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A simple method for detecting periodic components of unknown periodicity in a signal is 
presented. The method is based on spectral decomposition of signal using orthonormal 
functions. Traditionally, hypothesis testing together with harmonic functions is used, but we 
show that the same statistical properties are obtained for other systems of orthonormal 
functions as well. The appropriate behavior of the method is first demonstrated with 
simulation studies and then tested to identify visually detennined clusters of high-frequency 
movements, which may repeat in synchrony with respiration during sleep. The good 
performance in the practical testa suggests that an automatic identification of these clusters 
could be based on Walsh functions. 
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1. INTRODUCTION 

Relaxation of postural muscles is characteristic for the 
sleep state. In heavy snorers, the decreased postural 
muscles tone in the tongue and soft palate may result 
in marked narrowing (increased respiratory resist- 
ance, IRK) or complete obstruction (obstructive sleep 
apnea, OSA) of the upper airway. Repeated episodes 
of upper airway obstruction compromise pulmonary 
ventilation and cause arousals from sleep, sleep loss, 
excessive sleepiness and impaired cognitive function 
during daytime. These sleep-related breathing dis- 

turbances could nowadays be effectively treated, if the 
condition is suspected and adequately diagnosed. 
Whereas a number of recording techniques are 
available to demonstrate episodes of OSA, only a 
few methods have been suggested to detect IRR. 

The respiratory disturbances during sleep are 
conventionally diagnosed in a whole night sleep 
study with continuous monitoring of the respiratory 
effort and gas exchange. We have previously shown 
that by using a simple but sensitive movement sensor, 
the static charge-sensitive bed (SCSB), episodes of 
OSA as well as IRR can be monitored without 
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attaching electrodes on the sleeping subject (Polo, 
1992). The major advantage of this approach is 
minimal sleep disturbance during the monitoring 
session. Detection of the IRR with the SCSB is based 
on the appearance of the high-frequency respiratory 
movement (HFRM) patterns caused by increased 
respiratory efforts as response to partial upper airway 
obstruction (Kirjavainen, 1997). Since detection of 
IRR in large patient populations is a technical 
challenge, automatic detection and analysis of the 
HFRM events from the SCSB recordings would 
essentially facilitate and standardize the diagnostic 
procedure. We previously developed and evaluated 
the performance of a range of automated methods to 
detect all the HFRM events during a sleep recording 
(Aittokallio eta]., 2000). To improve the specificity to 
detect the clinically relevant episodes of IRR, which 
typically appear as clusters of periodic events rather 
than occasional events, we have developed a protocol 
to identify these clusters. The method presented here 
focuses on this problem and is proposed to replace the 
laborious visual scanning in clinical diagnostics and 
medical research. It could also facilitate locating 
periods of interests in all-night sleep recordings where 
more detailed analyses on the inspiratory flow shapes 
(Aittokallio et al., 1999; 2001), and trends in 
ventilation or oxygenation are needed. 

The problem of detecting unknown, or hidden, 
periodicities in a time series is well-known in statistics 
(Priestley, 1981). A test based on the Fourier 
periodogram referred to as Fisher's test, has been 
successfully applied in various real signals, e.g. 
control chart signal (Tatum, 1996). The popularity of 
Fisher's test results mainly from the simple and 
attractive test statistic for which Fisher (1929) also 
gave the exact null distribution. The test has been 
modified also for the case where the hidden 
periodicities are harmonics of some fundamental 
periodicity (Hinich, 1982). These types of test have 
been used in the case of discrete signals, or sequences, 
as well, e.g. nucleic acids sequence (Chechetkin and 
Turygin, 1995). Also certain specific algorithms for 
periodic sequences have been developed. The 
problem is that the algorithms for exact periodicity 
(Choffrut and Karhumaki, 1997) are not suitable for 

many situations in practice, and the approximate 
algorithms are usually very slow for long sequences 
(Coward and Drablds, 1998). 

