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Multiple testing has been widely adopted for genome-wide studies such as microarray experiments. For effective gene selection in
these genome-wide studies, the optimal discovery procedure (ODP), which maximizes the number of expected true positives for
each fixed number of expected false positives, was developed as a multiple testing extension of the most powerful test for a single
hypothesis by Storey (Journal of the Royal Statistical Society, Series B, vol. 69, no. 3, pp. 347–368, 2007). In this paper, we develop an
empirical Bayes method for implementing the ODP based on a semiparametric hierarchical mixture model using the “smoothing-
by-roughening” approach. Under the semiparametric hierarchical mixturemodel, (i) the prior distribution can bemodeled flexibly,
(ii) the ODP test statistic and the posterior distribution are analytically tractable, and (iii) computations are easy to implement. In
addition, we provide a significance rule based on the false discovery rate (FDR) in the empirical Bayes framework. Applications to
two clinical studies are presented.

1. Introduction

The comprehensive, gene expression microarrays are a pow-
erful tool for screening the differentially expressed genes
among different phenotypes such as clinical subtypes and
prognostic classes of disease from a large pool of candidate
genes. Gene screening studies have the potential to be useful
for elucidating disease biology and aggressiveness, identify-
ing new therapeutic targets, and developing new molecular
diagnostics for optimized medicine for individual patients
[1–4]. The high dimensionality of microarray data, however,
has posed special challenges in extracting a small number
of relevant genes from a large quantity of noise variables
by gene screening analysis. In addition to the control of
false positives [5–7], improvement of the efficiency of gene
screening analysis is important.

For efficient screening of differentially expressed genes,
Storey [8] developed the optimal discovery procedure (ODP),
which can be interpreted as an extension of themost powerful
test for a single hypothesis testing [9] to multiple testing.
Storey defined an optimality criterion formultiple testing that
maximizes the expected number of true positives (ETP) for

each fixed level of expected false positives (EFP) [8].TheODP
was developed as a testing procedure that achieves this opti-
mality; it improves the overall performance of multiple tests
by “borrowing strength” across tests. However, in applying
the ODP, the following two components must be estimated:
(a) the true status of each significance test (null or alternative)
and (b) the true probability distribution corresponding to
each test [8]. To address these estimation problems, Storey
et al. [10] constructed the generalized likelihood ratio statistic
[11], using maximum likelihood estimates. Cao et al. [12] also
proposed a Bayesian approach, andWoo et al. [13] developed
a computationally efficient method called “modular ODP.”

More recently, Noma and Matsui [14] developed an
empirical Bayes approach for the ODP that can effectively
circumvent the estimation problems of (a) and (b). Under
a hierarchical, random effects model, they showed that the
ODP was derived as a testing rule based on the marginal
likelihood ratio statistic. In their numerical evaluations based
on simulations, the empirical Bayes method nearly achieved
the theoretical bound of ETP (i.e., average power) and
performed well, compared with the existing methods under
a broad range of conditions [14].
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A critical aspect of this empirical Bayes approach is that
a fully parametric form in the hierarchical modelling must
be specified. Although most of the empirical Bayes methods
previously discussed in microarray studies [15–21] assume
fully parametric natural conjugate models for the prior
distribution, this assumption might be restrictive because of
possible substantial diversity of effect size among informative
genes caused by complex molecular pathways, whose distri-
bution is generally unknown in microarray studies. In this
article, we develop an empirical Bayes method for the ODP
based on a semiparametric hierarchical mixture model, in
which the prior distribution for effect sizes is not specified
parametrically. We estimate the nonparametric component
of the prior distribution by applying the “smoothing-by-
roughening” approach [22, 23] and provide an effective
computational method for the ODP statistic.

This article is organized as follows. In Section 2, we
provide a brief overview of the theoretical results regarding
the ODP methods by Storey [8] and Noma and Matsui [14].
In Section 3, we describe the semiparametric hierarchical
mixture model and how to implement the ODP method.
We present applications to prostate cancer and lymphoma
clinical studies in Section 4. Finally, we provide a discussion
in Section 5.

