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For coregistration ofmedical images, rigidmethods often fail to provide enough freedom,while reliable elasticmethods are available
clinically for special applications only. The number of degrees of freedom of elastic models must be reduced for use in the clinical
setting to archive a reliable result. We propose a novel geometry-based method of nonrigid 3D medical image registration and
fusion. The proposed method uses a 3D surface-based deformable model as guidance. In our twofold approach, the deformable
mesh from one of the images is first applied to the boundary of the object to be registered. Thereafter, the non-rigid volume
deformation vector field needed for registration and fusion inside of the region of interest (ROI) described by the active surface is
inferred from the displacement of the surface mesh points. The method was validated using clinical images of a quasirigid organ
(kidney) and of an elastic organ (liver). The reduction in standard deviation of the image intensity difference between reference
image and model was used as a measure of performance. Landmarks placed at vessel bifurcations in the liver were used as a gold
standard for evaluating registration results for the elastic liver. Our registrationmethod was compared with affine registration using
mutual information applied to the quasi-rigid kidney. The new method achieved 15.11% better quality with a high confidence level
of 99% for rigid registration. However, when applied to the quasi-elastic liver, the method has an averaged landmark dislocation of
4.32mm. In contrast, affine registration of extracted livers yields a significantly (𝑃 = 0.000001) smaller dislocation of 3.26mm. In
conclusion, our validation shows that the novel approach is applicable in cases where internal deformation is not crucial, but it has
limitations in cases where internal displacement must also be taken into account.

1. Introduction

In many clinical tasks it is necessary to acquire images using
different modalities such as magnetic resonance imaging
(MRI), positron emission tomography (PET), and com-
puted tomography (CT),which oftenprovide complementary
information on anatomy and tissue function. Combination
of these multimodal images can improve the diagnosis by
providing synergistic information. Image registration is an
important tool for fusion of medical images. It generates
an image that simultaneously displays the information of
the reference and the registered image. Image registration
aims at identifying corresponding points in two images
using spatial transform. Due to the spatial difference in
the local coordinate systems of images acquired with dif-
ferent imaging modalities registration has to align the
images.

Another application of image registration is serial
imaging of a patient using the same imaging modality, which
is often required for purposes such as treatment planning
and monitoring [1], evaluation of disease development [2,
3], and tracking of contrast bolus propagation in perfusion
studies [4–6]. Registration is required to correct for the
motion caused by patient movement and respiration and
to compensate for the displacement of structures resulting
from different patient positions in serial imaging studies.
Although many spatial displacements can be traced back to
rigid movement and are easy to correct, elastic deformation
is required to describe the movement of many anatomic
structures such as the liver.Thus nonrigid registration is often
required for both repeated acquisitions using the same image
modality and examinations using different image modalities.

Rigid transformation, which allows translation and rota-
tion, and affine registration, which allows shearing and
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scaling, are widely used for image fusion in a clinical setting.
However, since the human body is intrinsically deformable,
rigid techniques often provide insufficient registration. Thus
elastic or nonrigid methods are required to cope with
local differences between images. While the number of
parameters is limited to six for rigid transformation and
to twelve for affine transformation, nonparametric elastic
transformation requires a transformation vector for each
voxel; that is, the number of parameters is three times that
of image voxels. The huge number of parameters generates
two basic problems for elastic transformation. First, the
computing time is enormous. Second, the intrinsic image
information is in general not sufficient to exactly and
independently estimate the transformation vector of each
voxel.

Therefore, elastic image registration uses models to limit
the number of parameters. However, one can also benefit
from the fact that the number of effective transformation
parameters is actually much smaller. It is obvious that a
tissue voxel in general cannot move independently of a
neighboring voxel. Thus elastic registrations exploit the fact
that the transformation field should be smooth [7, 8]. A
smooth transformation field adequately describes the actual
dislocation of most voxels. On the other hand, in some
instances, the entire inner organ moves, while movement
of organ voxels relative to each other is small. It was
demonstrated that movement of organs such as the prostate
[4], kidney [6], or liver [1] can be estimated, in a first
approximation, by a rigid or affine transformation. In conse-
quence, the transformation field for some inner organs is not
smooth. The difference between the transformation vectors
inside an organ is small, while the difference between the
transformation vectors at the organ surface might be much
larger.

