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One of the major obstacles against succesful chemotherapy of cancer is the emergence of 
resistance of cancer cells to cytotoxic agents. Applying optimal control theory to mathemati- 
cal models of cell cycle dynamics can be a very efficient method to understand and, eventu- 
ally, overcome this problem. Results that have been hitherto obtained have already helped to 
explain some observed phenomena, concerning dynamical properties of cancer populations. 
Because of recent progress in understanding the way in which chemotherapy affects cancer 
cells, new insights and more precise mathematical formulation of control problem, in the 
meaning of finding optimal chemotherapy, became possible. This, together with a progress in 
mathematical tools, has renewed hopes-for improving chemotherapyprotocols. 1; this paper 
we consider a ~ o ~ u l a t i o n  of neoolastic cells stratified into subpopulations of cells of different . A .  

types. Due to the mutational event a sensitive cell can acquire a copy of the gene that makes it 
resistant to the agent. Likewise, the division of resistant cells can result in the change of the 
number of gene copies. We convert the model in the form of an infinite dimensional system of 
ordinary differential state equations Piscussed in our previous publications (see e.g. Swierniak 
et ul., 1996b; Polahski et al., 1997; Swierniak et al., 1998c), into the integro-differential form. 
It enables application of the necessary conditions of optimality given by the appropriate ver- 
sion of Pontryagin's maximum principle, e.g. (Gabasov and Kirilowa, 1971). The perform- 
ance index which should be minimized combines the negative cumulated cytotoxic effect of 
the drug and the terminal population of both sensitive and resistant neoplastic cells. The linear 
form of the cost function and the bilinear form of the state equation result in a bang-bang opti- 
mal control law. To find the switching times we propose to use a special gradient algorithm 
developed similarly to the one applied in our previous papers to finite dimensional problems 
(Duda 1994; 1997). 

Keywords: gene amplification, cancer chemotherapy, infinite dimensional systems 

1 INTRODUCTION arguably negligible (with minor exceptions). How- 
ever, one cannot underestimate its importance in the 

Despite a long history of mathematical modeling of development of ideas of chemotherapy scheduling, 
cancer chemotherapy its practical application to multidrug protocols, and recruitment. 
development of chemotherapy protocols has been 
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In this paper, we would like to move the practical 
importance of mathematical modeling a step forward. 
Our previous experience, concerned asymptotic anal- 
ysis of particular models of cancer populations that 
lead to better understanding of previously unex- 
plained phenomena (~wierniak et al. 1 9 9 6 ~ ;  1998b; 
1998c, Polafiski et al. 1997), On the basis an approach 
to developing optimal chemotherapy scheduling is 
presented and its meaning for clinical procedures is 
discussed. 

Recent experimental results show that although the 
entire DNA content should remain unchanged at each 
mitotic cell division, some fraction of it actually 
undergoes continuous change as far as its amount per 
cell and structure are concerned. That change can take 
the form of a process referred to as gene anzplifica- 
tion, which includes an increase in the number of cop- 
ies of a gene which codes for a protein that aides 
either removal or metabolization of the drug. The 
more copies of the gene present, the more resistant the 
cell, in the sense that it can survive under higher con- 
centrations of the drug. 

Gene amplification can be enhanced by conditions 
that influence DNA synthesis. Increased number of 
gene copies can produce even more gene products, 
which, if they confer resistance to chemotherapeutic 
drugs, leads to evolving resistance in the cancer popu- 
lation. Increase of drug resistance by gene amplifica- 
tion has been observed in numerous experiments with 
in vivo and cultured cell populations. For further ref- 
erences, see publications (Stark, 1993) and (Windle 
and Wahl, 1992). 

The emergence of resistance to chemotherapy has 
been first considered in a point mutation model of 
Coldman and Goldie (1983) and then in the frame- 
work of gene amplification by Agur and Harnevo 
(1991 ; 1992; 1993). The main idea is that there exist 
spontaneous or induced mutations of cancer cells 
towards drug resistance and that the scheduling of 
treatment should anticipate these mutations. The point 
mutation model can be translated into simple recom- 
mendations, which have even been recently tested in 
clinical trials. The gene amplification model was 
extensively simulated and also resulted in recommen- 
dations for optimized therapy. 

