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A fundamental problem of cellular biology is to understand the mechanisms underlying cellu- 
lar locomotion. Bacterial organisms may use appendages such as flagellae or cilia to facilitate 
motion. Amoeboid motion [6],  exhibited by eucaryotic cells are seen to flatten onto surfaces 
and extend thin sheets of cytosol called lamellipodia. These in turn make attachments to the 
surface and by the initiation of internal contractions within the cell, a forward motion is 
achieved. The processes which govern this behaviour are extremely complex, however, key 
ingredients have been identified which may provide a sufficient basis for persistent cellular 
motion. These factors are osmotichydrostatic expansion and cellular contraction mediated by 
intracellular calcium ca2+. In this paper, we develop a simple two dimensional model for a 
non-muscle motile cell based on these two key factors. We show it is capable of producing 
persistent cellular motion and chemotactic behaviour. 

1 INTRODUCTION 

A fundamental problem of cellular biology is to under- 
stand the: mechanisms underlying cellular locomotion. 
Bacterial organisms may use appendages such as flag- 
ellae or cilia to facilitate motion. Also, bacterium 
migrate up chemotactic gradients by effectively taking 
measurements in time. In amoeboid motion, [6] ,  more 
sophisticated principles are implemented to achieve 
locomotion and chemotaxis, the main features of which 
will be described later in the text. 

In order for an organism as a whole to develop and 
maintain a functioning form, it is essential that its con- 
stituent cells have the capacity to move. However, not 
all such cells appear to have motile abilities. Fibrob- 

lasts, endothelial cells and neutrophils show high 
motile capabilities, whilst epithelial cells when cultured 
individually, show little or no motion at all [3]. Each is 
acting in accordance with either an inherent programme 
or is being stimulated by some external signal. For 
example, when neutrophils or macrophages detect bac- 
teria they quickly migrate to the infection site, in 
response to a chemical signal to ingest the invading 
organisms. As we shall reveal, the mechanisms which 
cells utilise in order to move and interact with their 
external environment are immensely complex. 

Both microscopic and macroscopic models have 
been developed to explain the behaviour of cells. 
Obviously the internal aspects of cellular locomotion 
being considered in the former, whilst the latter 
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focuses on the interaction of populations of cells. On 
the macroscopic scale many continuum models have 
been developed to simulate for example angiogenesis 
and morphogenesis [23], [28], [29], [311, [32], [34], 
[35], [41]. Typically these models might incorporate 
cellular traction, extracellular matrix properties and 
chemotactic responses and examine the resulting evo- 
lution of cellular densities. 

At a cellular level the processes involved in motion 
are not fully understood due to the complexity of the 
metabolic and mechanical processes involved. Due to 
their relatively large size, amoeba have been studied in 
great detail to understand cellular motion. In amoeba 
the central core of fluid containing the organelles is 
called the endoplasm or sol. The outer fluid which is 
generally transparent and free from organelles is called 
ectoplasm or gel and can be made very rigid by altera- 
tion of the actin network present. Eucaryotic cells, such 
as fibroblasts and endothelial cells, however, are of the 
order ten times smaller in length and therefore more 
difficult to observe, although it is thought the processes 
involved are similar. Any reference to cells henceforth 
will relate to motile eucaryotic cells unless otherwise is 
stated. These types of cells are seen to flatten onto sur- 
faces and extend thin sheets of cytosol called lamel- 
lipodia. These in turn make attachments to the surface 
and by the initiation of internal contractions within the 
cell, a forward motion is achieved. Also it is observed 
that the cell membrane is continually flowing to the 
rear of the cell. When lamellae fail to make attach- 
ments to the surface, they are drawn back into the cell 
body giving a characteristic 'ruffle' like appearance on 
the cell membrane. In the course of the extension-con- 
traction cycle a series of elaborate mechanisms come 
into play and several models have been proposed, 
based on known physical principles, to elucidate the 
behaviour, see for example [13], [27], [37], [40] and 
[46]. A characteristic property of cells, which some of 
these models incorporate, is the visco-elastic nature of 
the cytoskeleton. This particular view point is one 
which we shall adopt and we will describe in detail 
later in the text. In contrast, the models developed in 
[4] and [51 use fluid dynarnical ideas to describe the 
'ruffle' effect and the complex membrane variations 
which are observed, such as invagination. 

The main constituents of a cell volume consist of 
an aqueous solution of water, ions and macromolecu- 
lar proteins. One such protein which exists in abun- 
dance is globular monomeric actin, or G-actin. Actin 
exists in essentially two forms, G-actin and F-actin. 
G-actin has a globular monomeric form and upon 
polymerization G-actin attains a helical filamentous 
structure which is called F-actin. Typically these fila- 
ments are about 5-7 nm in diameter and 38 nm in 
length. Additionally, each actin filament is polarized, 
the two ends having quite different properties and 
conventionally described as the barbed and pointed 
ends. The barbed ends of the filaments usually attach 
to the plasma membrane at the lamellae and the 
pointed ends to the main cell body. G-actin must exist 
at a critical concentration level before polymerization 
of F-actin can occur, typically the level of G-actin 
which exists in human leukocytes is three times 
higher than this critical concentration. The regulation 
of actin polymerization is controlled by the formation 
of a complex called profilactin which consists of 
G-actin and profilin, a polymerization inhibitor [46]. 
This closely correlates with the ca2+ calcium concen- 
tration present which we will discuss shortly. Actin 
plays an essential role in cellular locomotion. The 
interactions of actin with light and heavy chain 
myosin [3] provide the mechanisms for generating 
coherent contractile forces. This is achieved by con- 
formational changes in the myosin molecule. A fur- 
ther important ingredient for cellular motion is that of 
osmotic/hydrostatic pressure. In order to extend a 
lamellae the cell must generate a propulsive force. 
However, when cells are placed in a hypertonic solu- 
tion (higher concentration), all lamellae protrusions 
ceased [I 91, [43], thus implicating osmotic pressure 
as a candidate for the force generation. Due to the iso- 
tropic nature of osmotic pressure, a coordinating 
process must exist to focus the protrusion at a particu- 
lar point on the membrane. This is accomplished by 
stimulation of the leading edge membrane receptors 
by some external chemoattractant. This may initiate a 
sequence of events which culminates in the release of 
internal stores of calcium ca2+ contained in various 
organelles and allows influx of ions suchs as ca2+. 
This in turn activates solation factors within the cyto- 
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gel which sever actin filaments and reduce the associ- 
ated elastic modulus cytogel. As a result of this, the 
volume fraction of crosslinked cytogel is reduced. A 
combination of intracellular hydrostatic pressure and 
osmotic pressure extend the lamellae further where it 
re-attaches to the extra-cellular matrix (ECM) [6]. 
Also, the influx of ca2+ through the plasma mem- 
brane will remodel the filaments in the cortical layer, 
this process itself is mediated by actin fragmenting 
proteins such as gelsolin and villin [3], [26], [43]. 