In this paper, a class of tests for periodicity is 
proposed that contains Fisher's test as a special case. 
The test is based on an orthonormal transform of the 
signal, and Fisher's test is obtained when the Fourier 
transform is used. We note that all such transforms can 
be implemented on the order of N log N operations, 
where N is the length of the signal (Andrews and 
Caspari, 1970). Moreover, we show that the statistical 
properties of Fisher's test can be derived also for the 
general test when N is large. In order to show the 
practical uqefulness of the test, we consider in more 
detail the use of the Walsh periodogram in the problem 
of detecting periodic HFRM events in a binary 
sequence. In situations where signals have sharp 
edges, like in sequences, the Walsh periodogram can be 
more applicable than the Fourier periodogram (Beer, 
1981) with the additional advantage that it can be 
produced more quickly since only N log N additions of 
real numbers are required in the fast Walsh transform 

(FWT). 
The paper is structured as follows. Following a 

short overview of the theory of orthonormal trans- 
forms (Section 2),  we give the general periodicity test 
procedure, including parametric and nonparametric 
distributions for significance of an oherved test 
statistic value (Section 3). The operation of the test is 
investigated by means of simulation using both 
periodic and nonperiodic artificial data (Section 4). 
Finally, we consider the real data problem of 
identifying significant episodes of IRR (Section 5 ) ,  
and give some conclusions of the work (Section 6). 

2. SYSTEMS OF ORTHONORMAL 
FUNCTIONS 

In this section we recall some basic facts about 
orthonormal functions, the Fourier and Walsh trans- 
forms, and introduce notation to be used throughout 
the paper. 

Let S = (fk)fz/ be a system of N real valued 
functions defined on a discrete domain of N points 
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labeled as 0, 1, .. ., N - 1. Throughout this paper we 
assume that N = 2' with n is a positive integer. The 
system S is called orthonormal if 

where a,, is Kronecker's delta function (i.e., 6 ,  = 1 if 
i = j. and zero otherwise). Let U = (fk(t))rF10 be a 
matrix corresponding to an orthonormal system S. 
Then Eq. (1) implies that U is an orthogonal matrix, 
that is, 

where vT denotes the transpose of U and I is the 
identity matrix of order N. Consider a real valued 
vector, or signal, x = (x,):;. The rows of U form an 
orthonormal basis in aN,  and therefore vector x can be 
written uniquely as a linear combination of the 
elements of the basis, that is, x = UTc. Since U- '  = 

UT according to Eq. (21, the coordinate vector c can be 
solved easily as 

c = u x .  (3) 

We call the vector c = (ck)::,' in Eq. (3) the 
U-transform of x and the integer k E (0, 1. . . . , N - 
1 } is the spectral index. Note, that each U-transform 
satisfies the Parseval relation 

which states that the transform conserves the energy 
of the signal. Next we recall two well-known 
orthonormal function systems which will be used in 
periodicity testing. 

2.1 Fourier Transform 

The Fourier transform applies to the orthogonal 
harmonic functions h,(x), which are defined as below 
on the interval 0 5 x < 1, and have zero value for all 
other values of x outside this interval. We note that the 
range of these functions is the interval [- 1,1]. The 

definition is based on the cosine and sine functions: 

h2j(x) = cos(2@), 1 = 0, I ,  . .., 

h2j- 1 (x) = sin(2qix). j = 1.2,  . . . , 
( 5 )  

see Fig. 1 (left column). The normalized and time- 
discretized harmonic functions 

I /&  for w = 0. 
f o r w = 1 , 2  , . . . .  N - 2 .  

h n ( t / N ) / f l =  ( -  l ) ' / f l  for w = N - 1. 

(6) 

where t = 0, 1 ,  ..., N - 1, form an orthonormal 
system. In Fourier analysis, the integer w is called 
the frequency index and the vector c in Eq. (3) is 
known as the discrete Fourier transform (DFT) of the 
signal x. The matrix U induces a bijective linear 
mapping from time domain to frequency domain. 

2.2 Walsh Transform 

The Walsh transform uses the orthogonal square-wave 
functions wj(x), introduced by Walsh (1923), which 
have only two values * 1 in the interval 0 5 x < 1 
and the value zero elsewhere. The original definition 
of the Walsh functions was based on the following 
recursive equations: 

W2j-,(x) = wi-1(2x) - (- l ) ~ - l w ~ - ~ ( 2 x  - I). 