Most approaches to elastic registration are based on
matching signal intensities [9–12], which is limited to special
applications [10, 11] or make use only of a smooth trans-
formation field [7–9, 13, 14]. In our paper we introduce
a novel geometry-based three-dimensional nonrigid regis-
tration approach. The method is based on the assumption
that organ movement is primarily effective at the organ
surface. We assume a smooth transformation field inside
an organ and free transformation at the organ surface.
Thus, our registration algorithm is a geometrical method
based on segmentation. This kind of registration requires
preliminary segmentation of the anatomical structure of
interest on the reference or model image. Binary struc-
tures such as contours and surfaces can be generated by
labeling them manually or (semi)automatically using an
advanced algorithm. The basic idea is to use deformable
models to guide image registration. With such models,
nonrigid volume deformations are inferred from surface
deformations. The transformation required for registration
is then calculated by minimizing the distance of the con-
tour points. Furthermore, a fusion technique based on
the inferred volume deformation is introduced. Factors
which may influence the performance of the method are
discussed.

2. Theory

2.1. Concept. Our registration algorithm is a geometrical
method based on segmentation. This kind of registration
requires segmentation of the anatomical structure of interest
on the reference or model image to generate a binary
structure. Segmentation can be performed manually or
(semi)automatically using an advanced algorithm. An active
surface mesh is generated from the segmentation of the refer-
ence images. Since an active surface mesh is a 3D deformable
model which extends active contours [15] to 3D and thus
can be adapted to be applied to the edges of an edge map
extracted from the complementary image of the registration
or fusion, we believe that mesh displacement could indicate
movement of the organ. In our approach, surface evolution in
the edge map leads to surface deformations described by the
displacement of surface mesh points. The resulting nonrigid
volume deformation vector field for registration or fusion
inside the region of interest (ROI) is predicted by solving the
reverse problem of free-form deformation (FFD) [16]. FFD
allows to obtain the first experimental result of prediction
based only on geometrical knowledge.

2.1.1. Active Surface. Deformable models can be applied to
image edges [17] with large image intensity gradients by
using an optimization method. In our approach we use a 3D
extension of active contours called active surfaces. While the
level set method uses implicit surfaces [18, 19], we use explicit
surfaces constructed from tetrahedres.

The basic concept of active models in general, and of
active surfaces in particular, is to give the models physi-
cal characteristics in terms of energy. Internal energy and
external energy are two widely used concepts in this con-
text: internal energy 𝐸int describes the internal deformation
characteristics of the model, that is, the smoothness of the
surface. External energy 𝐸ext describes the environmental
influence on the model. Here “environment” refers to images
or their filtered forms, on which the models are settled
and transformed. Basically, external energy is extracted from
features such as object boundaries, where the image gradient
has its local maximum and is often described as potential
energy.

Based on the definition of energy, the segmentation
process ideally minimizes the total energy, 𝐸total , of the
model:

𝐸total = 𝐸int + 𝐸ext. (1)

As a result the active model will be attracted to the object
boundary, where total energy is the lowest. To achieve this
desired property of the model, the shape of the object of
interest is supposed to be regular and smooth so that, at
the object boundary, the bending energy, defined by rigid
force F⃗rigid, and the stretching energy, defined by elastic
force F⃗elastic, compensate for the potential energy that defines
the external energy. This can also be seen as a state of
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force balancing of the internal forces (F⃗rigid, F⃗elastic) and the
external force (F⃗ext):

F⃗total = F⃗rigid + F⃗elastic + F⃗ext = 0. (2)

Since the active surfacemoves during the energy-minimizing
procedure, we thus describe the whole process as a surface
evolution function of time:

𝜕S (𝑠, 𝑡)
𝜕𝑡

= 𝜏 (𝑡) F⃗total (𝑡) , (3)

where 𝑆 is the active surface defined as a set of surface mesh
points 𝑠 at time 𝑡. Vector 𝜏(𝑡)F⃗total(𝑡) refers to the increment
of surface movement at time 𝑡, where the time-dependent
scale factor 𝜏 is used to control movement speed, ensuring
numerical stability under theCourant-Friedrichs-Lewy (CFL)
condition [20]. The steady state, in which total energy is at
its minimum, is reached if the increment for optimization
approximates zero.