Calcium ca2+ has been implicated as a basic 
requirement to produce cellular motion since it initi- 
ates actin polymerization and can also stimulate local 
contraction within a cell at the site of deposition [6]. 
Additionally, calcium instigates nucleation of new 
actin fibres and crosslinking proteins which promote 
reformat ion of the cytogel. This stabilises the lamelli- 
pod by increasing the elastic modulus thus reducing 
the effect of osmotic extension. Proteins such as fim- 
brin hold actin fibres in parallel arrays. Others like 
a-actinin and filarnin have the capacity to hold fibres 
in any configuration. Since there is an increase of 
ca2+ within the cortical layer during the influx there 
exists a mechanism to actively remove it. This is 
accomplished by transport into cellular organelles 
such as the endoplasmic reticulum which specialises 
in the transport and synthesis of membrane proteins. 
When a critical threshold is reached, the transient 
effect of osmotic extension is inhibited, ca2+ then 
additionally triggers phosphorylation of myosin light 
chain kinase which causes contraction of the actomy- 
osin gel, which in turn increases as the calcium is 
resequestered into the cell [6]. This is a slower proc- 
ess than expansion and we assume it is has negligible 
contribution during the expansion phase and only 
becomes important once the lamellae are stabilised. 
After chemical proteins have bound to surface recep- 
tors they are ingested by receptor-mediated endocyto- 
sis. A degradation or down regulation of 
ligand-receptors is then experienced culminating in a 
desensitization of the cell membrane. 

An axisymmetric distribution of adhesion lig- 
and-receptors on the cell surface at the lamellae and 
basal region offers the potential for motile behaviour. 
Provided the contraction of the cytoskeleton is sufi- 

ciently strong to break the cellular attachments to the 
surrounding medium, the cell is able to draw its basal 
region forward. Later in the text we will utilise the fact 
that substrate adhesion bonds are broken to enable cell 
motion. As the cell moves forward, often a long fibre is 
seen to be drawn out at the rear of the cell. This can 
suddenly be retracted once the adherence to the under- 
lying membrane is overcome. Figure 1 (reproduced 
from [26]) shows the basic stages of cell motion. 

Substantial investigations have been carried out in 
order to quantify the physical properties of cells such 
as the cytoplasmic viscosity, elasticity and also the 
traction which may be generated by a cell. Many 
other properties have been investigated which address 
the adhesion receptor-ligand kinetics, see for example 
[I], [6], [16], [17], [39], 1451. Quantification of these 
parameters in themselves pose demanding experi- 
mental problems. 

When addressing the problem of chemotaxis one 
must also account for the phenomenon of chemokine- 
sis. Chemokinesis is a process whereby a particular 
agent may affect the rate of locomotion. This may 
cause a cellular population to cluster in a particular 
location, giving the impression a population of cells 
have detected the spatial variation of the agent. Experi- 
ments are necessarily more complex then to account 
for this fact. In contrast, chemotaxis is a process 
whereby a cell detects spatial variation of an agent 
across its own dimensions and subsequently changes 
its direction of locomotion accordingly. Thus, for a cel- 
lular model to capture the chemotactic property it must 
be able to detect the spatial variation of some external 
agent. The chemotactic stimulation of a cell correlates 
strongly with the internal calcium ion concentration. 
Typically the level of concentration of calcium ca2+ 
external to the cell is of the order ~ o - ~ M  or greater, 
whilst the internal concentration of free ca2+ in the 
cytosol is much lower, around ~ o - ~ M .  As such, there is 
a large resource of ca2+ for the cell to utilise. Activat- 
ing receptors on the cell membrane may raise the inter- 
nal concentration of ca2+ very quickly by initiating the 
transient opening of channel pathways. This is of par- 
ticular importance with muscle cells which require a 
fast response mechanism. The process is slower for 
cells such as fibroblasts and epitheliocytes. 
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FIGURE 1 Simplified stages involved in cellular locomotion. Redrawn from [26] 

The influx of ca2+ ceases when the intracellular ca2+ will subsequently be resequestered by the same 
and extracellular concentrations equate, or, the organelles and be consumed in various metabolic 
plasma membrane channels are closed. ca2+ influx as pathways. This cycling process of ca2+ provides a 
stated above, is also supplemented by the release of mechanism for myofibril contraction/relaxation. 
internal stores contained in organelles such as the Figure 2 shows the timescales in which the sarcoplas- 
endoplasmic reticulum or in the case of muscle cells mic reticulum is able to accumulate free ca2+ from 
the sarcoplasmic reticulum. This accumulation of the cytosol and release those stores with the addition 
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FIGURE 2 Timescales of uptake and ca2+ release by sarcoplasmic reticulum vesicles. Introduction of the ionophore X-537a instigates the 
release of stored cia2+. Taken from 1151 