Numerous experiments proved that the process of 
gene amplification may be reversible (i.e. cells with 
increased number of gene copies tend to become 
extinct) whereas, in some cases, it is stable (i.e. the 
amplification persisted even after the selective agent 
causing it has been removed) (Kaufman et al., 1981). 
We present a model of chemotherapy based on a sto- 
chastic approach to evolution of cancer cells. Asymp- 
totic analysis of this model, which has been proposed 
and broadly discussed in our previous works, helps to 
explain that phenomena and other dynamical proper- 
ties (~wierniak et al. 1 9 9 6 ~ ;  1998c, Polahski et al. 
1997). 

In addition it has been established that, at least in 
some experimental systems, tumor cells may increase 
the number of copies of an oncogene in response to an 
unfavorable environment. For further details, see a 
discussion by Kimmel and Axelrod (1990). 

Mathematical modeling of gene amplification has 
provided good fits to experimental data (Axelrod et 
al. 1993, Harnevo and Agur 1991 : 1992; 1993, Kim- 
me1 and Axelrod 1990, Kimmel et al. 1992, Kimmel 
and Stivers 1994). These results suggest that drug 
resistance and other processes altering the behavior of 
cancer cells may be better described by multistage 
mechanisms, including a gradual increase in number 
of discrete units, rather than by classical irreversible 
mutation models described by Coldman and Goldie 
(1979; 1983). For example, models with gene ampli- 
fication predict the observed pattern of gradual loss of 
resistance in cancer cells placed in a non-toxic 
medium, see references (Brown et al., 1981) and 
(Kaufman et al.. 1981). 

The multistage stepwise model of gene amplifica- 
tion or, more generally, of transformations of cancer 
cells, leads to new mathematical problems and resultr 
in novel dynamic properties of the systems involved. 
These problems were first studied mathematically in 
(Kimmel and Axelrod, 1990) for the discrete-time 
models and in (Kimmel and Stivers, 1994) for the 
continuous-time models. 

The model is broadly discussed in the next section 
and some main results are recalled. The description is 
completed with new results, alowing to analyze the 
system with any finite initial conditions. Afterwards, 
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FIGURE 1 The optimal control for M = 1 ,  r = 0.1 (left) and r = 0.5 (right) 

the main idea of transforming the model into an inte- 
gro-differential one is presented. In section 4 the opti- 
mization problem is stated. The particular forms of 
both the model and the performance index allow us to 
effectively apply the Pontryagin maximum principle 
and derive necessary contitions for the optimal con- 
trol. Subsequently, a gradient method for finding the 
optimal solution is presented. Although gradient 
methods are one of the standard approaches to optimi- 
zation problems, they are usually used for finding 
continuous control, whereas the solution to the prob- 
lem stated in the paper requires control in the 
bang-bang form. Moreover, contrary to our previous 
works, the proposed method concerns infinite dimen- 
sional case and is modified to shorten computation 
time. In the final section, conclusions are drawn con- 
cerning the importance and applicability of the solu- 
tion. 

2 THE INFINITE DIMENSIONAL MODEL 

Mathematical modeling of cancer populations taking 
into account both stochastic changes in number of 
gene copies in cells from one generation to another 
and the stochastic variability of cell lifetime can be 
based on branching random walk (Kimmel and Axel- 
rod, 1990; Kimmel and Stivers, 1994). This approach 

leads to an infinite system of differential equations 
which may be used to model controling a cell popula- 
tion with evolving drug resistance caused by gene 
amplification or other mechanisms. It can be also 
understood as a mathematical variation of the model 
used by Harnevo and Agur (1992). Moreover, the 
model is general enough to accommodate different 
interpretations. 

Let us consider a population of cells of types 
i = 0,1,2 . . ..Cells of type 0 are sensitive to the agent, 
whereas the types i = 1,2,. . . consist of resistant cells 
of increasing level of resistance (for example, with 
increased number of DHFR or CAD gene copies per 
cell). It is also assumed that: 

1. The lifespans of all cells are independent expo- 
nentially distributed random variables with means 
1/1, for cells of type i. 