2.1.2. Free-Form Deformation. Our method uses FFD to
describe deformation of the object of interest, which is
embedded in a control grid with a given resolution in three
dimensions of (𝑙 + 1)(𝑚+ 1)(𝑛 + 1). Using its local coordinate
system defined by unit vectors S⃗, T⃗, and U⃗, a grid point p⃗

𝑖𝑗𝑘

of the FFD can be defined as

p⃗
𝑖𝑗𝑘
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(4)

where x⃗
0
, described by its global coordinates, is the origin of

the local coordinate system. Using trivariate tensor product
Bernstein polynomial, the position in the global coordinate
system of any point x⃗ inside the FFD grid can be interpolated
via
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(5)

where 𝐶𝑖
𝑙
, 𝐶𝑗
𝑚
, and 𝐶𝑘

𝑛
are the binomial coefficients in respect

of 𝑙, 𝑚, and 𝑛. Furthermore 𝜒, 𝜓, and 𝜔 are the local
coordinates of x⃗, where
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0
)
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.

(6)

Since all surface mesh points are settled inside the FFD grid,
a surface point ⃗s can be interpolated as well using the above
interpolation function (5) by replacing x⃗ with ⃗s. Since we

always take a set of points, in our case the active surface, into
consideration, we use the matrix description of (5) for the
whole surface S:

S = B ⋅ P, (7)

where S is an 𝑁 × 3 matrix, B is an 𝑁 × (𝑙 + 1)(𝑚 + 1)(𝑛 +

1) matrix, and P is an (𝑙 + 1)(𝑚 + 1)(𝑛 + 1) × 3 matrix for
a given number 𝑁 of surface mesh points considered inside
the FFD grid. Since B solely describes the deformation for a
given set of grid control points P, it is normally referred to as
deformation matrix. Based on the above matrix description
(7) the following applies:

S∗ = B ⋅ P∗, (8)

where P∗ describes the set of displaced control points and S∗
refers to the deformed surface resulting from the right side
of the function, given that B is unchanged. This means, if we
know the displacement ofP, we can calculate the deformation
of S. But note that our goal is to reversely solve the problem;
that is, we have a set of deformed surface mesh points S∗
and wish to calculate P∗ in order to further use P∗ for
interpolating the deformation of any point x⃗ of the volume
inside the surface as described in (5). Since the number of
surface mesh points is much larger than that represented in
the FFD control grid, using the pseudoinverseB+ ofB to solve

P∗ = B+S∗ (9)

will provide the solution to an overdetermined system rather
than giving us a sufficient solution to the reverse problem in
general. In our approach, we therefore solve the problem by
using the Levenberg-Marquardt algorithm [21, 22], a method
of least squares, in order to minimize the squared distance
between S and S∗:

P∗ = argmin
P
󵄩󵄩󵄩󵄩S − S∗󵄩󵄩󵄩󵄩

2
. (10)

3. Material and Methods

3.1. Numerical Implementation. In our approach we use an
active surface 3D deformable model to guide the registration.
The active surface is generated through triangulation from
a preliminary segmentation of the object of interest on the
model image and later adapted to the edges of the reference
image as a deformable model by defining the internal and
external forces acting on it. The elastic force acting on a
surface mesh point is the sum of tensile forces from its
neighboring points. The rigid force is described as a linear
prediction of the tensile forces from its neighboring points
and their neighbors [23]. The active surface is optimized by
applying the finite difference method (FDM) to an inverse
edge map [24] of the reference image.

After minimizing the total energy a deformed version of
the original surface is displayed at the boundary of the object
of interest on the reference image. Thus we have a one-to-
one mapping of the surface mesh points as well. Based on the
mapping an FFD control grid wrapping the original active
surface can be deformed by solving the inverse problem of
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the FFD. We then use the computed deformation of the FFD
control grid, alongwith the deformationmatrix of the FFD, to
transform the voxels inside the original surface of the model
image onto the reference image; hence image information
such as intensity saved in the object of interest of the model
image can be transferred into the deformed object described
by the deformed surface on the reference image, which fulfills
the registration task.

Conversely the procedure can also begin with a prelimi-
nary segmentation on the reference image in order to adapt
the initial surface mesh to the reference image on the model
image, thereby transferring the volume deformation from the
reference to themodel image. Using the aforementioned FFD
interpolation method, image intensity in the deformed FFD
on the model image can be sampled and traced back to the
original object of interest in the reference image. In this way,
fusion is accomplished.