of a suitable agent. Chemotactic receptors also have 
the ability to alter the cell membrane permeability 
which in turn affects the ionic influx. In [48], chemo- 
tactic influences were observed to change both the 
influx and efflux of various radioactive elements 
including calcium. As in [13], it is assumed for each 
cell cycle the above phases are placed into separate 
time periods. The extension phase is defined as the 
time period given by the set T, = ( t  E R : 0 I t I t,) 
and the combined contraction/relaxation period is 
defined for the set T = ( t  E R : t, < t). The extension 
phase T,, correlates to the time period during which 
the cell receives an influx of ca2+ and the channel 
pathwayls are open. During this phase the osmotic 
pressure extends the lamellipod. The duration of the 
time period T corresponds to the contraction/relaxa- 
tion time, this being dependent upon the chemical 
kinetics within the cell. The presence of intracellular 
ca2+ in the cortical layer initiates the myofibril con- 
traction. This will persist until the calcium concentra- 

tion is resequestered and restored to the original 
concentration of about ~ o - ~ M .  Once the internal cal- 
cium returns to its initial steady state value, the cell 
again becomes receptive to further external stimulus. 
Effectively, at this point t is reset so that t = 0 and the 
cycle repeats. It is observed [6] that the lamellipod is 
significantly thinner than the cell body being approxi- 
mately 0.1 - I.Opm thick. Thus we treat the cell as a 
two-dimensional object where we are examining a 
thin slice through the length of the cell in the plane 
through the lamellipod to basal region, refer 
(Figure 3). We impose an explicit functional form to 
simulate opening of the channel pathways at the api- 
cal region of the cell during the stimulatory phase of 
the cell motion. Thus we do not address receptor 
kinetics or the cell's control mechanism for allowing 
influx of ca2+ or chemoattractant binding at the 
lamellipod. We allow influx of ca2+ for the time 
period T, and then make the leading edge or lamellae 
impermeable for the time period T. 
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FIGURE 3 Idealiscd model cell is taken as a plane section through the cell body 

Also, we assume that adhesion to the surface is at 
ideal state, that is, when calcium is released within the 
cell the attachments to the substratum are severed and 
no frictional forces are generated. Only cellular 
attachments at the basal region are maintained during 
the extension phase and cellular attachments at the 
lamellipod during the contractile/relaxation phase. 
Alternatively, one could interpret this as the extensile 
forces generated within the cell at the points of cal- 
cium release having sufficient strength to overcome 
the resistive forces presented by the substrate. If a net 
forward translocation is to be achieved, then the sub- 
strate adhesion force must be less than the traction 
force generated by the cell in order to break the bonds 
to the substrate. However, there is evidence [7] to 
indicate that cells may be haptotactic. That is, a cell 
may actively migrate up an adhesive gradient and so 
future models could address the ligand-receptor inter- 
action of the cell with the extracellular matrix. 

In following sections of the paper we develop a two 
dimensional system to simulate the behaviour of a 
cell relative to some external chemoattractant. We 
couple this with the associated calcium influx and 

subsequent osmotic expansion and actomyosin con- 
tractions which enable cellular motion. 

The disparity of spatial and temporal scales in con- 
nection with cell lengths and migration distances and 
also internal cellular kinetic timescales, makes the 
modelling of individual cells in connection with 
migration over relatively large length scales difficult. 
It is therefore our intention to consider a simplifed 
system of a single cell and examine its behaviour in a 
local environment. That is, we treat the cell as a 
visco-elastic material and relate intracellular calcium 
concentration to osmotic pressure and cellular trac- 
tion. The internal calcium concentration itself is mod- 
ulated by the influx through the cell membrane, which 
in turn is governed by the external chemoattractant 
present. This allows the cell to interact with its local 
environment by assuming chemotactic incentives 
influence the cell's behaviour. In particular, this would 
result in deformations and motile behaviour of the 
cell toward the local chemotactic source. 

The system is broadly based on a model proposed 
by [36] to address the internal aspects of cellular loco- 
motion. Also, as we shall describe further in the text, 
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FIGURE 4 Conceptualised view of a cell 

we embed the cell in a domain where we may pre- 
scribe certain functional forms which may represent 
external concentration of some chemotactic agent. 
This could be realised as a tumour secreting angiogenic 
factors in order to stimulate the migration of endothe- 
lial cells. Since the chemoattractant has the ability to 
influence the plasma membrane permeability, we cor- 
relate the external chemoattractant to that of the cal- 
cium CU'!' present at the lamellipod membrane. This 
then directly influences the cell's ability to sense and 
indeed move up the chemical gradient. Thus we couple 
the cell's internal state to an external chemoattractant to 
investigate if the key processes of osmotic pressure 
extension and CU*' controlled contraction are sufi- 
cient to produce chemotaxis. We show, by choosing 
suitable functional forms for the spatial chemoattract- 
ant profile, that the model exhibits sustainable cell 
motion in a two dimensional scenario. Furthermore, we 
find that the model displays chemotactic sensitivity to 
the external chemical concentration and actively 
migrates toward the hghest concentration. Also, the 
application of an asymmetric profile for the chemoat- 

tractant over the spatial domain of the cell produces a 
corresponding asymmetric local cellular deformation, 
which is so characteristic of cell behaviour. We present 
quantitative data for the mean velocity of the cell 
which is consistent with experiment. Obviously, due to 
the complexity of cellular processes involved, some 
simpliijing assumptions and approximations must be 
made. However, the essential ingredients of the system 
are not sacrificed. This system allows one to see how 
the contemporary model of cellular motion is sufficient 
to produce motion in a two dimensional domain and 
how, with appropriate coupling to the membrane, the 
model can produce chemotactic sensitivity and lamel- 
lae extension. 

2 THE MODEL EQUATIONS 

We conceptualise the cell (see Figure 4) as a deforma- 
ble material which is equipped with a polygonal 
boundary. That is the boundary is continuous and 
piecewise differentiable. The cell domain is parti- 
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tioned, using triangular elements, so that the variables 
of the system may be specified at the nodal points. 
Evolution of the system will involve displacements of 
the cellular material so that we have a moving bound- 
ary problem. Additionally, the moving domain of the 
cell will be coupled to a fixed mesh underlying the 
cell where we specify external spatial quantities 
explicitly. Here we can prescribe the concentration of 
chemoattractant in the substratum. 

Since we are modelling a thin slice through the 
lamellipod we adopt a plane stress assumption in the 
equations of visco-elasticity. 