2. A cell of type i 2 1 may mutate in a short time 
interval (t,t + dt) into a type i + 1 cell with proba- 
bility b,dt + o(dt) and into type i - 1 cell with 
probability d,dt + o(dt). A cell of type i = 0 may 
mutate in a short time interval (t,t + dt)  into a type 
1 cell with probability adt + o(itt), where a is sev- 
eral orders of magnitude smaller than any of h , ~  or 
d,s. 

3. The chemotherapeutic agent affects cells of differ- 
ent types differently. It is assumed that its action 
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results in a fraction ui of ineffective divisions 
(leading to abortion) in cells of type i. 

4. The process is initiated at time t = 0 by a popula- 
tion of cells of different types. 

The postulated relationship for the rate a of the pri- 
mary amplification event can be written as follows 

n << min(d,, b , ) ,  i 2 I .  (1) 

Generally, in view of the subcriticality of the proc- 
ess it seems reasonable to assume 

Also, the following relationships between his and 
dis seem to be justified by the intuition that cells over- 
loaded with amplified gene copies may acquire new 
copies with more difficulty and lose them easier: 

As postulated by Schimke (see e,g. Kaufman et al., 
1981; Brown et al., 1981), cells with more copies of 
the drug resistance gene may proliferate slower, i.e.. 

Since the drug influence on resistant cells is signif- 
icantly smaller than on sensitive ones, we might 
assume all u p  equal zero except for zqdenoted u from 
now on. Moreover, since the differences in amplifica- 
tionldeamplification probablilities for resistant cells 
and cell lifespans are not significant, it seems justifia- 
ble to make additional assumptions that parameters 
h,. b, and di does not differ for cells of different type. 

Let N&t) denote the expected nunlber of cells of 
type i at time t. This leads to the following infinite 
system of differential equations: 

, k"(t) = [l - 2u(t)]XN"(t) 
- crNo ( t )  + ~ N I  ( t )  , 

ii$(t) = ANl ( t )  - ( b  + dji% ( t )  
+dl& ( t )  + aJYJo ( t ) ,  

. . .  
~ , ( t j  = A-F,(t) - ( b  + d)AJt ( t )  

+dlLT,+, ( t )  + b N - ~ ( t ) ,  i L 2 .  

where 

Based on gene amplification studies, there exist 

three phases in the evolution of the resistance process: 

The relatively rare primury event, i.e. the estab- 

lishment of the founder cell of the resistant clone 

containing at least one unstable copy of the target 

gene (the probability of this event, per cell divi- 

sion, corresponds to the ratio d h  in (5)). 

Subsequent ampli f icut i  and deamplificution 

events, occurring at high rates compared to d h ,  
resulting from instability of the amplified gene 

(the probabilities of these events, per cell division, 

correspond to the ratios blh and dlh in (5)). 

Possible stabilization of the resistant phenotype, 

by integration of the amplified gene in the chro- 

n~osomal structures (no counterpart in ( 5 ) ) .  

A number of researchers have carried out the pro- 

cedure to estimate rates of emergence and evolution 

of resistance (by gene amplification and other means) 
(Morrow, 1970; Varshaver et al., 1983; Murnane and 

Yezzi, 1988; Tlsty et al., 1989), obtaining estimates of 

the mutation probabilities, per cell division, in the 

range from lovX to 1W6, with generally higher esti- 

mates for tumorogenic than for "normal" cells. The 

data from the above papers were re-analyzed in a 

recent paper by Kimmel and Axelrod (19941, using a 

two-stage model of mutation. Although the estimates 

of primary event probabilities remain mostly 

unchanged, the probabilities of second stage forward 
and backward mutation are much higher, comparable 

to the estimates of amplification and deamplification 

probabilities(approximate1y 0.02 and 0.10, respec- 
tively) obtained in (Brown et al., 1981; Kaufman et 

al., 1981 ; Kimmel and Axelrod, 1990; Kimmel and 

Stivers, 1994). 