2. The Optimal Discovery Procedure in
Multiple Significance Testing

2.1. Storey’s Optimal Discovery Procedure. In this section, we
briefly review the theoretical results regarding theODPmeth-
ods. We denote the datasets from 𝑚 genes as x

1
, x
2
, . . . , x

𝑚
,

where x
𝑘
= (𝑥
𝑘1
, 𝑥
𝑘2
, . . . , 𝑥

𝑘𝑛
)
𝑇
(𝑘 = 1, . . . , 𝑚). In microarray

studies, x
𝑘
corresponds to a set of log-transformed, normal-

ized gene expressions from 𝑛 samples for the kth gene (see
Section 4). Also, suppose that the datasets are randomvectors
defined in a common probability space. The optimal goal
when identifying differentially expressed genes is to find as
many true positives as possible, without incurring too many
false positives [10]. Storey [8] defined an optimal criterion
of multiple testing as a rule of statistical significance that
maximizes ETP for a certain fixed EFP level.

He derived the following lemma that gives the multiple
testing procedure that achieves the optimal criterion.

Lemma 1 (Storey [8]). Suppose the 𝑘th test has a null
density 𝑓

𝑘
(x) and alternative density 𝑔

𝑘
(x) (𝑘 = 1, . . . , 𝑚).

Also, assume that the null hypothesis is true for the 𝑘th test
(𝑘 = 1, . . . , 𝑚

0
) and the alternative is true for 𝑘 = 𝑚

0
+

1, . . . , 𝑚, without loss of generality. The following significance
threshold statistic achieves the ODP criterion:

𝑆ODP (x) =
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𝑚0+1
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(x) + ⋅ ⋅ ⋅ + 𝑓

𝑚0
(x)

. (1)

Given a fixed cut-off 𝜆 (0 ≤ 𝜆 < ∞) chosen to attain an
acceptable EFP level, the null hypothesis for the 𝑘th test is
rejected if and only if 𝑆ODP (x𝑘) ≥ 𝜆.

It should be noted that the ODP statistic is composed of
all the density functions on 𝑚 tests. In other words, through
borrowing strengths across m tests, the overall power is
improved more than the conventional most powerful test for
single hypothesis tests [9, 11]. Also, the optimality result is
held regardless of correlation structure among the datasets
x
1
, x
2
, . . . , x

𝑚
.

As mentioned in Section 1, for applying 𝑆ODP(x), there
are two practical issues: (a) estimation of the true status of
each hypothesis (null or alternative), corresponding to the
numerator and denominator of 𝑆ODP(x), and (b) estimation
of the true probability density functions 𝑓

𝑘
(x)’s and 𝑔

𝑘
(x)’s

at which x
𝑘
’s are evaluated. Storey et al. [10] provided an

practical estimating method, motivated by the generalized
likelihood ratio test for single significance tests [11]. They
noticed that the significance rule based on

𝑆ODP (x) + 1
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is equivalent to that of 𝑆ODP(x) in Lemma 1. For each test
𝑘 = 1, . . . , 𝑚, let ̂𝑓

𝑘
(x) be an estimate of the null density

function with all the unknown parameters replaced by their
maximum likelihood estimates under the constraints of the
null hypothesis, and let 𝑔̂

𝑘
(x) be the analogous estimate for

the alternative hypothesis using the unconstrainedmaximum
likelihood estimates. Then, Storey et al. [10] proposed to use
the canonical plug-in estimate:

𝑆̂ODP (x) =
𝑔̂
1
(x) + 𝑔̂

2
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where 𝑤̂
𝑘
(𝑘 = 1, 2, . . . , 𝑚) is an estimate of the status of the

𝑘th hypothesis. For estimating 𝑤̂
𝑘
, Storey et al. [10] ranked the

tests based on a univariate statistic (e.g., the t-statistic for two-
class comparison) and estimated it as 𝑤̂

𝑘
= 1 when the 𝑘th

test fell below the estimated proportion of true nulls by Storey
[6], and 𝑤̂

𝑘
= 0 otherwise. Other estimating procedures for

𝑆ODP(x) were also proposed by Cao et al. [12] and Woo et al.
[13].

