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A parametric model of the complex time-dependent geometry of the ventricles of the human 
heart is constructed. The geometry model is created by means of a boundary value approach, 
solving an elliptic partial differential equation to generate a representation of the inner surface 
of the ventricles. The technique provides a closed-form description of the geometry with the 
advantage that the geometry can be readily changed without introducing holes or discontinui- 
ties in the surface. It also allows a straightforward link to analysis, facilitating the calculation 
of physical properties such as those relevant to fluid dynamics. As an application of this 
work, the geometry model is combined with commercial CFD software to analyse the blood 
flow in the heart. Steady-state calculations are performed at various time steps to follow the 
evolution of the fluid flow. 
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1 INTRODUCTION 

This paper deals with the geometric modelling of the 
left and right ventricles of the heart. Pedley [lo] 
describes the left ventricle as roughly circular in 
cross-section, and shaped rather like a blunted arrow- 
head. When it contracts, there is an initial phase in 
which the long axis shortens slightly and the trans- 
verse cross section expands. Then the aortic valve 
opens and the long axis remains roughly the same size 
while the transverse axes shorten by around a third. 
The right ventricle is more complex in shape. The 
interventricular wall is functionally part of the left 
ventricle but the outer wall of the right ventricle is 
significantly thinner and has a much larger area, 

resulting in a crescent-like shaped cavity wrapped 
around the left ventricle. Both chambers have inlet 
and outlet valves which act in such a way that one 
closes before the other opens so that (ideally) no 
backflow occur. More information on cardiac physiol- 
ogy can be found in any standard text, such as Smith 
and Kampine [14]. 

The shape of the ventricles is crucial to their func- 
tionality so a realistic parametric geometric model is 
extremely valuable in any related investigation. There 
are two main avenues of approach when considering 
the geometric modelling of biological systems. 
Firstly, scan data can be directly used in order to make 
possible accurate representations of the object in 
question. With regard to the ventricles of the heart 
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this approach has been used by Taylor and Yamaguchi 
[16], Park et al. [9] and Haber et al. [5] amongst oth- 
ers. Often a simple geometric primitive is deformed to 
somehow match the scan surface data as closely as 
possible. While these techniques can provide good 
approximations to the actual geometry in an individ- 
ual case, a general investigation into the effects of 
modifications to the shape can be more difficult to 
perform, due to the way the individual data is directly 
involved in the surface generation. 

The second avenue is to create generic representa- 
tions of the object to be modelled (informed by avail- 
able information, including scan data). The work of 
Peskin and McQueen [ I l l  is some of the most 
advanced to date. Their model encompasses both ven- 
tricles and atria and also the major arteries connected 
to the heart. They build up the heart surface by speci- 
fying the position of muscle fibres in the heart walls 
which are connected to the fluid flow using their 
Immersed Boundary Method. This technique consid- 
ers the elastic fibres to occupy zero volume and move 
at the local fluid velocity. A set of differential equa- 
tions which couple the fibre mechanics and fluid 
dynamics are then solved. The calculations required 
to do this are extremely computationally intensive 
due to the complexity of the model. Yoganathan et al. 
[I81 have also adapted Peskin's method to study a 
thin-walled left ventricle during early systole. The 
computational time required to perform these calcula- 
tions, however, makes it difficult to conduct general 
investigations into different aspects of the motion so 
other work has used greatly simplified generic ventri- 
cle geometry to look at the effects of disease upon the 
fluid flow in the heart. For example Schoephoerster 
[41, [13] uses a spherical left ventricle to examine the 
effects of abnormal wall motion on the flow dynam- 
ics. 

With this in mind, the main aim of the present 
study was to create a generic parametric model of the 
ventricles of the heart which lay in between the above 
extremes. Parametric, in this sense, means that the 
geometry is defined by a set of 'shape' or 'design' 
parameters and can be altered by varying these num- 
bers in a controlled way. The particular parameteriza- 
tion is of crucial importance because the 'parameter 

space' must include enough suitable variation of the 
surfaces to allow a general investigation to proceed, 
whilst not being too large to make this practical. In 
particular, in the case of the ventricles of the heart, we 
wished the parameterization to easily allow 

1. the contraction of the ventricles during the cardiac 
cycle to be realistically modelled, only requiring 
the variation of a small number of the design 
parameters, and 

2. enough flexibility in the ventricle shape to make 
possible investigation into the effects of both dif- 
ferences in individual hearts and also abnormal 
shape andlor motion such as that caused by vari- 
ous types of heart disease. 