with the initial condition wo(x) = 1. Several other 
definitions of the Walsh functions exist in the 
literature which differ only in the ordering of the 
functions (Yuen, 1972). This ordering of the Walsh 
functions corresponds to the ordering of the harmonic 
functions, see Fig. I (right column). Walsh functions 
with even and odd orders are called the cal and snl 
functions, respectively, and they correspond to the 
cosine and sine functions in Fourier analysis. One 
should note, that in contrast to harmonic functions the 
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FIGURE 1 The first eight harmonic functions (Eq. (5) left column), and Walsh functions (Eq. (7) right column). The functions take the value 
z e r o w h e n x i O o r x ~  1.  

sign changes of the Walsh functions are not 
necessarily equidistant (e.g. Walsh functions of 
order 5 and 6 in Fig. I). It is easy to see that the 
normalized and time-discretized Walsh functions 

where t = 0,1 ,  ..., N - 1, form an orthonormal 
system. In Walsh analysis, the integer s is called the 
sequency index and the vector c in Eq. (3) is known as 
the discrete Walsh transform (DWT) of signal x. The 
sequency s is used as a generalized frequency in 
comn~unication theory (Harmuth, 1969). The matrix 
U induces a bijective linear mapping from the time 
domain to the sequency domain. In this case, the 
entries of U have only two possible values, namely 
el/&. Moreover, since U is symmetric, the inverse 
DWT is also generated by U, that is, x = Uc. 

3. TEST FOR PERIODICITY 

Our tool in detection of hidden periodicities in a 
signal is the U-periodograrn p = (pk)r/20 of signal x 

defined as 

4 fork = 0, 
= { + &  f o r k  1 , 2  N / 2  1,  @) 

c i - ,  fork = N/2. 

The kth component of the U-periodogram, when k E 

{1,2 .  ..., N/2 - 1 } ,  gives the amount of the signal 
energy distributed on the spectral indices 2k - 1 and 
2k in the U-transform. The energy of two successive 
indices is merged because in the systems we 
investigate (Fourier, Walsh), the successive functions 
(sin and cos, sal and cal) differ only in the respect of 
a time delay, that is, they have identical periodicity 
characteristics. In these systems, the first component 
represents the average of the signal since 

where ,t is the usual sample mean of signal x. Thus, 

is an estimator of the signal mean. Moreover, the 
Parseval relation in Eq. (4) together with Eq. (10) 
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gives 

where s 2  is the usual sample variance of x. 
Therefore. 

is an estimator of the signal variance. The last 
component in Eq. (9) describes the energy distributed 
on the spectral index corresponding to the function 
(- ~)'/JN, see Eqs. (6) and (8). 

Heuristically we can state that if there exists 
periodicity in the signal, the periodogram components 
corresponding to the function pairs whose character- 
istics are close to the true periodicity will be large 
when compared with the other periodogram com- 
ponents. In Fisher's test, the whole range of 0,1,. . .,N/2 
is investigated, but this is not necessary. Here we let 
K C {O,1, . . . , N/2} be the set of spectral indices 
among which one wishes to search for the periodicity. 
Because we want to recognize whether there exists 
any periodicity or not, a natural test statistic is 
therefore the maximum of the normalized U-period- 
ogram components 

Although we observe that the periodogram contains a 
peak we cannot conclude immediately that there is a 
genuine periodic component in a signal: even a non- 
periodic signal may produce peaks due merely to 
random fluctuations. Therefore, we must test whether 
the observed value of T is significantly larger than 
what would be likely to arise under the null hypothesis 
(H,) that there are no genuine periodic components in 
the signal. Formally, the significance of the observed 
value t is defined by the p-value pit) = P(T > tlHo). 
The smaller the p-value the more extreme the 

observed value and the stronger the evidence against 
the null hypothesis. There exist many different 
techniques to test the significance of an observation, 
that is, to approximate the null distribution P(T > 
tlHo). In the parametric inference approach, an 
analytical formula is derived for the significance. On 
the other hand, in nonparametric methods (e.g. Monte 
Carlo) samples under the null hypothesis are 
generated and the significance is obtained with the 
help of a sample distribution function. 