Our method has been implemented as AMIRA (http://
www.amira.com) modules. AMIRA is an advanced 3D
visualization software developed by Konrad-Zuse-Zentrum
für Informationstechnik, Berlin (http://www.zib.de/de/
home.html) and distributed by Visage Imaging, Berlin
(http://www.visageimaging.com). AMIRA is highly modu-
larized using C++ to offer visualization and image analysis
pipelines based on modules. Since our method is a twofold
approach consisting of segmentation and subsequent FFD
computation, the AMIRA modules are implemented in two
packages, hxactcontour and hxffd. Furthermore, an upper
level package hxsera (sera stands for segmentation-based
elastic registration algorithm.) wraps the two packages for
user-friendly access to the entire procedure.

The computational complexity of the segmentation task is
linearly dependent on the number of surfacemesh points and
can be described as 𝑂(𝑛) using big-𝑂 notation [25]. When
performing kidney segmentation, for example, we in general
had from 10,000 to 20,000 points to process. In comparison
the complexity of FFD computation is 𝑂(𝑚 ⋅ 𝑛), where 𝑚 is
the number of FFD control points and 𝑛 is the number of
surface mesh points. The FFD grid we used typically had a
resolution of 5 × 5 × 5 to 10 × 10 × 10.Thus the number of FFD
control points is considerably smaller than that of surface
mesh points.

3.2. Image Data. To test the feasibility of our approach we
first applied it to two contrast-enhanced dynamic computed
tomography (CT) examinations consisting of a total of 41 3D
datasets of the kidneys obtained in two patients who under-
went routine clinical evaluation of renal perfusion. Each CT
series was acquired using 320 slices with a 512 × 512 voxel in-
plane resolution. The CT examinations were performed on a
TOSHIBAAquilionONEwith a total acquisition time of 1min
for the complete dataset while the iodine contrast agent was
administered as a bolus. To reduce the absorbed dose the tube
current was minimized.

The first patient received 90mL contrast medium and
was examined with a CT scanner tube voltage of 120 kV and
tube current of 150mA. 24 3D CT datasets were acquired
with a spatial resolution of 0.571mm × 0.571mm and a slice

thickness of 0.5mm. The second patient received 120mL
contrast medium and underwent CT scanning with a tube
voltage and current of 100 kV and 100mA, respectively.
Seventeen 3D CT datasets were acquired with a spatial
resolution of 0.702mm × 0.702mm × 0.5mm. Due to the
high signal noise of the low dose scans the effective spatial
resolutionwas lower than the nominal resolution of the scans.
Therefore, the 3D CT datasets were resampled to a resolution
of 256 × 256 × 160 for the study.

We further used our method for multimodal registration
in patients undergoing imaging of the liver, which is a more
elastic organ than the kidney. Twenty patients treated by
routine clinical brachytherapy [26] were investigated. A 3D
CT and a 3D MRI interventional dataset from each patient
were acquired no later than 1 hour after brachytherapy
catheter positioning. One of the two 3D datasets was used for
therapy planning. Furthermore, follow-up MRI performed
several months after treatment was available for all patients.
Because of the long interval between the intervention and
follow-up MRI, there may be considerable liver movement
and deformation in the follow-up images compared with the
initial planning 3D dataset.

All axial CT scans of the liver were acquired with a
resolution of 512 × 512, but the number of slices ranged from
31 to 322, resulting in severe partial volume effects in the CT
scans acquired with a lower number of slices. The averaged
spatial resolution of the CT scans is 0.743mm × 0.743mm ×

3.04mm compared with 1.187mm × 1.187mm × 2.50mm for
MRI,where an invariable slice thickness of 2.50mmapplies to
all cases. T1-weighted volume-interpolated 3D gradient echo
MR images were acquired during catheter positioning on an
open bore Philips 1.0 Tesla MR with a more inhomogeneous
signal distribution.

The following sequence parameters were used: echo time
(TE) 2.14ms, repetition time (TR) 4.3ms, echo train length
104, 122 phase-encoding steps, flip angle 12∘, imagematrix 320
× 320, FOV 360mm, 58% sampling, 75 slices, slice thickness
5.0mm, slice spacing 2.5mm. Additional T1-weighted 2D
GRE MR images were acquired 12 weeks after brachytherapy
for assessing the response to treatment on a Philips Achieva
1.5 TeslaMR imager using the following sequence parameters:
TE 5.0ms, TR 110ms, 192 phase-encoding steps, flip angle 7∘,
image matrix 512 × 512, FOV 430mm, 75% sampling, 70%
phase FOV, 28 slices, slice thickness 8.0mm, slice spacing
9.0mm. MR images with incomplete depiction of the liver
were excluded from evaluation.