By allowing parameters to be functions of time, we 
create a time-dependent model of the beating ventri- 
cles of the heart. 

The technique which is used to generate the geom- 
etry in this work has been applied in the past to many 
other design problems, including the efficient param- 
eterization of aircraft [I], propeller blades [3] and 
ship hulls [7]. Surfaces are produced by specifying 
boundary curves which reflect the key features of the 
shape to be modelled, and then forming smooth sur- 
face patches between them. A consequence of this 
approach is that only a small number of design 
parameters are required because the shape is entirely 
determined by the information specified around the 
boundary curves. Moreover, even using a small 
parameter space, a wide range of geometries can be 
generated. The current work differs from previous 
design work in that parameters can be functions of 
time as stated previously. Details of this method and 
the particular parameterization used can be found in 
section 2. This method improves upon many conven- 
tional CAD techniques in that 

the parameterization is efficient. Conventional 
Computer Aided Design (CAD) methods can 
require hundreds if not thousands of control points 
(parameters) whereas this technique uses a few 
tens (around twenty). 

the surface can be readily modified. Surfaces 
comprising several PDE patches maintain their 
connectivity and continuity as the shape is 
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changed. Again, this differs from many current 
CAD methods. 

it provides a straightforward link to analysis, facil- 
itating the calculation of physical properties of the 
surface, such as velocity, curvature or mechanical 
stress. 

As an initial application of our geometric model, 
we have employed computational fluid dynamics 
(CFD) software to investigate the blood flow in the 
ventricles during the cardiac cycle. 

In this paper, we shall describe the parameteriza- 
tion method, demonstrate how it is applied to the 
problem of the ventricles and show the resulting 
geometry. We will also give an example of the type of 
analysis that can be performed using the model, in 
this case a fluid dynamical investigation. The follow- 
ing section describes our methodology for producing 
the geomelry model, while in sections 4 and 5 we give 
the fluid flow results and some discussion. 

2 GENERAL SHAPE PARAMETERIZATION 

As mentioned previously, the technique for shape 
parameterization that is used defines surfaces in terms 
of boundary curves and derivative information about 
the surface on these curves. This information forms 
the boundary conditions used in solving a particular 
elliptic partial differential equation (PDE). The solu- 
tion to this PDE represents a smooth surface passing 
through the specified boundary curves and combina- 
tions of these surfaces define the shape being mod- 
elled. 

The PDE used in most of the work to date is a ver- 
sion of the biharmonic equation: 

where X: (14 v) + (x, y, z) with (u, v) contained in 
some finite subset of R ~ .  a is called the smoothing 
parameter and controls the relative scaling between 
the u and u directions. 

Suitable boundary conditions would then be of the 
form: 

FIGURE 1 Boundary conditions used for left ventricle geometry. 
do, dl  etc. represent the derivative conditions associated with each 
curve 

Here, fo and fi define the shapes of the edge curves 
parametrised in terms of the variable v. so and sl are 
the corresponding derivatives, again parametrised by 
v. The geometric parameters of the model appear 
within the functions fofi,sg,sl. Note that more com- 
plex surfaces can easily be created by simply having 
separate PDE surfaces with a common boundary 
curve. Continuity is assured by setting consistent (in 
this case identical) derivative conditions on the 
mutual curve. As mentioned previously, this means 
that if the curve is altered, both adjacent patches are 
automatically updated, maintaining a smoothly con- 
nected surface without holes. 