3.1 Parametric Approach 

In this study, we set up the usual null hypothesis that 
the random signal x under the null hypothesis 
originates from a white noise process. In other 
words, x is a sequence of independently and 
identically distributed random variables with finite 
mean E(x,)  = p and variance Var(x,) = a * .  Then it 
can be shown (see Appendix for details) that the 
variables p k / ~ 2  are asymptotically independent and 
exponentially distributed for all k E K 
{ 1,2 ,  . . . , N/2 - 1 } , and the approximate parametric 
null distribution of T is 

where 1x1 denotes the integer part of x and 1 is the 
number of indices in K. Also, pp(0) = 1. In the special 
case, where K = ( 1 ,2 ,  . . ., N/2}, variables p k h  have 
also asymptotically an exponential distribution since 
v in Eq. (12) under the white noise assumption is an 
unbiased and consistent estimator of a 2 .  Thus, one 
can derive a simpler asymptotic p-value for T in  this 
case. Since (N - l )T  = maxpklv, one gets as the 
maximum of N12 independent exponential random 
variables 

The derivation of the parametric Eqs. (14) and (15) is 
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based on the central limit theory, and therefore, the 
approximation capability improves with increasing N. 

3.2 Nonparametric Approach 

Although the parametric approach benefits from the 
analytical formulae, which are easy to use, the 
nonparametric approach has one main advantage: the 
results are solely based on data of the particular 
experiment. In the Monte Carlo method, a sample of 
MU independent signals is generated under the null 
hypothesis. Let i t l >  t2> .... t , ~ , , }  be the set of 
corresponding observed values of the test statistic T. 
The nonparametric approximation of the null 
distribution is then obtained by the sample distri- 
bution function 

The accuracy of the approximation increases with 
increasing values of Mu. One can generate signals 
under the null hypothesis by using the given null 
hypothesis model (like simulations of section 4),  or by 
more sophisticated models, including randomization 
and bootstrap methods (Manly, 1997). 

3.3 Test Procedure 

Statistical hypothesis testing gives us the following 
simple rule to test Ho against the alternative 
hypothesis H I  that there exists genuine periodic 
components in the signal. First, choose a threshold 
value t. If the observed value of T exceeds t then the 
maximum of the periodogram components is large 
enough to justify the rejection of the null hypothesis, 
and we conclude that the signal contains periodicity. 

When using the hypothesis testing procedure one 
can make two types of errors. The p-value is the 
probability of type I error, that is, the probability of 
rejecting Ho when Ho is true. The type I1 error is made 
if one accepts Ho when Ho is false. This occurs with a 
probability P(T 5 tlH1). Ideally, we should like both 
types of errors to have probability zero, but this is 
impossible. For example, in Eqs. (14)-(16), the 
p-value zero is obtained only at t = co. Therefore, it is 

customary to fix only the probability of type I error at 
a preassigned (small) level a, called the signijkance 
level of the test (Rohatgi, 1984). Then one determines 
the threshold t ,  for which P(T > t,lHo) = a by using 
either Eqs. (14), (15), or Eq. (16). If the observed 
value of T is larger than t,, the null hypothesis is 
rejected in favour of the alternative hypothesis at a 
level a. However, if we have signals generated under 
the alternative hypothesis, we are able to control the 
probability of the type I1 error as well. In the Monte 
Carlo method, the probability is obtained as 

where { t i ,  tz ,  .. ., t ~ ,  } are the observed values of the 
test statistic T computed from the MI independent 
signals generated under the alternative hypothesis. 

4 SIMULATION STUDIES 

In this section, we illustrate the use of the test 
procedures of the previous section by means of three 
examples. The theory of the previous section has been 
derived for all real signals. From now on, we 
concentrate only on binary sequences, x, E ( 0 ,  1 } for 
all t = O , 1 ,  . .., N - 1. Here x, = 1 means that a 
certain event takes place at time t. We are interested in 
recognizing if there exists any periodicity in the event 
sequence x. 

4.1 Nonperiodic Sequences 

The first example is somewhat artificial describing the 
exact null hypothesis situation. Let us assume that the 
sequence x is an outcome of N = 8192 independent 
Bernoulli trials having constant probability p = 0.2 of 
success, i.e. P(w, = 1) = 0.2. The top row of Fig. 2 
shows the normalized periodogram components 
P L / ~ ~ ~ ~ P P  for all k E ( 1 , 2 ,  ..., 40961, using both 
Fourier and Walsh systemr. Although the theoretical 
normalized periodogram of a white noise process is 
always flat having only values of 2 /N  = 0.00024, a 
realization of such a process produces random 
fluctuations to a periodogram. This realization yields 
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0 1000 2000 3000 4000 0 lo00 2000 3000 4000 
Frequency index, k Sequency index, k 

c 

0.0015 0.002 0.0025 0.003 0.0035 
Test statistic, t 

FIGURE 2 Simulation study of nonperiodic sequences. (a) Normalized Fourier periodogram of N = 8192 independent Bernoulli trials, and 
(b) normalized Walsh periodogram of the same sequence. (c) Comparison between parametric (Eq. (15)) and nonparametric (Eq. (16)) 
distributions. 