3.3. Evaluation Methods. To validate our approach, we used
empirical methods, which are subcategorized into discrep-
ancy and goodness methods as described in [27]. Discrep-
ancy methods depend on an optimal reference, which is
generally known as the gold standard and has been verified
by experts. Goodness methods do not need a reference but
rather depend on some preferable characteristics to describe
and thus judge the performance of the algorithm.

In our validationwe investigated alignment of the volume
and misalignment of contours by using two different kinds
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of discrepancy features. The Dice similarity coefficient (DSC)
[28, 29] was used to evaluate volume alignment

DSC =
2 |𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
, (11)

where 𝐴 is the volume of the segment to be validated and 𝐵
the volume of the gold standard. For contour misalignment,
we evaluated the Hausdorff distance [30]

𝑑
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and the averaged contour misalignment
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where 𝑘
𝐴
and 𝑘
𝐵
are sets of contour points of the segment to

be validated and the gold standard, respectively, and 𝑎
𝑖
and

𝑏
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represent the contour points of sets 𝑘
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and 𝑘
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the combined average of the contour misalignment was used
for evaluation.

Furthermore, two different goodness methods were used
to validate the segmentation approach: the intraregion uni-
formity [32] and the gray level contrast [27]. Intraregion
uniformity is based on the assumption that the regions that
have been segmented should have a uniform distribution of
gray levels, which means that variance within each region
should be small.𝑔

𝑗
is defined by the signal intensity𝑔
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of voxel
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where 𝑉
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𝑗
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Based on the intensity variance defined previously, unifor-
mity is defined as

𝑈 = 1 −∑

𝑅𝑗

𝑉
𝑗
𝜎
2

𝑗

𝑉all𝜎
2
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, (17)

where𝑉all is the sum of all volumes that have been segmented
and 𝜎2max is a normalization factor defined as

𝜎
2

max =
(𝑔max − 𝑔min)

2

2
, (18)

where 𝑔max and 𝑔min are the absolute maximum and min-
imum of the signal intensities from all segmented regions,
respectively. In comparison, the signal contrast takes the
intensity difference between the segmented region and its
background into consideration and assumes that contrast
should be large. For the averaged signal intensity of the
segmented region, 𝑓

0
, and the averaged background signal

intensity, 𝑓
𝑏
, signal contrast is defined as

GC =

󵄨󵄨󵄨󵄨𝑓0 − 𝑓𝑏
󵄨󵄨󵄨󵄨

𝑓
0
+ 𝑓
𝑏

. (19)

Furthermore, to validate our final registration result,
we used a goodness method based on our empirical study,
assuming that the change in signal intensity should be small
within the region of interest (ROI) but large between the ROI
and its background. This means that an accurate registration
should yield a small variance in intensity, while a poor
registration should yield much greater variance. Here we
measure the standard deviation of intensity of the registered
image within the reference ROI that was segmented by
experts as gold standard (see Appendix A).

3.4. Evaluation. As mentioned above, we first applied our
approach to dynamically acquired renal CT scans because
the kidneys are relatively rigid organs. Segmentation and
registration were evaluated separately. The two patients are
numbered𝑃.#1 and𝑃.#2, and their 3D datasets are numbered
consecutively beginning with the first acquisition of the
dynamic series.

To reduce intra- and interexpert variability gold stan-
dards were obtained for the discrepancy methods using an
iterative expectation-maximization method [33, 34] with an
expert performing five segmentations for each 3D dataset.
To validate the registration result we used our goodness
feature—the standard deviation of intensity—to compare our
registration with an intensity-based affine registration using
mutual information [35] as the optimization metric.

We further validated our method for multimodal regis-
tration of the liver, which is more elastic than the kidney. We
compared our registration results with a quasigold standard
based on a voxel-based affine registration using mutual
information on the same datasets. The quasigold standard
was generated using the approach in [1]; here the liver is first
segmented by a radiologist, and the segmented images are
then registered. Intrahepatic landmarks positioned at vessel
bifurcations by an experienced radiologist in both datasets
were used to compare registration accuracy by measuring
dislocation of the landmarks after registration.

4. Results

4.1. Segmentation of Kidney. First, we evaluated the perfor-
mance of our method in the segmentation of the kidney. The
kidney moves several centimeters during breathing but is, in
a first approximation, a rigid organ. Table 1 presents Dice
similarity coefficients, averaged contour misalignment, and
Hausdorff distances in relation to the gold standard as well as
intraregion uniformity and gray level contrast. Our method
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Table 1: Segmentation quality.