The solution of this PDE is a straightforward proc- 
ess resulting in an (in general) infinite Fourier series 
which computationally is of limited value. A method 
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FIGURE 2 Schcrrlat~c diagram of the curves and parameters used 
for the left ventricle 

has therefore been developed in previous work to 
form a surface which exactly meets the boundary con- 
ditions of the problem and closely approximates the 
exact solution. Essentially the Fourier series is termi- 
nated after a suitable number of terms and then a 
'remainder' function is added whose purpose is to 
ensure that the surface satisfies the boundary condi- 
tions. The new w f a c e  will is 'close' to the true solu- 
tion of the PDE and is still represented in closed form. 
Details can be found in the appendix but the crucial 
point is that the new surface exactly satisfies the 
boundary conditions (even though it will not in gen- 
eral be an exact solution of the PDE), since to not do 
so would cause holes andlor discontinuities between 
surface patches. 

The generation of the geometry using this tech- 
nique is a very quick process, taking a fraction of a 
second (quick enough for real-time animation) for the 
ventricles. It must be performed at each time step of 
interest, so first the time step to be considered is cho- 
sen, then the time-dependent parameters are calcu- 
lated at this stage, then the PDE method is applied to 
generate the surface of the ventricles. 

FIGURE 3 Resulting geometry for the (a) left and (b) right verltricles 



SHAPE PARAMETERIZATION OF THE HEART 

3 MODELLING VENTRICULAR SHAPE r3 ( t )  = p,(l - r,h sin2(tzr/t, , ,)) 

To demonstrate the above, boundary conditions for 
the modelling of  the left ventricle are pictured in a 
schematic in figure 1 .  This case involves three seper- 
ate PDE patches. The dotted lines illustrate the deriv- 
ative boundary conditions which define the surface 
tangent at every point on the curves. This situation 
would translate to the following mathematical formu- 
lation (using the notation of  equation 2). 

Patch -4 fo = cl fl = cs U c4 

SO = dl sl = d3 U dq 

Patch B fo = q fl = c4 U c~ 

SO = d2 ~1 = dq U d:, 

Pa.tch C fo = cs U c5 fl = ct; 

SO = d3 U d5 S, = d, (3) 

The precise definitions of  these curves are based on 
information about the actual shape to be modelled. 
Since the left ventricle is roughly circular in 
cross-section, the majority of  curves are circles or 
parts o f  circles. Figure 2 illustrates the design param- 
eters that form part o f  the definition of  the curves and 
the form o f  the curve definitions are shown below. 

Cl ( ' c )  = (IC, $ T I  C O S ( U  + ~ ( t ) ) ,  

y, + 1.1 sin(c + cu(t)), z,b - t ( t ) )  

cy ( u )  = (r3 ( t )  C O S ( Z :  + ~ ( t ) ) .  

r3 ( t )  sin(?) + ~ ( t ) ) ,  - z ( t ) )  

(- .rr/2 < V 5 ~ / 2 )  

c5 (v) = ( ~ 3  ( t )  C O S ( U  + ~ ( f ) ) .  

r3(t) sin(c + o ( t ) ) .  - : ( t ) )  
( ~ / 2  5 I ,  < 3 ~ 1 2 )  

c6 (c)  = (.rp + 1.4 ( t )  C O S ( L '  - ( t  ( t ) ) .  
y, + r d  ( t )  sin(u - ~ ( t ) ) .  zl, - ~ ( t ) )  

where t is the time and 

z ( t )  = z,,, * sin2 (trlt,) 

t, is the time period o f  the cardiac cycle (taken to be 
about 0.8sec). 

The conditions used for the right ventricle were 
similar but the largest curve is a crescent type shape 
rather than a circle as for the left ventricle. 

These equations are the means by which the ven- 
tricular contraction is implemented using a simple 
sinusoidal type variation in time (although more com- 
plex time dependence could easily be used). Informa- 
tion about the changes in ventricular shape during a 
heartbeat can be found in various physiology texts, eg 
Smith and Kampine [14] and the three components of  
the motion that have been included above are: 

'axial' contraction. The axis in question stretches 
from the plane o f  the valves to the apex o f  the ven- 
tricles and is controlled by the function ~ ( t ) .  zCh- 
controls the amount of contraction and is typically 
taken to be 0.7 cm. 

'radial' contraction. Controlled by r 3 ( t )  rCh con- 
trols the amount of  contraction and is typically 
taken to be 113. 