The vector u(x,t) = (u(x,t),v(x,t)) denotes the dis- 
placement of a point x in the cell If x0 is the original 
position of a point on the cell, xl the position at time t ,  

then the displacement u(xo,t) = X I  - XO. 

Let c(x, t) denote the concentration of calcium ions 
at spatial position x at time t. 

These variables allow us to describe the state of the 
cell in terms of displacements from original configu- 
rations and also by the concentration of intracellular 
calcium ca2+. 

3 CALCIUM CONSERVATION EQUATION 

Employing the law of mass conservation [30], we can 
examine the corresponding evolution of the calcium 
concentration in a region as follows 

where J denotes the flux transport of the calcium and 
P appropriate production and loss terms modelled as 
follows. We assume a classical diffusion process, so 
that we have 

J -D,V,, 

P comprises of terms which model the calcium kinet- 
ics within the cell. As stated previously, an influx of 
calcium through the cell membrane initiates the 
release of internal stores of calcium stored within var- 
ious organelles. This is an autocatalytic process and is 
known as calcium-stimulated calcium release [30] or 
calcium-induced-calcium-release [18]. When the cal- 
cium concentration in the cytosol is above a certain 

threshold c* it stimulates the release of the internal 
stores. This behaviour may be modelled by the func- 
tion given by 

where a,p are positive constants. These parameters 
correspond to the magnitude of the release and 
account for some limiting process repectively. We 
assume a linear resequestration of the calcium with 
uptake parameter h [36],[30] to give the total calcium 
kinetics R(c) as 

Although the exact biochemical details of the proc- 
ess are not fully understood, the qualitative features of 
these kinetics are represented in Figure 5. It has been 
shown [30] that the kinetic term P(c) has three steady 
states when 4 ~ 6 ~  < a 2, that is, the zero state, an unsta- 
ble state at c* and a stable state at cY*. When 4 ~ 6 ~  > a2 
only the stable zero state exists. Furthermore, subject to 
initial conditions, it can be shown travelling wave solu- 
tions exist. In this paper, although both parameter 
regimes were examined, we provide no analytical 
results. This is largely due to the nature of the boundary 
conditions which we shall shortly describe. 

Thus equation (1) becomes 

The authors in [36] considered the system as 
dependent only upon the calcium concentration and 
visco-elastic parameters alone. We now develop a two 
dimensional force balance equation based on that pro- 
posed in [36]. 

4 FORCE BALANCE EQUATION EQUATION 

To address the mechanical force interactions within 
the material of the cell, we utilise the equations of 
visco-elasticity 1251. Visco-elastic models are reason- 
able candidates to describe small deformations of 
cells which possess fluid and elastic properties 1141. 
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FIGURE 5 Qualitative features of the calcium release and uptake function R(c). When the parameters a$ and 6 satisfy the condition 4 ~ 6 ~  < 
a2 the kinetics have 3 steady states. When 4P6 > a2 only the zero steady state exists 

This description leads us to consider an equation of 
the form 

where o denotes the stress tensor, whose components 
are governed by the visco-elastic properties of the cell 
material and also allows inclusion of the intrinsic 
stresses developed in the cell. F denotes body forces 
or external forces which act on the cell. 

Typical velocities of motile cells such as fibrob- 
lasts, epitheliocytes and leukocytes lie in the range 
0.2pdmin - > 12pdmin [6], [4], (refer Figure 6). 
The motion therefore is sufficiently slow so that iner- 
tial effects may be ignored [36], [30]. 

Contributions to the stress tensor o are from the 
visco-elastic aspects of the cell, and intrinsic terms 
from active traction and osmotic expansion. We may 
write the force balance equation as 

where the local deformation is given by the strain ten- 
sor [25] denoted by 

1 
t = - (Vu + 8 u T )  

2 

Here, E(c) denotes Young's modulus per unit vol- 
ume, v the Poisson ratio, p1(c),p2(c) are shear and 
bulk viscosities respectively. 0 = V . u denotes the 
dilation of the material. These values relate to the 
intrinsic properties of the cell. In reality, to define pre- 
cisely these coefficients is itself a dynamical question 
in that they will continously vary with the cell's 
changing state. However, for simplicity we make the 
above parameters constants, thus the cell cytosol may 
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FIGURE 6 Typical motile cells with their average speeds in ymlmin. Redrawn from 161 

be approximated as a linear visco-elastic material, and 
we may describe small deformations in terms of the 
displacements. 

The contribution from osmotic pressure is denoted 
by o,, and active traction by o,. The substrate forces 
to the cell are denoted by o, which comprise of the 
external forces to the cell [6],[37]. In actual fact as we 
shall describe shortly this force will only occur as a 
boundary condition. Write the above as 

where 

F = - v .  (0, + 0,) + 0, 

We shall now introduce forms for the components 
o,,o, and r~~ Using our simplifying assumption that 
the substrate provides no resistive forces, we have 
o, = 0 at all points in the cell domain, except where 
the cell is attached to the substrate. These points will 
be manifest as boundary conditions imposed on the 
force balance equation. For example, during the 
extension phase the cell extends its lamellae, this indi- 
cates that substrate tethers have been broken. How- 
ever, the rear portion of the cell remains fixed, thus 
implying substrate forces can be assumed greater than 
the extensile forces or that the tethers remain intact. 
We can therefore fix the cell at the basal region, evi- 
dently a zero Dirichlet condition on the displace- 
ments. We will specify the boundary conditions fully 
later. As mentioned earlier, haptotaxis may be incor- 
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FIGURE 7 The influx and release of Ca2+ initiates solation of the cytogel. As the volume of disassembled cytogel S in the lamella increases, 
it reduces the elastic modulus of the cytogel. The lamella then extends due to the osmotic/hydrostatic swelling pressure [36] 

porated into the system. The quantity o ,  could be 
functionally related to some adhesion agent such as 
fibronectin which could be specified externally to the 
cellular domain. However, we shall not address hap- 
totaxis in this model. 

Figure 7 shows the qualitative features of osmostic 
pressure as presented in [36]. Osmotic pressure 
increases with increasing volume fraction of disassem- 
bled cytogel denoted by S. Since the state of the cytogel 
is dependent upon calcium concentration, we make the 
osmotic swelling pressure a function of calcium. 