It is possible to derive a formula for calculating the 

number of cells in the whole resistant population. 

Denoting Nz(t) = Cikl Ni(t), the following result has 

been obtained using the methods of Kimmel and Stiv- 

ers (1994) in the case when the sensitive subpopula- 

tion is completely destroyed by the anticancer drug. 
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FIGURE 2 The dynamics of the sensitive subpopulation for M=l,  r=0.1 (left) and r=0.5 (right) 

Suppose that Ni(0) = (meaning that N I  (0) = 1 
and Ni(0) = 0 for i # 1) and d # 6. Then 

where Il(t) is the modified Bessel function of order 1 
(Abramowitz and Stegun, 1964) and ( t )  denotes 
number of cells in the subpopulation initiated by cells 
of the first type. 

Using an asymptotic expansion of (7) it has been 
found (Polahski et al., 1997) that, assuming subcriti- 
cality of the process (h < d), a condition for the decay 
of the resistant subpopulation is given by: 

dX<&-&. (8) 

Moreover we have (Polahski et al., 1997): 

where l;l ( t )  denotes number of cells of the first type 
in the subpopulation initiated by cells of the first type. 

In (Polahski et al., 1997) it was supposed that it 
was possible to analyse the system also in the case of 
other initial conditions. Indeed, following the same 
line of reasoning, in case of Ni(0) = 6,k (Nk(0) = 1 and 

Ni(0) = 0 for i # k )  one can obtain the following for- 
mulae for NC(t) and Nl( t ) :  

AT; ( t )  = exp(At) - 

where Ik(t) is the modified Bessel function of k-th 
order. 

Under the assumption about total destruction of the 
sensitive subpopulation the model is linear, hence the 
equations (10) and (1 1) can be used to find Nc(t) and 
Nl(t) in the case of any finite non-zero initial condi- 
tions. 

In the case when the assumption about total 
destruction of the sensitive subpopulation is not satis- 
fied, the model can be considered as a system with 
positive feedback (~wierniak et al., 1998a), whereas 
if the assumption is true, it may be treated as an open 
loop system. Using the Nyquist criterion for infinite 
dimensional systems and constant uit has been found 
(Swierniak et al., 1 9 9 8 ~ )  that in this case the condi- 
tion of convergence of the whole population to zero is 
given by: 
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Model (5) may be used to find the optimal control 
which minimizes an appropriate performance index, 
e.g.. 

In biological terms, the effect of the optimal control 
i~ minimization of the number of cancer cells at the 
end of the assumed therapy interval LO, TI (all, as in 
(13), or only resistant ones - then the No component 
should be omitted in the performance index), com- 
bined with minimization of the cumulative negative 
effects of the drug upon the normal tissues; r is a 
weighing coefficient. 

A straightforward approximation by finite trunca- 
tion is improper because the important features of the 
infinite systems are ignored in this case, which has 
been discussed e.g. in (Polahski et al., 1997). Our 
approach, however, consists in transforming the infi- 
nite dimensional description into one integro-differ- 
ential equation without any loss of model properties. 
Afterwards, neces$ary conditions for optimal control 
could be found using the maximum principle. 

3 THE INTEGRO-DIFFERENTIAL MODEL 

The assumption about complete annihilation of the 
sensitive population is an overidealization. On the 
contrary, a constant influx from the sensitive compart- 
ment to the resistant one (and vice versa) should be 
expected. Let us assume only a finite number of 
nonzero initial condition elements in (5). Then system 
(5) can be transformed into a form of integro-differen- 
tial equation. Particularly, in case of zero initial con- 
ditions of the whole resistant population (N,(O) = Zl0, 
meaning that initially only the sensitive subpopula- 
tion is dealt with, and that can be assumed in many 

cases) it will take the following form (Swierniak et 
al., 1998b): 

&(t )  = 

(1 -2u)hX0(t)  -nNo(t)+ da d l ( t - r )NO(r )dr  h' 
where 

A more general form of the integro-differential 
equation (14) with an arbitrary finite number of 
nonLero initial elements can be easily derived. Sup- 
pose that Ni(0) = & and d # 11. Then 