Image DSC 𝑑 (mm) 𝑑
𝐻
(mm) U GC

t06 (P1) 0.958 0.575 4.482 0.927 0.311
t07 (P1) 0.966 0.450 3.153 0.928 0.311
t09 (P1) 0.971 0.351 2.104 0.921 0.248
t08 (P2) 0.960 0.628 4.275 0.910 0.144
t16 (P2) 0.966 0.517 3.512 0.918 0.151
Mean 0.964 0.504 3.505 0.921 0.233
DSC: dice similarity coefficient. 𝑑: averaged contour misalignment. 𝑑𝐻:
Hausdorff distance. U: intraregion uniformity. GC: gray level contrast.

Table 2: Comparison of segmentation quality between experts
(averaged) and our program.

Expert DSC 𝑑 (mm) 𝑑
𝐻
(mm) U GC

1 0.977 0.297 3.590 0.927 0.307
2 0.978 0.358 2.816 0.926 0.303
3 0.970 0.431 6.084 0.926 0.308
4 0.966 0.556 3.862 0.927 0.313
5 0.963 0.546 4.555 0.926 0.307
Mean 0.971 0.438 4.181 0.927 0.308
Program 0.958 0.575 4.482 0.927 0.311
DSC: dice similarity coefficient. 𝑑: averaged contour misalignment. 𝑑𝐻:
Hausdorff distance.𝑈: intraregion uniformity. GC: signal contrast.

showed subvoxel accuracy with a mean averaged contour
misalignment of 0.504mm (Table 1), which is below the the
voxel size after subsampling of over 1.00mm.

Furthermore, the averaged Hausdorff distance of
3.505mm (see Table 1) is quite acceptable. To show this, we
compared the results achieved with our method with those
of manual segmentation by experts in Table 2, where we
used the same gold standard to measure the Dice similarity
coefficient, averaged contour misalignment, and Hausdorff
distance. Our method has a slightly higher misalignment of
4.482mm compared with the experts average of 4.181mm.
However, this value is well within the subvoxel range.

To test the goodness features, which are independent of
the gold standard, we compared the quality of our segmen-
tation method directly with that of experts. The results are
presented in Table 3.The paired 𝑡-test was used to investigate
for significant differences. With a 𝑃 value of 0.2466, we
found no significant difference in intraregion uniformity.
Performance of the program was significantly better (𝑃 =

0.0028) using signal contrast for evaluation.

4.2. Registration of Kidney. To compare our registration
method with affine registration using mutual information,
the paired t-test was used to estimate the level of reduction
of standard deviation of image intensity after affine and
elastic registration. As can be seen from Table 4 our method
achieved a 15.11% better quality with a high confidence of
99%. This value corresponds approximately 1mm correction
of translation (see Figures 1 and 3).

Table 3: Comparison of intraregion uniformity and signal contrast
between program and gold standards.

Image 𝑈
𝑔

𝑈prg GC
𝑔

GCprg

t06 (P1) 0.9269 0.9265 0.3089 0.3108
t07 (P1) 0.9280 0.9278 0.3094 0.3109
t09 (P1) 0.9214 0.9214 0.2446 0.2475
t08 (P2) 0.9099 0.9099 0.1419 0.1443
t16 (P2) 0.9175 0.9176 0.1472 0.1508
Mean 0.9207 0.9206 0.2304 0.2329
P 0.2466 0.0028
𝑈𝑔: intraregion uniformity of gold standard.𝑈prg: intraregion uniformity of
program. GC𝑔: signal contrast of gold standard. GCprg: signal contrast of
program. P: two-sided level of significance of the t-test for 𝑈prg versus 𝑈𝑔
and GCprg versus GC𝑔.

Table 4: Comparison: rigid registration versus elastic registration.

Image pair 𝜎V 𝜎
𝑠

𝜎
𝑒

t07 → t09 (P1) 119.11 70.97 58.33
t20 → t05 (P1) 93.47 77.89 52.26
t12 → t20 (P1) 123.06 58.61 43.91
t09 → t13 (P2) 130.52 78.83 75.99
t07 → t05 (P2) 121.13 64.20 61.66
t11 → t08 (P2) 152.16 97.06 92.26
t16 → t01 (P2) 117.60 86.95 64.93
𝜎 122.43 76.36 64.19
Reduction of 𝜎 37.63% 47.57%
P 0.01
𝜎V: standard deviation before registration. 𝜎𝑠: standard deviation after rigid
registration. 𝜎𝑒: standard deviation after elastic registration. P: two-sided
significance of t-test for 𝜎𝑠 versus 𝜎V and 𝜎𝑒 versus 𝜎V.