2.2. Empirical Bayes Approach by Noma and Matsui [14]. As
Storey [8] pointed out, the ODP is analogous to the well-
known shrinkage estimation for multiple-point estimation
[24, 25]. Because the shrinkage estimation is interpreted as
the empirical Bayes estimation [26–28], hierarchical mod-
elling would be a natural formulation for information sharing
across tests, both in deriving the ODP and in developing
estimation methods for implementing it [14].

Suppose that the probability density functions for
x
1
, x
2
, . . . , x

𝑚
have the same parametric form 𝑓(x | 𝜃

𝑘
,𝜓
𝑘
),

where 𝜃
𝑘
is the parameter of interest and 𝜓

𝑘
is the nuisance

parameter for the 𝑘th test. We assume the following prior
distribution for the parameters (𝜃

𝑘
,𝜓
𝑘
):

null : (𝜃k,𝜓k) ∼ 𝐺0 (𝜃,𝜓 | 𝜉0) ,

alternative : (𝜃k,𝜓k) ∼ 𝐺1 (𝜃,𝜓 | 𝜉1) ,
(4)
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where 𝜉
0
and 𝜉

1
are the hyperparameters of the prior

distribution.

Lemma 2 (Noma and Matsui [14]). Under the empirical
Bayes framework with the prior distribution (4), the following
significance threshold function achieves the ODP criterion:

𝑅ODP (x) =
𝐸
𝐺1
[𝑓 (x | 𝜃,𝜓)]

𝐸
𝐺0
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1
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0
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0
)

.

(5)

For a fixed cut-off 𝜆 (0 ≤ 𝜆 < ∞) chosen to reach an acceptable
EFP level, the null hypothesis for the 𝑘th test is rejected if and
only if 𝑅ODP (x𝑘) ≥ 𝜆.

See Noma andMatsui [14] for interpretations of 𝑅ODP(x).
For the specification of the prior distributions 𝐺

0
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𝜉
0
) and 𝐺

1
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1
), Noma and Matsui [14] adopted the

empirical Bayes method [26, 27]. The empirical Bayes imple-
mentation is used to obtain estimates for 𝜉

0
and 𝜉
1
from the

data, which can then be substituted into the ODP statistic,
𝑅ODP(x),
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where ̂𝜉
0
and ̂𝜉
1
are the estimators of 𝜉

0
and 𝜉
1
, respectively.

In comparisonwith the existingODPestimationmethods
based on 𝑆ODP(x), the empirical Bayes approach has two
advantages. First, it estimates only the hyperparameters 𝜉

0

and 𝜉
1
for the random effects models, and not the parameters

in the density function x
𝑘
(𝑘 = 1, . . . , 𝑚), for which a large

number of parameters (thousands or more in microarray
studies) must be estimated as in the procedure of Storey et al.
[10]. Second, in the empirical Bayes approach, the estimation
of the true status, null or alternative, for each test is not
needed.

3. Semiparametric Hierarchical Mixture Model
and the ODP

3.1. Semiparametric Hierarchical Mixture Model. In this sec-
tion, we consider applying the ODP to concrete microarray
analyses of two-class comparisons (with classes denoted as
“0” and “1”), for example, good prognosis and poor prognosis,
on the basis of the expression levels of 𝑚 genes from 𝑛

samples. The gene expression data considered here comprise
normalized log ratios from two-color complementary DNA
arrays or normalized log signals from oligonucleotide arrays
(e.g., Affymetrix GeneChip). Let 𝑛