Based ton Figure 7 we choose a simple linear form for 
o, which designates that the osmotic pressure at a point 
within th~e cell is simply a linear function of calcium 
concentration. This relation indicates that an associated 
reduction in the elastic properties of the cell's apical 
region would accompany an inilux of calcium ca2+, 
which is a reasonable assumption. Thus we set 

-a . {a,) = a . {TcI). 

Since an outward force is generated, o, has a pos- 
tive coefficient. In vector form this becomes 

The active traction o, generated by the cell must 
account for a directional bias. This bias must corre- 
spond in some way to the chemotactic agent in order 
for the cell to migrate. Many studies (see [3] for 
example) have used techniques such as immunofluo- 
rescence microscopy and have observed an alignment 
of actin stress fibres in the direction of the extending 
lamellae. We therefore assume that the level of 
polymerized actin is proportional to the ca2+ concen- 
tration during influx. The maximum of orientated 
fibres would occur when the cell closes its membrane 
to further influx of ca2+. Thus, we choose the gradi- 
ent of the calcium profile at this time to specify in 
which direction the subsequent contraction force 
should operate. Thus, an influx and local release of 
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calcium would initiate polymerization and alignment 
of the actin fibres in the profile of the calcium gradi- 
ent. Once the cell closes the plasma membrane to fur- 
ther influx of cu2+, then ca2+ will be resequestered 
into internal organelles and depolymerization of the 
actin network will commence. This will generate con- 
tractile forces which will act throughout the cell due 
to the cell's cytoskeleton. 

Thus at time t = t, we essentially capture the cal- 
cium gradient 

Vc(x, t,)' 

we set 

-V . {n,) = -V . GVc(x, t,)( r(c)dxI ; { L I  
again in a two dimensional vector form this becomes 

where 

6-1 - - suplVc(x, t,)l x E 0, 

and T a positive constant. 
This provides the mechanism to specify the direc- 

tion in which the active contraction operates. We 
assume a linear contractile force proportional to the 
calcium concentration is generated, given by rc  
whose direction is specified by Vc(x,t,). The value 
chosen for the parameter 6 is such that the product 
GVc(x,t,) is normalized and has maximum value not 
exceeding unity. During the contractile phase we 
assume the cell has sufficient attachments at the api- 
cal region, this provides a boundary condition to fix 
the cell so that the contractions pull the cell body in 
the direction of the contraction. This is a necessary 
condition otherwise the cell would be unable to move. 
We shall discuss boundary conditions shortly. 

The term F may be considered as a forcing compo- 
nent to the cell material provided by osmotichydro- 
static pressure and cellular traction. We consider the 
cell to be on a substrate which has a distribution of 
some chemical attractant or adhesion modifying com- 
plex which will influence the cell's preferred orienta- 
tion and direction of motion. [49], [48]. This could be 
realised in vivo by a cell sensing an activating agent, 

for example an endothelial cell sensing some tumour 
angiogenesis factor (TAF). 

Introducing the following nondimensionalizations 

gives 

V* = LV, a* = Taro,  f i* = PC;,  

PI Pa p+-, p ; = -  
ET'  

T C o  * 7rCo 
j-* z - 

E '  T = -  
A *  = AT 

E '  

Dropping the asterisks for notational simplicity, the 
above system becomes: 

For equation (4) and equation (5) we prescribe the 
following initial conditions 

This merely states there is initially zero displace- 
ment of the cellular material and that the intracellular 
concentration is at its unstimulated level. Thus on 
completion of each extension-contraction phase the 
state variables c(x,t) and u(x,t) have to these initial 
configurations. 

To complete the specification of the model equa- 
tions we must define the boundary conditions which 
play a principal role. Before we define the boundary 
conditions, recall the extension phase and contraction 
phase time periods are given in the following defini- 
tions. The extension phase, is defined as time period 
given by the set T, = (t E R : 0 < t < t,) and the com- 
bined contraction/relaxation period is defined for the 
set T = (t E R : t, < t). Let anl be the portion of the 
cell boundary at the leading edge which is receptive 
to external compounds. 

Similarly, let dRb be the cell boundary at the basal 
region of the cell. The lateral edges of the cell are 
denoted by dR,. The total boundary of the cell being 
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- boundary 

cell polarized and is 
receptive t o  external 

compounds 

L am&p od at apical region 
initial conhtion with either 
h c N e t  or z ero-flux / \ 
boundary c 

cell body 
zero -f lux 
boundary 
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bas a1 region 
Dirichlet and zero-flux 
boundary conditions 8% 

FIGURE 8 Finite element mesh of a cell with associated boundary conditions. The leading edge of the cell anl is permeable to the influx of 
ca2+ during the extension phase. The basal anb and lateral an, regions during this phase are impermeable, hence a zero flux condition is 
imposed. A.lso, during the extension phase, the leading edge and cell body are free to deform whereas the basal region is assumed fixed, thus 
we have u := 0 on anh. Similar conditions apply during the contraction phase. See main text for full details 

dR refer Figure 8. At the leading edge dRl of the cell 
we will establish a relation between the permeability 
of the membrane and hence the transport of ca2+ 
across the membrane during the extension phase. The 
remaining regions dRb and d R, of the cell we will 
assume are impermeable to influx. We now specify 
the boundary conditions for equation (4) at the lead- 
ing edge of the cell for the time period T, 

In [36:1 the boundary condition is given by 

d,Vc(aRL, t )  . n = K(c,, - c(dR1, t ) ) .  

Where K, a positive constant, relates to the membrane 
permeabi~lity, c, the external calcium concentration 
and d, the calcium diffusion parameter described ear- 
lier. 

dCVc(3R1, t )  . I I  + Kc(aR1, t )  = Kc,, . 