Table 5: Comparison of landmark dislocation with different regis-
tration methods.

Registration CT to iMRI CT to pMRI iMRI to pMRI
𝑁
𝑝,𝐴

20 20 20
𝑁
𝑙,𝐴

76 76 77
𝑑
𝐴
(mm) 3.26 6.58 6.58

𝜎
𝐴

1.25 3.31 3.25
𝑁
𝑝,𝐸

20 15 14
𝑁
𝑙,𝐸

76 56 53
𝑑
𝐸
(mm) 4.32 11.98 10.72

𝜎
𝐸

1.94 5.62 5.60
𝑃 0.000001 ≈0 ≈0
(iMRI: intrainterventional MRI, pMRI postinterventional MRI.) 𝑁𝑝, 𝐴:
number of patients (affine registration). 𝑁𝑙,𝐴: number of landmarks (affine
registration). 𝑑𝐴: averaged dislocation (affine registration). 𝜎𝐴: standard
deviation (affine registration).𝑁𝑝,𝐸: number of patients (elastic registration).
𝑁𝑙,𝐸: number of landmarks (elastic registration). 𝑑𝐸: averaged dislocation
(elastic registration). 𝜎𝐸: standard deviation (elastic registration). P: two-
sided level of significance of t-test for 𝑑𝐴 versus 𝑑𝐸 in the same column.

4.3. Registration of Liver. The liver was investigated as an
example of a deformable organ. Accuracy of registration of
our new method was studied using up to four landmarks
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Figure 1: Comparison of rigid registration versus elastic registration
(error bars: standard error).
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Figure 2: Boxplot of standard deviation of different registration
methods to postinterventional MRI.

per liver. Interventional liver MRI and CT examinations
were performed within one hour. The paired 𝑡-test was used
to compare landmark dislocation between both registration
methods. The first column of Table 5 shows that our method
has an average landmark dislocation of 4.32mm. Affine
registration yields a significantly (𝑃 = 0.000001) smaller
dislocation of 3.26mm.

The difference between the two registration methods
was also investigated using the Wilcoxon signed-rank test,
where the correlation value between the two dislocation
tests was also calculated. No significant correlation between
the registration accuracy of both methods was found, with
landmarks using the Wilcoxon signed-rank test. The corre-
lation between landmark dislocations of affine and elastic
registration was found to be 0.49. Therefore, registration
accuracy did not significantly depend on individual image
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Figure 3: Characteristics of the standard deviation of image inten-
sity differences after translation with the error bars demonstrating
the standard error.

quality. This indicates that the landmarks were well set and
are very well suited for our evaluation purpose.

Furthermore, the registration methods were compared
using interventional and follow-up image datasets acquired
12 weeks later. The results for coregistration of CT to
follow-up MRI and interventional MRI to follow-up MRI
are presented in Table 5 and in the boxplot in Figure 2,
respectively. There is a clear drop in quality for both affine
and elastic registrations, which is attributable to greater
deformation resulting from the long interval between the
two examinations. In comparison to affine registration, our
method shows nearly two times greater degradation in each
case. Moreover, there are also some cases in which our
method did not perform better (compare 𝑁

𝑝
and 𝑁

𝑙
in

Table 5).

5. Discussion

This paper presents a novel approach of elastic registra-
tion based on the coregistration of surface and volume
interpolation. An important feature of our approach is that
volume deformation is interpolated solely from geometric
changes of the surface. We validated our approach by com-
parison with affine registration as the gold standard. We
performed a series of tests advancing from rigid objects (the
kidney), to predominantly affinely deformed objects (liver
with interventional images), to elastically deformed objects
(liver with follow-up images). In the last test, the liver was
definitely strongly deformed due to the localized effects of
brachytherapy irradiation.

Applied to the kidney, our registration method signifi-
cantly improves movement correction compared with affine
registration. The kidney is a relatively rigid organ and there
is relatively little deformation in the 4D CT time series due
to short duration of image acquisition. The result indicates
that our elastic registration method performs well based
on effective first correction of affine registration and can
adequately correct for displacement of rigid organs such as
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the kidney when there is relatively little deformation inside
the organ.