Leo(t)  = ( I  - 2 u ) h l x ( t )  - aNo( t )  

and 

d* ( t )  = 1 q  ( t )  

(17) 

Moreover, under the assumptions given above 

_nr, ( t )  = ni; ( t )  + N+ ( t )  (18) 

where ,v; ( t )  is given by (1 0) and 

In case the process starts with more than one type 
of resistant cells, the superposition principle can be 
applied and the final model takes the following form: 

This can be applied to any case with a finite 
number of non-zero initial conditions which allows 
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FIGURE 3 The dynamics of the resistant subpopulation for M=l, r=0.1 (left) and r=0.5 (right) 

the use of this form in any practical situation. The the- 
oretical case of initial conditions with infinite support 
should be treated very carefully (see Swierniak et al., 
199%). 

The constant treatment protocol given by (12) 
which guarantees decay of the cancer population after 
sufficiently long time is not realistic. Most of all, it 
does not take into account the cumulated negative 
effect of the drug upon normal tissues. To make the 
solution more realistic, the optimal control problem 
defined by the cost functional given in the form (13) 
may be solved. Further on, the necessary conditions 
for optimal control will be presented for model (16). 

4 NECESSARY CONDITIONS FOR OPTIMAL 
CONTROL OF THE POPULATION 

The optimization problem to be solved is to find a 
control u(t) satisfying the constraint (6) for the system 
described by (20) minimizing the performance index 
( 1  3). 

A number of formulations of necessary conditions 
for the optimization problem for dynamical systems 
governed by integro-differential equations can be 
found in literature, e.g. (Bate. 1969: Connor, 1972; 
Gabasov and Kirilowa, 1971). However, they usually 
either are too general to be efficiently applied in such 
particular problem (bilinear model equation in which 

the control variable is beyond the integral, while the 
performance index is formulated in L1 space) or have 
too strong constraints for example smoothness of the 
control function. Nevertheless, following the line of 
reasoning presented by Bate (1969), it is possible to 
find the solution to the problem. 

It is important to notice that, although the perform- 
ance index (1 3) seems to consist of two components - 
a sum and an integral, the sum actually involves 
another integral which stems from (18). Therefore, it 
should be rewritten to emphasize this relation. Substi- 
tuting (10) and (19) into (18) and, subsequently, into 
(13) we obtain: 

+ i T [ ~ l \ r i ( T  - T ) > ~ o ( T )  + ? X ( T ) ] ~ T ( ~ I )  

where the function 1 ~ 4  ( t )  is defined by (1 0). 

As mentioned before, applying Pontryagin maxi- 
mum principle (Pontryagin et nl., 1962) in a way sim- 
ilar to that shown in (Bate, 1969), the necessary 
conditions for optimal control are given by the folow- 
ing formulae: 

uoPt (f) = n ~ g  m n  [ J I ~  ( t )  ( ~ 1 %  (T - t)ATo(t) + m ( t ) )  
u 

+ 2 p l ( f ) ( ( l  - 2~l ( f ) )XA~o( t ,  - ~ ~ h ' ~ ( t ) )  

+ d o  lT p2(T)$l ( r  - r ) N g ( i ) i l i  , (22) I 
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FIGURE 4 The optimal control for M = 3 (left) and M = 5 (right) 

where (23), (24) are adjoint equations, p l ( t ) ,  pZ(t)- 
adjoint variables. 

Moreover, denoting by 

one may find without difficulty that: 

where A1 and 614 are variational forms of J and u,  
respectively. This will be a basis for development of a 
gradient method for finding solutions later on. 