0
and 𝑛

1
be the sample

sizes of classes 0 and 1, respectively. Let 𝜇
0𝑘

and 𝜇
1𝑘
(𝑘 =

1, 2, . . . , 𝑚) be the means of the gene expression levels for
classes 0 and 1, respectively. We consider the detection of

differentially expressed genes to be when 𝜇
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̸= 𝜇
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. That is,
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(7)

We assume that gene expressions of the 𝑘th gene are
normally distributed within each class,
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where 𝜎2
𝑘
is a commonwithin-class variance (𝑘 = 1, 2, . . . , 𝑚),

as in Storey et al. [10]. Let 𝑑
𝑘
be the difference of the mean

of the two classes for the 𝑘th gene (𝑘 = 1, 2, . . . , 𝑚), 𝜇
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Using this translation, the nuisance parameters 𝜇
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’s are

eliminated in the models of 𝑤
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and 𝑧
𝑘𝑖
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For applying the ODP to the testing problems 𝐻
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0𝑘
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𝑘
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where 𝛿(𝜃) in the first component of 𝜃
𝑘
is the Dirac delta

function, representing nondifferential expression between
two classes. The second component of 𝜃

𝑘
represents a com-

ponent of the differential expression, and 𝜋
0
and 𝜋

1
are the

mixing proportions for the components (𝜋
0
+ 𝜋
1
= 1).

The random effects distribution of the gene-specific vari-
ances 𝜎2

𝑘
is specified as the parametric conjugate model

for analytical tractability. For modeling 𝐺(𝜃), instead of
adopting a fully parametric conjugate normal distribution
model as done by Noma and Matsui [14], we apply the
“smoothing-by-roughening” approach of Laird and Louis
[22] and Shen and Louis [23]. This approach was proposed
to obtain the nonparametric maximum likelihood estimate
of the prior distribution in empirical Bayes analysis [29, 30].
This approach starts with a smooth estimate of the prior
distribution and uses the EM algorithm to “roughen” it
towards the nonparametric maximum likelihood estimate.
For modeling 𝐺(𝜃), we place supports at equally spaced
discrete mass points at a series of nonzero points a =

(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝐿
), for sufficiently large values of 𝐿. We assume

that

Pr (𝜃 = 𝑎
𝑗
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𝑗
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where 𝑝
1
+𝑝
2
+ ⋅ ⋅ ⋅ + 𝑝

𝐿
= 1. We denote the hyperparameters

of the distribution function for the differential component
as p = (𝑝

1
, 𝑝
2
, . . . , 𝑝

𝐿
). Shen and Louis [23] provided

a detailed guideline for implementing the smoothing-by-
roughening approach based on their numerical evaluations.
Shen and Louis [23] recommended that the number of grid
points should be at least 200. For simplicity, they suggested
the grid points can be equally spaced on the support of
the distribution. Increasing the number of grid points and
spacing them according to the prior density will provide
a better approximation of 𝐺(𝜃) and therefore will improve
the estimation, particularly for the tail areas. However, too
large numbers might not necessarily be beneficial. For more
details involving analytical and numerical evaluations, see
the guideline in Shen and Louis [23]. In this article, we
refer to this hierarchical model as the “semiparametric
hierarchical mixture model.” The important property of this
model is that the posterior distributions of 𝜃

𝑘
and 𝜎2

𝑘
(𝑘 =

1, 2, . . . , 𝑚) can be obtained analytically. We provide the
analytical representation of the posterior distributions in
Section 3.4.

The maximum likelihood estimates of the hyperparam-
eters 𝜂 = (𝜋

0
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1
, p, 𝛼, 𝛽) are obtained by the EM algorithm

[31]. Because the posterior distributions of 𝜃
𝑘
and 𝜎2

𝑘
are

obtained analytically, the E-step of the EM algorithm can
be implemented easily. The details of the EM algorithm are
presented in the appendix.