Where n is an outward unit normal to the boundary. 
Also, typically d, << 1 and so the first term in this 
expresssion is negligible, we accordingly approxi- 
mate this condition to 

c(dR1, t )  = c,, t E T,. (7) 

In order for the cell to display chemotactic behav- 
iour, it must sense the chemotactic agent in the sur- 
rounding environment and utilise this information for 
directed motion toward the source. As discussed ear- 
lier, the mechanism for motion is governed by the 
influx and local release of calcium. Clearly then we 
require a method to relate the spatial distribution of 
some chemotactic agent to the level of calcium which 
may penetrate the cellular membrane. 

This is achieved as follows: Firstly, we provide a 
spatial function h(x). This gives us the facility of 
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t 
receptor recovery 

\, 

Time(m in) 

FIGURE 9 Chcrnotactic peptide receptor recovery-loss cycle. The concentration of chemoattractant affects the permeability of the cell mem- 
brane. The receptvra are intemalised when the chemoattractant saturates and expressed after a relaxation period. Redrawn from [49] 

ascribing an external chemotactic profile. Also, in 
[49] chernotactic peptide receptors on the cell mem- 
brane were found to have a recovery-loss cycle, refer 
Figure 9. Since these receptors govern the permeabil- 
ity of the cell membrane, it seems reasonable include 
a qualititative feature of this effect at the leading edge 
boundary. Thus, an influx of calcium through the 
membrane will be modulated by the external chemo- 
tactic profile and by the receptor recovery state. 
Hence, we set the calcium concentration on the 
boundary c(aRl,t) to be a product of the external 
chemotactic concentration h(x) and sin(.nt) for t E T, 
to express the stimulatory profile. 

c(aQ ; t )  = sin(7i.t) h (x), t  E T, . ( 8 )  

On the remaining boundary of the cell, namely dRh 
the basal region and lateral aR,edges of the cell, we 
specify zero flux or Neuman conditions during the the 
time interval Te. This corresponds to the cell mem- 
brane being impermeable to calcium on these portions 
of the cell membrane. Thus we have 

Vc(dQ, t ) . n=O,  ~ E T , .  

Vc(dfLb, t )  . n = 0 ,  t  E T,. (9) 

For t > te i.e. the contractiodrelaxation time period 
we assume the lamellipod membrane has closed its 
channel pathways and so further influx of calcium 
ceases. Again as the membrane becomes non-porous 
this translates to a zero-flux condition in mathemati- 
cal terms. Thus, the entire boundary R has a zero flux 
condition and the cell is closed to its environment, 
and we have 

~ ( : ( a f ~ ,  t )  . 11 = 0: t  > t,. (10) 

The boundary conditions for the displacements are 
described as follows Firstly for the extension period t 

T, 

u(3Rb,t)  = 0 ,  ~ E T , .  (11) 

This states the cell is fixed at the basal region. Here 
we assume that the cell maintains adherence in this 
region, whereas in the lamellipod, the cell is free to 
deform, thus having a free boundary. 
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TABLE I1 

Parameter Numeric range Units Reference 

Traction per cell r 0.03 - 0.27 dyneskell [211 

Young's modulus E 1 - lo3 dynes/cm2 [l], [451 
Poisson ratio v 0 - 0.5 cidcnz 1251 

Viscosity p lo2 - lo5 poise W I ,  [I31 
Average cell length L 20 - 100 Pm [131, [431 

Extension time T, 6 x  1 0 - 4 x  lo3 s e a  [ I  31, [43l 
Contraction time T 6 x  1 0 - 6 x  lo3 s e a  [131, [431 

Osmotic pressure n 4 x lo2 Torrs [371 
Calcium ca2+ uptake h 10 SBC-' [lo] [Is] 

Calcium ca2+ diffusion D, 2.25 x 10' pm2/sec 1101 1181 

During the contraction/relaxation phase t E Tat the 
leading edge dRl we have a reversal of this situation 
to get 

u (3Rl ; t )  = 0, t > T,. (12) 

Physically, this corresponds to the lamellipod 
achieving full adhesion to the substrate and becoming 
fully stabilised due to the actin network. The subse- 
quent cellular contraction overcomes substrate tethers 
and so the basal region has a free boundary. 

It remains for us to establish what is the duration of 
the time periods Te and T. We propose to use experi- 
mentally observed extension periods Te gained from 
papers such as [43], and to allow the calcium kinetics 
in the int~zrior of the cell to determine the time period 
T. That is to allow contraction to continue until the 
calcium has returned to a zero state. 

Equation (4) and equation (5 ) ,  together with the 
boundary conditions equation (7) - equation (12) pro- 
vide an itlealised model of the cell's varying intracel- 
lular calcium concentration, and the associated 
viscoelastic deformations. 

5 ESTIMATION OF PARAMETERS 

A requirement for the model to be informative is that 
it is capable of reproducing real cellular behaviour 
within th~a correct parameter ranges. As such, where 
possible we use parameter values which have been 
experimentally verified. Solving the system (4) and 
( 5 ) ,  we seek quantitative and qualitative behaviour 
which corresponds to both experimentation and 

observation. Typical quantitative information which 
is known about cellular motion is cell speed thus we 
seek agreement in this fact. Similarly we would 
expect the total chemotactic response of the cell to 
culminate in the persistent motion toward the chem- 
oattractant. Estimation of parameters is very difficult 
in the biological domain since empirical values can 
vary widely if they are available at all. Not only are 
the cells generally very small (approx 20pm - 
120pm), but slight variations in control experiments 
may cause significant changes in observable data. 