'twisting' or 'wringing' motion. This is caused in 
actuality by the contraction (expansion) o f  the 
muscle fibres which form the heart wall during 
systole (diastole). The fibres stretch round the 
ventricle in a helical-like curve so as they shorten 
the heart 'twists'. While the grid lines forming the 
model surface do not correspond to the fibres, the 
effect is mimicked by rotating boundary curves 
and this is controlled by a(t). a,h represents the 
amount o f  twisting included in the motion and a 
value of  .x14 has been used. 

With these three modes o f  contraction included, 
realistic changes in volume and dimensions can be 
achieved. 

Figure 3 shows pictures of  the final ventricle sur- 
faces. The lines on the pictures are symptoms of  the 
computer graphics rather than discontinuities of  the 
surface. Movies of  the ventricles beating are available 
on the internet. 
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FIGURE 4 Particle paths in the left ventncle during (a) systole and (b) diaqtole 

4 STEADY-STATE FLUID DYNAMICAL 
ANALYSIS 

As an initial application of the parameterized geome- 
try, a computational fluid dynamics (CFD) analysis 
was carried out. A commercial software package 
called Fluent was used for this purpose. Fluent uses 
finite volume techniques to solve conservation equa- 
tions for mass and momentum by means of a first 
order upwind scheme. Prior to this process, an inter- 
nal tetrahedral volume mesh must be generated. The 
software modules PreBFC and Tgricl were used to 
automatically perform this process. Steady state cal- 
culations were performed at time steps throughout the 
cardiac cycle, treating blood as a Newtonian, incom- 
pressible fluid with density p = 1050 kgrn-3 and vis- 
cosity v = 0.004 kgrnpls-l. The flow was assumed to 
be laminar. These calculations were carried out on 
modest Silicon Graphics workstations on which the 
added computation required to solve the unsteady 
problem would not have been practical. 

4.1 Flow Boundary Conditions 

In the Fluent solver, a boundary can be specified as 
(amongst other things): 

a velocity inlet. Here the velocity of the fluid in 
each cell on the boundary is specified. 
a wall. Usual no-slip conditions are enforced 
an outflow. This condition is used when velocities 
and pressures on the boundary are not known prior 
to the solution of the problem. Fluent extrapolates 
the required information from the interior. 

The simplest case was in systole where one valve 
was taken to be an outflow, the other a wall and all 
other regions were treated as velocity inlets. As we 
specify how the heart wall moves throughout the 
cycle, the instantaneous velocities of the grid points 
on the surface can easily be calculated. 

For the diastolic case we again wished to specify 
the velocities of each point of the grid as boundary 
conditions for the flow. Therefore the majority of the 
surface was once again treated as a velocity inlet with 
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FIGURE 5 Particle paths in the right ventricle during (a) systole and (b) diastole 

'negative' velocity since the ventricle is expanding 
during this part of the cycle. The inflow valve was 
treated as an outflow (but fluid still enters through it) 
in order that velocities did not have to be previously 
specified, and the aortic valve, since it shuts for the 
majority of diastole, was said to be a wall. 

4.2 Results of Flow Calculations 

Pictures of particle path lines for the left and right 
ventricles in systole and diastole are shown in figures 
4 and 5.  Figure 6 shows contour plots of velocity 
magnitude in the left ventricle. Similar pictures can be 
produced for any instant during the cardiac cycle. 

5 DISCUSSION 

A generic model of the geometry of the ventricles of 
the heart has been obtained using the PDE method, 
and time-dependence has been built in to the parame- 
terization allowing the model to realistically beat. The 

geometry has a closed form representation providing 
a straightforward link to methods for physical analy- 
sis. To demonstrate this the model has been used in 
conjunction with the Fluent computational fluid 
dynamics software to perform steady state flow calcu- 
lations at stages throughout the cardiac cycle. 

There are many possible applications of this work. 
Firstly, as has already been mentioned, it should be 
possible using more advanced CFD software to per- 
form unsteady, turbulent calculations on the same 
basis as described above to better approximate the 
conditions in the ventricles. 