3.2. The Optimal Discovery Procedure. The ODP statistic
𝑅ODP(w, z) for the testing problems (11) is obtained as the
marginal likelihood ratio.Themarginal likelihood of the null
hypothesis corresponds to the marginal likelihood of the

nondifferential component:
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Similarly, the marginal likelihood of the alternative hypothe-
sis in (11) corresponds to that of the differential component:
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under the semiparametric hierarchical mixture model.
Thus, the ODP statistic (the marginal likelihood ratio) is

given as

𝑅ODP (w𝑘, z𝑘)

= (

𝐿

∑

𝑗=1

∫

∞

0

𝑝 (w
𝑘
, z
𝑘
| 𝜃
𝑘
= 𝑎
𝑗
, 𝜎
2

𝑘
)

× 𝑝 (𝜎
2

𝑘
| 𝛼, 𝛽) 𝑑𝜎

2

𝑘
Pr (𝜃
𝑘
= 𝑎
𝑗
))

× (∫

∞

0

𝑝 (w
𝑘
, z
𝑘
| 𝜃
𝑘
= 0, 𝜎

2

𝑘
) 𝑝 (𝜎

2

𝑘
| 𝛼, 𝛽) 𝑑𝜎

2

𝑘
)

−1

= (

𝐿

∑

𝑗=1

(

∑
𝑛0

𝑖=1
𝑤
2

𝑘𝑖
+∑
𝑛1

𝑖=1
(𝑧
𝑘𝑖
−𝑎
𝑗
)

2

2

+𝛽)

−(𝑛/2+𝛼)

𝑝
𝑗
)

×((

∑
𝑛0

𝑖=1
𝑤
2

𝑘𝑖
+ ∑
𝑛1

𝑖=1
𝑧
2

𝑘𝑖

2

+ 𝛽)

−(𝑛/2+𝛼)

)

−1

.

(16)



Computational and Mathematical Methods in Medicine 5

By plugging-in the maximum likelihood estimate of 𝜂, the
empirical Bayes testing procedure is implemented based on

𝑅̂ODP (w𝑘, z𝑘)

=

∑
𝐿

𝑗=1
((∑
𝑛0

𝑖=1
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2
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𝑗
)

2

) /2 +
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𝑗

((∑
𝑛0

𝑖=1
𝑤
2
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𝑖=1
𝑧
2

𝑘𝑖
) /2 +

̂
𝛽)

−(𝑛/2+𝛼̂)
.

(17)

Note that the ODP statistic is obtained in closed form using
the maximum likelihood estimate of 𝜂.

3.3. Assessing Significance. For assessing significance, we can
obtain an empirical Bayes estimator of FDR [5–7] under
the semiparametric hierarchical mixture model as follows.
For any given threshold 𝜆, we denote the significant region
Λ(𝜆) = {(w, z) | 𝑅ODP(w, z) ≥ 𝜆} for each test. Let Ξ
denote the set of indices for the significant genes. In the
framework of Bayesian selection rules, the FDR accords to
themisclassification error rate of differential/non-differential
classification [6, 7, 32], and one of the well-known Bayesian
estimator of the FDR [33, 34] is

F̂DR (𝜆) = 1

|Ξ|

∑

𝑘∈Ξ

Pr (𝐻
0𝑘
| w
𝑘
, z
𝑘
) , (18)

where
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(19)

Accordingly, an empirical Bayes estimator of F̂DR(𝜆) for the
significant region Λ(𝜆) = {(w, z) | 𝑅ODP(w, z) ≥ 𝜆} can be
obtained by plugging-in the maximum likelihood estimate of
𝜂.

Note that we conducted small simulations for checking
correctness of the proposed ODP procedure and these results
were provided in the Supplementary Materials available
online at http://dx.doi.org/10.1155/2013/568480.