Since the adjoint equation (23) with given final 
condition (25) implies p l ( t )  = 1 = const and only a 
part of the right hand relationship depends on u we 
are led to the condition in the form: 

u " p f  ( t )  = urg m i n [ ( r  - 2 y ( t ) A N o ( t ) ) u ( t ) ]  (29) 
I1 

where p(t)  =p2(t) i5 a costate variable satisfying the 
following adjoint integro-differential equation: 

all-; (T - t )  + p ( t ) [ ( l  - 2 u ( t ) ) A  - cu] 

with final condition: 

p ( T )  = 1. (31)  

For further reference, let us denote 

H* = (r .  - 2 p ( t ) X A V 0 ( t ) ) ~ ~ ( t ) .  (32) 

Furthermore, the condition (29)  and the constraints 
(6) imply that, unless the problem is not singular, the 
optimal control should have a bang-bang form, i.e.: 

which confirms suggestions of Harnevo and Agur 
(1992) who, having introduced a model which treats 
the emergence of drug resistance as a dynamic proc- 
ess, show how changes in the underlying assumptions 
affect the predictions about treatment efficacy. Their 
mathematical modeling results suggested that under 
gene amplification dynamics with high amplification 
probability, protocols involving frequent low-concen- 
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FIGURE 5 The dynamics of the sensitive subpopulation for M=3 (left) and M=5 (right) 

tration dosing may result in the rapid evolution of 
large fully resistant residual tumors, whereas the same 
total doses divided into high-concentration doses 
applied at larger intervals may result in partial or 
complete remission (which was an alternative recom- 
mendation to that of Coldman and Goldie (1983)). 
The control law (33) implies the way a drug should be 
administered, with highest doses followed by 
"no-drug" periods. As a result, two questions arise: 
how many switches the control should have (i.e. how 
many times the highest dose should be given) and 
what are the optimal switching times for this number 
of switches (meaning how long any period of the 
chemotherapy protocol should last). An attempt to 
give an answer to both of those questions would be 
the most ambitious task, but so far no efficient 
method is known to the authors for dealing with such 
a complex problem. Even for finite-dimensional prob- 
lems analytical solution is not available except for the 
second-order case when all solutions to the two-point 
boundary value problem arising from necessary con- 
ditions could be classified (~wierniak and ~olariski  
1993; 1994). Moreover, even in this case nonexist- 
ence of singular solutions could not be guaranteed 
(~wierniak and Duda, 1994; Swierniak and Polahski, 
1994). Nevertheless, the approach proposed in this 
paper should give very satisfying results. In the subse- 
quent section a numerical algorithm is proposeed that 

allows to find optimal switching times for a given 
number of switches, being assumed arbitrarily at the 
beginning of the algorithm. Afterwards, it is possible 
to use this method for any number of switches and 
compare obtained values of the performance index 
trying to find the best solution. Although this is not 
fully satisfactory in analytical terms, in case of infi- 
nite-dimensional systems, no firm conclusions can be 
drawn from the solution behaviour for different 
number of switches. However, it is always possible to 
define an upper limit for the value of number of 
switches, since control with too many switches is not 
applicable. Taking that into account, it should be suf- 
ficient to apply presented method in developing new 
treatment protocols. 

5 A GRADIENT METHOD FOR FINDING 
OPTIMAL CONTROL 

The algorithm presented here is a modified version of 
the ones proposed by Duda (1995; 1997), developed 
to solve an optimization problem in bilinear finite 
dimensional models. 

Let us assume that the problem described by (20), 
(30), (31) and (33) is not singular and therefore the 
optimal control is a bang-bang process. Then, for an 
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FIGURE 6 The dynamics of the resistant aubpopulation for M=3 (left) and M=5 (right) 

arbitrarily chosen odd number M of switches the con- 
trol variable u(t) is given by: 

M 
where rj are switching times 

( = 1 2  . . 1 )  7-;I = 0, T E  5 T and l( t )  is 
the unit step function. 

In a bang-bang process, a variation of control 6u at 
particular switching time T? is caused by a variation 

M .  67; . 

