
mias used in this study are taken from MIT-BIH ECG
Arrhythmias Database [26]. All ECG data are classified
into five classes according to standard of The Association
for the Advancement of Medical Instrumentation (AAMI)
[27], since this database urges all users to follow the AAMI
recommendations. In this standard, abnormal ECG could
be divided into following four types. Type S contains atrial
premature (AP), nodal premature (NP), and supraventricular
premature (SP). Type V contains premature ventricular con-
traction (PVC) and ventricular ectopic (VE). Type F contains
fusion of ventricular and normal beat. Type Q contains paced
beat, fusion of paced and normal beat, and unclassified beat.
The other kinds of heartbeats are considered as N type,
including normal beat, atrial escape (AE), nodal escape (NE),
right bundle branch block (R), and left bundle branch block
(L).

Totally 1682 ECG periods are selected from seven records
of MIT/BIH database to test the correctness of the IEMMC
algorithm. The distribution of records is shown in Table 2.
The first row corresponds to the labels according to the AAMI
standard. And the first column is the name of the records,
whereas the others contain the number of heartbeats of each

type.



TABLE 2: The number of sample records according to arrhythmia
type.
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TABLE 4: The performance analysis result of the ECG arrhythmias
clustering method.

MIT code N S A% Q Total Arrhythmia type Sensitivity (%) Specificity (%) Accuracy (%)
106 104 0 83 0 0 187 N 97.9 92.7 95.4

200 125 0 112 0 0 237 S 83.0 98.0 95.8

208 95 0 0 86 0 181 F 82.4 97.5 95.6

209 102 106 0 0 0 208 \% 82.8 98.7 96.6

213 106 0 0 113 0 219 Q 83.9 97.9 96.0

217 205 0 0 0 211 416 Total 90.3 97.4 95.9

222 122 112 0 0 234

Total 859 218 195 199 211 1682

TaBLE 3: The ECG arrhythmias clustering results using the IEMMC
algorithm.

Clustering result

Arrhythmia type N S F \4 Q
N 803 15 12 13 16
S 27 191 0 0 0
\% 35 0 164 0 0
F 17 0 0 178 0
Q 28 0 0 0 183

3.2. Experimental Results. In this section, we demonstrate
the superiority of the proposed IEMMC procedure for ECG
arrhythmias detection, and the following three types of
performance evaluation indicators are used to assess the
effect of ECG arrhythmias clustering method:

.y TP
sensitivity = ———,
(TP + FN)
TN
ificity = ———
specificity P+ TN) )
(TP + TN)
accuracy = >
(TP + FN + FP + TN)

where true positive (TP) means the number of true arrhyth-
mia that has been successfully detected; false positive (FP)
is the number of true arrhythmia that has been missed; true
negative (TN) means the number of corresponding nontarget
arrhythmia that has been correctly detected; false negative
(FN) is the count of nontarget arrhythmia that has been
detected wrongly.

The simulation results are listed in Table 3, and the
performance analysis of the clustering result is in Table 4. As
shown in Tables 3 and 4, by using the IEMMC algorithm, the
correctness of ECG arrhythmias is at a high level.

From the result, we can find that type N is the most
regular and numerous heartbeats and easy to be separated
from the other types; so, its result is better than other types.
However, the performance of type F is lower than that in the
previous case. Given that morphology of type F is often very
similar to that of other types, it is very difficult to characterize
type E.

In order to verify and measure the IEMMC algorithm’s
superiority, three methods are developed in parallel to

compare with our algorithm, including standard K-means
algorithm, iterSVR which is the first approach capable of
dealing with large data sets [17], and SVM which has been
proved to be a successful supervised learning method for
ECG recognition and classification [8-11]. The performance
of all clustering methods is shown in Figure 3. Two initializa-
tion schemes are developed for both iterSVR and IEMMC in
the experiment: (1) random; (2) standard K-means clustering
(KM). In the first scheme, initial candidate solutions of
IEMMC and iterSVR are generated randomly. In the second
scheme, iterSVR is initialized by standard K-means cluster-
ing. Only one of IEMMC candidate solutions is initialized
by standard K-means clustering, and the rest solutions are
generated at random. The class balance parameter of both
IEMMC and iterSVR is always set as L = 0.2 * n. Also,
20% of the ECG data are extracted randomly to be the
training data of the SVM classification. The radical basis
function (RBF) kernel k(x, x') = exp(—|lx - x'||/o?) is used
for all the kernel methods in the experiment. As for the
regularization parameter C, we choose the best value from
a set of candidates (1, 10, 100, 500) for each data set. All
algorithms are, respectively, repeated three times because of
the inherent randomness. For each method and each data set,
we report the result with its best value chosen from a set of
candidates.

From Figure 3, the IEMMC’s performance is as similar
as that of the SVM and better than those of all clustering
methods. Also, we can find that the performance of iterSVR
largely depends on the superiority of initialization. With
random initialization, clustering result from iterSVR is even
worse than that of K-means algorithm. Since the perfor-
mance of K-means is also unsatisfactory, even initialized
by K-means, iterSVR still cannot meet the expectation of
the ECG arrhythmia diagnosis. However, inheriting the out-
standing global optimization ability of immune evolutionary
algorithm, the IEMMC algorithm can find the best clustering
for objective function in a very short evolution period, even
in the case of random initialization. Additionally, IEMMC
algorithm not only excelled in performance but also in
convergence. While iterSVR needs to iterate ten times to find
solution, the IEMMC algorithm only needs to evolve four
generations. Especially, the IEMMC algorithm could obtain
the same optimal solution from different initializations in few
generations of evolutions, due to the prominent convergence
and global search ability. This excellent performance in the
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FIGURE 3: The performance comparison of different clustering methods.

experiment has proved that the IEMMC algorithm is very
effective for the detection of ECG arrhythmia.

4. Conclusions

In this paper, a novel IEMMC algorithm is proposed to cluster
the ECG signal and detect ECG arrhythmias, which itera-
tively updates the quality of candidates by means of immune
evolutionary without employing any training process. The

experimental analysis reveals that our approach yields better
clustering performance than some competitive methods in
most cases.

In the future, we will use some other biological principles
based evolutionary algorithm to solve the MMC problem,
like ant colony optimization and particle swarm optimizer,
since they have been proved to have global optimizaton
ability. Furthermore, comparison with immune evolutionary
algorithm will be done to find out a more efficient ECG data
clustering algorithm.
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