3.4. The Posterior Distribution. Under the semiparametric
hierarchical mixture model, the posterior distributions of 𝜃

𝑘

and 𝜎2
𝑘
(𝑘 = 1, 2, . . . , 𝑚) can be obtained analytically as noted

above; this gives a computational advantage for implementing
Bayesian inference. The posterior distribution will be used to
derive estimates and confidence intervals of 𝑑

𝑘
’s, in addition

to the statistical significance measures such as the q-value.
Let 𝛾
0𝑘
and 𝛾
1𝑘
denote indicator variables to which the 𝑘th

gene component belongs (𝑘 = 1, 2, . . . , 𝑚).The joint posterior
distribution of (𝜃

𝑘
, 𝜎
2

𝑘
) is expressed as amixture of differential

and non-differential components:
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𝑘
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(20)

where 𝑝(𝜃
𝑘
, 𝜎
2

𝑘
| w
𝑘
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𝑘
, 𝛾
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0𝑘
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𝑘
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Section 3.3, and Pr(𝛾
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The posterior distribution of the differential component is
expressed as

𝑝 (𝜃
𝑘
= 𝑎
𝑗
, 𝜎
2

𝑘
| w
𝑘
, z
𝑘
, 𝛾
1𝑘
= 1)

= Pr (𝜃
𝑘
= 𝑎
𝑗
| 𝜎
2

𝑘
,w
𝑘
, z
𝑘
) 𝑝 (𝜎

2

𝑘
| w
𝑘
, z
𝑘
) ,

(21)

where
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Figure 1: The nonparametric estimate for the differential compo-
nent of the prior distribution of the prostate cancer data [38].

The marginal posterior distribution of 𝜃
𝑘
can be obtained as

follows:
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4. Applications

We illustrate our method using real data sets from two clin-
ical studies with microarrays. Because previous simulation
studies have indicated that the Storey’s method [10] is more
powerful than many other multiple testing methods [10, 12,
35], we chose to use this method as a reference.

4.1. Prostate Cancer Example. Efron [36, 37] analyzed a
modified gene expression data set from Singh et al. [38] with
𝑚 = 6033 genes for 𝑛 = 102 samples; 𝑛

1
= 52 prostate cancer

patients and 𝑛
0
= 50 healthy controls. For the proposed

empirical Bayes approach, we placed the grid points for G(𝜃)
equally spaced on [−1, 1] by 0.01 (except for 0; 𝐿 = 200).
The hyperparameters were estimated as 𝜋̂

0
= 0.716, 𝜋̂

1
=

0.284, 𝛼̂ = 8.624, and ̂𝛽 = 7.373, and the estimated prior
distribution for G(𝜃) is given in Figure 1. The estimated prior
distribution was skewed and multimodal. This indicates that
analytically tractable parametric models (for example, the
normal distribution) might be inadequate in this case.

Figure 2 presents the results of multiple testing by the
method of Storey et al. [10] and the empirical Bayes method
developed in this article.This plot summarizes the correspon-
dence of the numbers of significant genes and q-values [6, 7]
for varying values of the cut-off 𝜆. For a fair comparison, the
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Figure 2: Results of the multiple testing for the prostate cancer data
[38].
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Figure 3: The nonparametric estimate for the differential compo-
nent of the prior distribution of the lymphoma data [39].

same FDR-controlling method presented in Section 3.3 was
applied to these two methods. For any levels of the q-values,
the number of significant genes identified by the proposed
method was greater than that of the Storey et al. [10] method.

4.2. Lymphoma Example. Dave et al. [39] analyzed
Affymetrix HG-U133A and U133B (Affymetrix, Santa
Clara, CA) microarray data for 191 biopsy specimens
from patients with untreated follicular lymphoma with
𝑚 = 44,928. The data are available from the BRB-ArrayTools
Data Archive for Human Cancer Gene Expression [40]. We
compared patients who died within 5 years (poor prognosis;
𝑛
1
= 51) with patients who survived for more than 5 years

(good prognosis; 𝑛
0
= 109).

For the maximum likelihood estimate of the semipara-
metric prior distribution, the hyperparameters were esti-
mated as 𝜋̂

0
= 0.831, 𝜋̂

1
= 0.169, 𝛼̂ = 1.266, and ̂𝛽 = 0.311.