&u(ry j = 26*( t  - 3 T?")&f l ,  J 

where F*(.) is the Dirac delta function. Hence, the 
variational form of the bang-bang process is as fol- 
lows: 

Substituting (35) into (28) yields: 

Since minimizing the performance index J requires 
the variation 67: to satisfy AJ < 0, the most conven- 
ient way is to make 6ry meet the following condi- 
tion: 

Therefore the numerical algorithm can be 
described in the following way: 

1. Assume M and initial values of 

rJM? j = l ; 2  ? . . . ?  M .  
2. Solve the equation (16). 
3. Solve the costate equation (30) with final condi- 

tion (3 1) 
M 4. Choose coefficients kj and calculate 6 r j  using 

relation (37). 
5. Calculate new switching times 73" f f i~ ;2" .  
6. Repeat steps 2-5 until the stop criterium is satis- 

are is a small given numbers. 

Since the algorithm allows to find a solution for a 
given M only, it seems reasonable to extend it and 
repeat all steps for different numbers of switches. 
This would enable to choose the best treatment in 
context of performance index (13) from protocols 
with different values of M belonging to a bounded set. 
In the infinite dimensional system the solution behav- 
iour with respect to M for finite number of different 
values does not prove that there will not be better 
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results for some greater M. Nevertheless, taking into 
account properties of a drug action and clinical reality 
one can assume an upper limit for its values. 

Exemplary results obtained with this methods are 
shown on Figures 1-6, for parameters based on the 
research (Kaufman et al., 1981) (b = 0.2, d = 2, 
a = 0.01, h = 0.1). The control horizon (the length of 
the chemotherapy) has been set to T = 30. Figures 1-3 
illustrate results for one switch, M = I ,  and two 
weighing factores r. The optimal control is presented 
on Figure 1, while Figures 2 and 3 show the growth of 
the sensitive and resistant subpopulations, respec- 
tively, for r = 0.1 and T= 0.5. The simulation starts 
with a sensitive population (Ni(0) = 0 for i 2 0). Worth 
noticing is the fact that despite such initial conditions 
the resistant subpopulation appears. It is clear that 
choosing too big value of rleads to u(t) = 0 whereas to 
small value of r results in u(t) = 1 for 0 I t 5 T. 

Figures 4-6 allow comparison of results for differ- 
ent number of switches M = 3 and M= 5 (I= 0.1 in 
both cases). Although they are slightly worse in terms 
of the value of the performance index ( J =  2.38 for 
both M = 3 and M = 5, comparing with J = 2.35 for 
M = I), both subpopulations grow significantly less 
for greater number of switches, which might imply 
that a protocol involving greater number of switches 
might be more preferable, at least in some cases. 

6 CONCLUSIONS 

In this paper we discuss a method to develop treat- 
ment protocols in chemotherapy basing on results 
stemming from application of optimal control theory 
to the infinite dimensional model of evolution of drug 
resistance in cancer cell population. 

Attempts at optimization of cancer chemotherapy 
using optimal control theory have a long history (see 
e.g. reviews in Swan, 1990; ~wierniak, 1995). The 
idea has been criticized many times (see e.g. Shin and 
Pado, 1982; Tannock, 1978; Wheldon, 1988). Only 
simplest concepts have won attention in the medical 
world. These include the clonal resistance model 
(Goldie and Coldman, 1979) and the kmetic resist- 
ance theory by Norton and Simon (1977). 

It has been shown that, most likely, the optimal 
protocol should have a bang-bang form, at least in 
some cases involving increasing drug resistance. This 
result is similar to those proposed in the works con- 
cerning drug resistance (Harnevo and Agur, 1992), or 
dealing with cell-cycle-phase dependent treatment 
(Duda, 1997; Swierniak, 1995). Its applicability in 
clinical trials is arguable, however it gives a solidly 
based qualitative picture of possibly optimal chemo- 
therapy scheduling. 

Yet another approach to the optimal control prob- 
lem stated for the model (5) is to consider No Bs a vir- 
tual control (which would be convenient if it was 
somehow possible to shape the sensitive subpopula- 
tion). Then the infinite-dimensional model (5) could 
be transformed into an integral form: 

The optimal control problem for integral systems 
such as (38) is much simpler and could be solved 
using existing methods. However, the assumption 
about capability to shape No arbitrarily is very strong 
and thus applicability of the method is arguable. 
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