We choose a characteristic length scale of 
L = 100pm. This is the mean length of a non-muscle 
cell. We can then investigate cellular motion with 
respect to its length, since it is known cells can migrate 
up to their own length in approximately 60 - 80mins 
[3], [6] under optimum conditions. The role of actin 
plays an important role in cellular motion. Actin has a 
characteristic polymerization time of around lmin 
(Zigmond 1993), and so the minimum time in which to 
detect an expansion or contraction of a cell is approxi- 
mately 3min. We therefore choose our reference times- 
cale to be T = lmin. Furthermore, we impose this fixed 
timescale to be the duration of the extension phase Te, 
whereas the relaxation/contraction phase will be 
dependent upon the calcium kinetics within the cell. 
Thus, T is the time taken for the cell to restore the cal- 
cium level to the initial state by resequestration or 
removal. Table I1 shows experimental or observed 
ranges for the parameters of the system. Using these 
values in the non-dimensional relations provides the 
appropriate noudimensional ranges. 
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The calcium ca2+ diffusion parameter D,and 3. update nodal positions based on calculated dis- 
uptake h were drawn from [lo] where a full parame- placements. 
ter list and source can be found relating to a more 4. repeat from ( I  j 
extensive model of the calcium kinetics. We will dis- 
cuss this point later in the text. The actual value of the 
diffusion is thought to vary for different cell types, the 
above values relate to muscle cell types. Since the pri- 
mary function of the muscle cell is to respond directly 
to calcium concentration it is reasonable to expect 
that the same parameter values in non-muscle cells 
would be reduced. 

6 NUMERICAL SIMULATIONS AND RESULTS 

To solve the system of equations (4) and (5) we must 
correlate the intracellular calcium ca2+ concentration 
at each time step with an associated forcing compo- 
nent. The generated force is calcium dependent and 
will be either an osmotic/hydrostatic extension force, 
or an actomysosin contractile force. The solution at 
each time step for the calcium concentration is 
dependent upon the boundary conditions (equations 
(7) - (12)). These boundary conditions enable calcu- 
lation of the calcium influx and interior concentra- 
tions. Additionally, they prescribe which portions of 
the cell are fixed and which are free to deform at any 
given time in the cellular cycle. Once the intracellular 
calcium concentration has been established, we can 
calculate the corresponding effect upon the cellular 
material by solving equation (5 ) .  Thus we use the fol- 
lowing algorithin 

1. For time step t + 6t calculate values of calcium c 

of intracellular calcium using equation (4) subject 
to boundary conditions. This will require the itera- 
tive snlution of a non-linear system by Newton's 
method. 

2. Use calculated values of calcium c in the forcing 
components of force balance equation (5) until 
solution converges. The forcing component 
depends on the phase of the motion with either an 
extension or contraction phase to establish the 
appropriate boundary condition. 

Thus the evolution of the intracellular calcium con- 
centration drives the deformation of the cell material. 
The boundary conditions and particular movement 
phase imposed on the nodal positions of the cell will 
determine which nodes may be subject to displacement. 

To solve such a moving boundary problem, it is 
convenient to adopt the Finite Element method which 
can accommodate irregular domains quite easily. Also 
this method was formulated with the solution of the 
equations of viscoelasticity in mind, thus our system 
is naturally suited to this method. 

We solved the system of equations (5) and (4) and 
associated boundary conditions numerically using the 
Galerkin finite element method [12], [47]. We 
adopted linear triangular elemental forms for ease of 
implementation. The system was solved using Euler's 
method fully implicitly in time where convergence 
was achieved when a suitable criterion was satisfied. 
All matrix computations were solved using a pre-con- 
ditioned biconjugate gradient method since symmet- 
ric matrices were not guaranteed. Additionally, 
equation (4) is non-linear due to the release term, this 
demands an iterative solution at each time step. This 
was performed using Newton's method, where again a 
convergence criterion was imposed. 

We now present the results of the model. Our 
demands of the model are to achieve agreement with 
qualitative and quantitative data. This would relate to 
cell speeds and to produce protrusions geometrically 
which will correspond to the existence of lamellipodia. 
We consider various hypothetical situtations where we 
are tracking, say an endothelial cell's motion which is 
sensing a chemotactic chemical. We impose several 
profiles for the chemoattractant which correspond to 
the function h(x) in the model. In the following plots 
the kinetic term P(c) has only the zero stable state, that 
is the parameters satisfy 4 ~ 6 ~  > a2. 

Also we consider various initial geometric configu- 
rations for the cell. Firstly, consider Figure 10. This 
shows the simplest scenario for the chemoattractant 
profile, namely a constant value over the migratory 
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FIGURE 12 t =  15 

FIGURE 10 Constant chemoattractant profile. The cell will experi- 
ence no spatial variation in chemoattractant concentration. As such, 
a symmetric cell will migrate straight ahead 

domain. As such we would expect the cell to move in 
the direction of its initial orientation since it would 
sense th12 chemical but detect no spatial variation 
across it,s body. This is verified in Figure 11 - 14, 
which clearly shows the cell migrating. Also note the 
basal region of the cell becomes more elongated with 
time since the contractile force experienced in this 
region is less than in the lamellipod, physically one 
could identify this as a retraction fibre. 

FIGURE 13 t = 30 

FIGURE 11 t = 0 

FIGURE 14 t = 45 
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FIGURE I6  t = 0 

FIGURE 15 A linear chemoattractant profile provides a spatial 
incentive to the cell. The cell migrates up the chemical gradient 

Choosing a constant chemoattractant profile may 
also correspond to the motile behaviour of fibroblasts 
in vitro. It is known that fibroblasts, when cultured [3] 
on a petri dish, will migrate in any direction and pro- 
liferate until they have colonised the whole dish and 
formed a complete monolayer culture. Thus, provided 
the environment has a sufficient calcium resource the 
above model would demonstrate this behaviour. 
Migration would only cease when external forces 
operate on the cell, this would be in the form of neigh- 
bouring cells and the petri dish walls. 

Figure 15 shows the chemoattractant profile which 
we specified in order to stimulate the cell to changes 
in its direction of motion. The cell, sensing a gradient 
would actively migrate toward the highest concentra- 
tion. Figure 16 - Figure 19 show the corresponding 
response. 

On the cellular membrane many protrusions are 
frequently observed, this indicates the cell may be 
undergoing the cellular processes mentioned in differ- 
ent localities across its dimensions. To try to simulate 
this behaviour we imposed a chemoattractant profile 
as shown in Figure 20, and chose as our initial geo- 
metric configuration for the cell that shown in 

FIGURE 17 t = 15 

FIGURE 18 t = 30 
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FIGURE 19 t = 45 
FIGURE 21 t = 0 

FIGURE 20 A cell sensing a cosine chemoattractant profile will 
tend to extend two lamellae 

Figure 21. This configuration is one which may corre- 
spond to a typical epitheliocyte (see Figure 6). 