The estimated prior distribution for 𝐺(𝜃) is given in Figure 3.
(The grid points were placed on [−1, 1] equally spaced by
0.01 except for 0; L = 200.) Compared with the prostate
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Figure 4: Results of themultiple testing for the lymphoma data [39].

cancer data, large masses of the estimated 𝐺(𝜃) are located
in the regions of small 𝜃, and thus the signal on differential
expression contained in the data would beweaker than that in
the prostate cancer data. In Figure 4, the relationships of the
numbers of significant genes and their q-values are presented.
The number of significant genes identified by the empirical
Bayes method was greater than that of the method of Storey
et al. [10].

5. Discussion

For efficient gene screening using high-dimensionalmicroar-
ray data, multiple testing methodologies are effective tools
for controlling false positives findings. Although the multiple
testing can provide a relevant framework to ensure control
of false positives for a set of significant genes (e.g., FDR [5–
7]), researchers would like to find as many true positive genes
as possible for further investigations. The optimal discovery
procedure (ODP), introduced by Storey [8], would provide
an efficient solution for this requirement. Storey et al. [10]
provided desirable results in many numerical evaluations
[10, 12, 35].

In this article, we proposed an empirical Bayes ODP
method based on a semiparametric hierarchical model,
through relaxing the parametric prior assumption in the
empirical Bayes ODP method by Noma and Matsui [14].
Hierarchical mixture models and empirical Bayes methods
form a basis for information sharing across genes and
provide a framework for efficient multiple testing [15–21].
Although empirical Bayes methods are more robust to prior
misspecifications than eliciting a single prior, parametric
empirical Bayes methods can suffer from a lack of robustness
when the true prior is not from the assumed parametric
family, as pointed out by Morris [28], such as a failure
to incorporate the mixture structure or specify the form
of the effect-size distribution (G). Actually, the estimated
prior distribution in the prostate cancer example (Section 4.1)
had a multimodal and skewed shape. In such examples,
natural conjugate families might be inadequate for modeling
an unknown random effects distribution. The “smoothing-
by-roughening” approach [22, 23] is one of the flexible

modeling methods in empirical Bayes inference [41–43] and
could be a basis for effective empirical Bayes inference for
a broad range of situations. An extension of our method
is to specify a nonparametric distribution for the random
effect distribution of 𝜎2

𝑘
through applying the smoothing-

by-roughening approach, although it requires substantial
computation for estimating a large number of parameters and
can suffer from unstable parameter estimates.

Previously, many efficient gene selection methods have
been proposed for microarray studies, not only the mul-
tiple testing methodologies, for example, Bayesian ranking
methods [20, 21, 43]. For evaluating practical values of these
methods, comprehensive numerical investigations, includ-
ing large-scale simulations and applications to many real
datasets, would be a worthwhile subject.

Appendix

A. The EM Algorithm

The maximum likelihood estimate of the hyperparameters
𝜂 is obtained using the EM algorithm [31]. Regarding 𝜃

𝑘
s,

𝜎
2

𝑘
s, 𝛾
0𝑘
s, and 𝛾

1𝑘
s as missing variables, the log complete data

likelihood is expressed as
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(A.1)

The first and second terms in the sum do not depend on the
hyperparameters.Thus the objective function in each𝑀-step
is given by
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where 𝜔(𝑡)
0𝑘
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𝑘
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𝑘
), 𝜔
(𝑡)
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𝑘
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).

The superscripts indicate the number of the iterations.
Solving the optimization problem, the 𝑀-step is expressed
as
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(A.3)

Also, the optimization problem for 𝛼 and 𝛽 is equivalent
to the maximum likelihood estimation of the shape and
scale parameters for the inverse gamma distribution. It can
be solved simply by any numerical optimization methods
provided in standard software (e.g., nlm or optim in R).
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