In contrast, formultimodal elastic registration of the liver,
which is more elastic than the kidney and was deformed
by irradiation in our tests, our method showed poorer
performance in terms of quality compared with the twelve-
parameter affine registration method. Landmark disloca-
tion determined with affine registration seems to be a
quasigold standard, which yielded 1.06mm dislocation for
quasi-simultaneously acquired interventional MRI and CT,
5.40mm for interventional CT and a follow-up MRI, and
4.14mm for interventional MRI and follow-up MRI. The
poorer image quality of interventional MRI (signal-to-noise
ratio, signal homogeneity, and spatial resolution) reduces
registration accuracy for affine registration and especially for
elastic registration. In principle, elastic registration should
improvematching of a liver deformed by radiation treatment.
The elastic registration method applied in the present study
uses only information on the liver surface. In contrast, the
affine registration method uses the image information of the
entire liver, thus yielding a more accurate registration result.
A technique using additional internal information beneath
the surface might yield better results [10].

A limitation of the present study as well as of most
studies using real medical images is the reliability of the
validation method. Often, investigators use artificial image
data for validation of their registrationmethod, failing to take
real registration problems into account. Several approaches
have been proposed to validate registration accuracy; for
example, Schnabel et al. validated their elastic registration
method using a biomechanical model [36]. In the appendix
to this paper, we demonstrate that the standard deviation
in an ROI might also be a measure for comparing different
coregistration methods, for example, comparison of affine
registration with elastic registration as applied in the current
study or by Rueckert et al. [13]. Registration accuracy can
be estimated absolutely by comparing the discrepancy of the
actual registration with that of landmarks defined by experts.
To reduce further intra- and interexpert variability, we
additionally applied an iterative expectation maximization
method using multiple segmentations [33, 34].

6. Conclusions

Existing methods of image registration yield unreliable
results when applied to register an organ, such as the liver,
that has been transformed, for example, by treatment. Amore
sophisticated method would be useful in this case. We have
tested an approach based on coregistration of organ surfaces
and interpolation of internal space. The technique has been
shown to work when applied to rigid organs. However,
the method was developed for application to serial datasets
acquired tomonitor the outcome of treatment.Our data show
that the method yields unsatisfactory results when used to
register an organ, such as the liver, that has been transformed
by treatment, for example, radiation therapy.

Obviously, taking into account treatment-related changes
on the surface is not sufficient to determine internal changes

of the liver. Thus, to monitor radiation therapy of the liver,
we need an elastic registration approach that uses surface
information as well as information on internal organ struc-
tures in order to yield better results than 12-parameter affine
registration.

Appendix

A. Standard Deviation of Image Intensity as
Goodness Feature

A.1. Theory. We assume that the change in intensity is small
in the region of interest (ROI) but large between the ROI
and its background. Therefore, a more precise registration
method should yield a smaller variance of intensity and
poorer registration results when there is significantly larger
variance in the image signal difference inside the ROI of
the registered image. The standard deviation of the signal
intensities of the reference and the coregistrated image can
be used as a measure.

A.2. Methods of Experimental Verification. The assumption
was validated using two kidneys segmented by experts. The
standard deviation of intensity between image intensities was
determined after translation of the kidney image. We used
five images from 𝑃.#1 and four from 𝑃.#2. The measurement
was taken after every expanding translationwith a step length
of one voxel (1mm). The greatest translation appropriated
two times the maximum movement of the kidney that was
estimated using surface registration between the kidneys.
Each measurement was repeated 3000 times using randomly
chosen translations in varying directions. For each kidney
the average over all repetitions of each translation step was
used. Finally, the average signal difference overall kidneyswas
calculated. In order to show the significance of the changes
we further applied two different paired 𝑡-tests: the first one
compared the changes between each step and zero translation
and the second compared between neighboring steps.

A.3. Results of Experimental Verification. The dependence of
the signal intensity difference on the dislocation between ref-
erence and coregistrated image is demonstrated in Figure 3.
The large number of repetitions yielded maximum standard
error of 1.68%, represented by the error bar. A continuous
increase in the standard deviation of the image difference
with dislocation is demonstrated. Maximum significance
between neighboring steps is 𝑝

𝑁,max = 0.0443; maximum
significance against zero translation is 𝑝max = 0.0029. Thus,
the reduction in standard deviation after each translation step
of one voxel can be interpreted as a quality degradation of
registration.
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