Figures 21 - 24 indicate the model is able to detect 
the spatial variation of the chemoattractant across the 
cellular dimension and shows the response to be of a 
chemotactic nature 

Similarly Figures 26 - 27 show the cell exhibiting 
rotation in response to the chemotactic profile in 
Figure 25. The cell senses two sources of attractant 
but responds more to the higher concentration. By 
vector summation of the forces generated by the 
sources tlhe cell still makes forward motion. 

FIGURE 22 t = 2.5 

FIGURE 23 t = 7.5 
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FIGURE 24 t = 10 

FIGURE 25 An asymmetric chemoattractant profile simulates 
behaviour shown in Figures 26 and 27 

Next, to verify that the model produces cellular 
speeds of the correct order, we monitored the speed of 
the node which was initially located at the centroid of 
the cell, this provides us with the mean speed of the 
cell. Figure 28 shows the computed values. Upon res- 
caling to dimensional values we have speeds in the 
range 0 - Spm/min which is of the correct order. 

As a further insight into the cellular kinetics, we 
monitored the calcium concentration at the leading 

FIGURE 26 t = 5 

FIGURE 27 t = 10 

cellular membrane. Figure 29 shows the influx and 
uptake kinetics which the model produces. By vary- 
ing the parameters a and A. which relate to release 
and uptake of intracellular calcium, we can see the 
calcium kinetics directly influence the duration of the 
contraction/relaxation time period T. Figure 30 shows 
three differing contraction/relaxation time periods 
T1,7'2 and T3 as a result of varying release and uptake 
parameters. Here, we chose a parameter regime such 
that 4 ~ 6 ~  < a2. However, the system did not shift to 
the higher steady state c** as similar models have dis- 
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FIGURE 28 Associated mean velocity profile of the cell. The initial 
centre of mass of the cell is monitored to determine the mean velocity 

FIGURE 29 Ca2+ at leading edge of cell. Chemoattractant mole- 
cules bind to the cell membrane receptors influencing the permea- 
bility of the. cell wall 

played [:30]. This is probably due to the boundary 
conditior~ and the initial condition providing insuffi- 
cient perturbation to the system. 

0 0.5 1 1.5 2 2.5 3 3.5 4 
TI* t 

FIGURE 30 ca2+ at leading edge of cell. Effect of varying release 
a and uptake h parameters. T1 ,T2 and T3 denote different contrac- 
tionlrelaxation time periods 

7 DISCUSSION AND FUTURE WORK 

We have presented a simple two-dimensional mathe- 
matical model of a motile eucaryotic cell. The model 
correlates the force interactions between the viscoe- 
lastic properties of the cell against osmotic expansion 
or actomyosin mediated contraction. The forces gen- 
erated from osmotic expansion and actomyosin con- 
traction were given functional dependence on the 
intracellular ca2+ calcium concentration. By utilising 
the calcium gradients established in the cell during 
calcium influx and intracellular release, we can spec- 
ify the direction in which the expansion and subse- 
quent contraction forces will operate. The primary 
orientation of these forces is in alignment with the 
maximum calcium influx. Since the cell membrane 
permeability may be governed by cell surface chemo- 
tactic receptors, the influx of calcium experienced by 
the cell, is associated with the external chemotactic 
profile. Translating the external chemotactic profile 
into an intracellular calcium gradient offers the poten- 
tial of directional motion to the cell. Suitable applica- 
tion of boundary conditions which relate to 
cell-substrate adhesion provides the final ingredient 
for persistent cellular motion, furthermore, this 
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motion exhibits chemotactic sensitivity. Variation in 
the chemotactic chemical over the cell body allows a 
corresponding variation in intracellular calcium 
which leads to the subsequent chemotactic response. 
Quantitatively, the model produces typical cellular 
velocities in the correct regime when using experi- 
mentally derived parameter values. On a qualitative 
level, the model can produce cellular protrusions 
which are commonly observed. Finally, by varying 
calcium uptake and release parameters, we can show 
how this may effect cell contraction times. 

Clearly, given the complexity of the processes 
involved in cellular motion it is unreasonable to try 
and address all the aspects. However, by making the 
simplifying assumptions relating to the cell-substrate 
adhesion and membrane interactions, we have pro- 
duced a model which captures the essential features. 
The model effectively is a minimal representation of a 
motile cell, and as such provides many avenues for 
enhancement. In principle, the treatment used in this 
model may be used to address the behaviour of small 
numbers of cells in response to some chemoattractant. 
This would not only be informative as to the spatial 
distribution of the cells due to local variation of che- 
moattractant, but also how, perhaps, intracellular 
events may influence that behaviour. This would be a 
novel approach in that it is neither a macroscpic 
model addressing large distributions of cells, nor 
focussing solely upon the intracellular variations. 
Future work could include: 

Investigate the behaviour of two or more cells. 

Couple the cell to the chemoattractant to simulate 
chemical uptake. 

Determine analytically if travelling wave solu- 
tions may exist with the above initial and bound- 
ary conditions. 

Incorporation of receptor-adhesion kinetics such 
as in [13], and link to the boundary conditions of 
the cell to provide a dynamic correspondence. 

Include strain activated calcium release [30]. 

Non-constant visco-elastic parameters with func- 
tional relation to the calcium concentration. 

Membrane interaction with the cytoskeleton. 

One immediate change which may be made to the 
model is the calcium kinetics. A more accurate 
description of the intracellular calcium concentration 
may be produced by considering the influx calcium 
and internally released calcium as two separate spe- 
cies [lo], [18]. The model considered in [I81 com- 
prises of two coupled partial diffrential equations (one 
for influx and one for internally released calcium) to 
describe the total intracellular calcium concentration. 
The system is excitable in which travelling wave 
solutions arise. These solutions may be the source of 
the contraction waves which propagate across the 
cell, and may present interesting features in terms of 
the motion of the cell in a two dimension1 setting. 
Also, more sophisticated models may produce the 
spatial distributions of calcium which are observed in 
experiments [39]. 
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