Secondly, the modelled geometry could be 
extended to include the actual geometry of the valves 
of the ventricles, again using the PDE method. 

Finally, one major advantage of the parameteriza- 
tion is that changes in the geometry and motion of the 
ventricles can be easily introduced into the model. In 
particular it should be possible to adapt the flow cal- 
culation in order to incorporate the effect(s) of types 
of heart disease. One possibility is to examine 
ischemia, a condition in which a portion of the muscle 



C.J. EVANS et al. 

FIGURE 6 Contour plots of velocity magnitude (in mls) in the left ventricle during (a) systole and (b) diastole 
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surrounding the heart dies, affecting the way in which [8] McQueen D.M. and Peskin C.S., "A three-dimensional Com- 

the ventricles contract. puter Model of the Human Heart", Computer Graphics, 
2000, Val. 34, 1, pp 56-60. 

[9] Park J., Metaxas D., Young A.A and Axel L. "Deformable 
Models with Parameter Functions for Cardiac Motion Analv- 
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APPENDIX - APPROXIMATING 
THE PDE SURFACE 

We denlonstrate here the method used to create a 
closed form approximation to the PDE surface that 
exactly meets our boundary conditions. We are inter- 
ested in solving the PDE: 

subject to boundary conditions typically of the form: 

X ( 0 , v )  = fo(v) .  xu, u )  =fib) 
xu (0. 1 ' )  = S" (7'). x,, ( 1 ,  7,') = s1 (7:) 

The general solution to this problem is of the form: 

x(71, 7 1 )  = &(u)  
IX 

+ C [ A ~ ( u )  cos(n7:) + B,,(u) sin(ni!)] 
71= 1 

where 

Here, a,, and b,,, are all constant vectors. 
The solution to Equation (4) subject to (5 )  will 

sometimes be a finite series, but in general it will be 
necessary to Fourier analyse the functions f O f i  ,so and 
sl and the resulting series will be infinite. In order to 
numerically generate a surface, a means of providing 
an approximate (but nevertheless analytic) solution is 
necessary. 

We now demonstrate a method (again devised by 
Bloor and Wilson) for doing this. 

We call the function obtained by terminating the 
Fourier series after N terms F(u, v )  and define a 
'remainder' term, R(u, v) ,  designed to make the solu- 

tion satisfy the boundary conditions exactly. So we 
now have 

X ( I ] , ,  v )  = F (u,  'u)  + R ( u ,  v )  whew ( 7 )  
F ( u , v )  = 

N 

Ao(rr) + x[~,,(tr) cos(rn~) + B,, (u,) s i r ~ ( r ~ t ) ]  
n = l  

In practise, taking N to be 5 is often sufficient. 
We now need to define R. There is leeway in this 

choice, but in most of the work to date the following 
form has been used. 

R ( u ,  21) = rl ( t>)edU + v2 (v)uedTL 

+ r3(u)c-"" + r 4 ( u ) 1 ~ e - ~ "  ( 8 )  

o is an arbitrary constant. It acts as a kind of 
smoothing parameter local to the boundaries. This 
helps to give the designerlmodeller even more control 
over the surface, and can be chosen to give the most 
suitable shape. R can now be completely determined 
by the insistence that X satisfy the boundary condi- 
tions exactly. This means that we need to define r l , .  . ., 
r4 such that 

X(O> u) = F ( 0 ,  v )  + R(O, v )  = fo(v) 

X ( l , . c )  = F ( 1 , u )  + R ( 1 , v )  = f l ( ,u)  

X u  (0,71) = F,, (0 ,  v )  + Ru(O, v) = so(v) 

X u  ( 1 , ~ ) )  = F u ( l ,  I:)  + R,(1; 7 ) )  = sl(2:) 

We have four equations for the four unknown func- 
tions r l , .  .., r4, which means that R is determined and 
X now satisfies the boundary conditions exactly. 

The question does arise of how close this solution 
is to the exact solution of the original problem. In fact 
it can be shown that the higher the Fourier mode, the 
more quickly the coefficient functions decay away 
from the boundaries of the surface. Thus R, which 
represents the high frequency Fourier terms is small 
except close to the boundaries for sufficiently large n. 