the values m = 0.206 and v = 0.164 in Eqs. (1 1) and 
(12), respectively, as estimators of the signal mean 
and variance for both systems. The true mean is now 
p = p = 0.2 and the variance of the Bernoulli series is 
a2 = p(l - p) = 0.16. The observed value of the test 
statistic computed from the Fourier periodogram is 
IF = 0.00204 (Fig. 2(a)) and from the Walsh period- 
ogram t,, = 0.00210 (Fig. 2(b)). Fig. 2 shows also the 
comparison of the parametric null distribution 
function (Eq. (15)) against the nonparametric 
distribution (Eq. (16)) computed using both systems 
with Mo = 1000 independent Bernoulli series. As 
expected from the theory, the three distributions are 
very similar to each other (see Fig. 2(c)). The p-value 
pairs of the test statistics arepr(tF) = 0.620. pN(tF) = 

0.592, andpp(tw) = 0.523,pN(tW) = 0.505. All these 
p-values give strong support in favor of the null 
hypothesis. If we choose, for instance, the significance 
level a = 0.05, Eq. (15) gives the threshold value 
too5 = 0.00276 as the solution for pp(ta) = a. 

Therefore, we accept the null hypothesis and conclude 
that the signal is nonperiodic. In fact, we can choose 
any level a < 0.505. 

The second example in Fig. 3 is already a more 
realistic one and it is closely related to the respiratory 
signal problem which will be described more 
accurately in the next section. Here the signal x of 
length N = 8192 is constructed by placing a number 
of bursts of 1's in the signal. One burst contains 16 1's 
in the successive entries. We focus only on the indices 
in the neighborhood of 18 1921 10001 = 8 because 1000 
points (when sampled with 250 Hz) corresponds to the 
average duration of an adult respiratory cycle. More 
precisely, we define that K = {1 ,2 ,  . . . , 13). In the 
null hypothesis case the bursts are placed randomly. 
Although this process is not exactly white noise, the 
analytical null distribution can be used as a reference 
distribution, as can be seen from the comparison of the 
parametric Eq. (14) and nonparametric Eq. (16) null 
distributions in this case: some variations exists, but 



T. AITTOKALLIO et al. 

a 

Frequency index, k Sequency index, k 

c 

0.1 0.2 0.3 0.4 0.5 
Test statistic, t 

FIGURE 3 Simulation study of a random burst process with K = ( 1, . . . , 13) (see text for details). (a) Normalized Fourier periodogram, and 
(b) normalized Walsh periodogram of the Fame sequence. (c) Comparison between parametric (Eq. (14)) and nonparametic (Eq. (16)) 
distributions. 

the three distributions are again quite similar (see Fig. 
3(c)). The normalized periodogram components of 
one realization of the process are shown in the top row 
of Fig. 3. The corresponding observed values of the 
test statistic are t , ~  = 0.192 (Fig. 3(a)) and tw = 0.200 
(Fig. 3(b)), which give the following probabilities of 
the type I error: pP(tF) = 0.786, pN(tb) = 0.810, and 
pp(tW) = 0.728, pN(tw) = 0.723. Thus, the maximum 
value of both periodograms is not significant at a level 
a = 0.05 since the threshold value, computed now 
from the Eq. (14) with 1 = 13 is to05 = 0.371. 

4.2 Periodic Sequences 

As a final example we generate a set of time series 
under the alternative hypothesis HI.  Here we let the 
distance between two bursts of 1's be a random 
variable which follows a normal distribution with 
mean 1000 and variance 100, 1000, or 10000. Fig. 4 

shows the normalized periodograms of these 
processes for indices k E K. It is seen that, when 
there are only moderate disturbances in the event 
occurrences (variance 100 and 1000), the maximum 
periodogram component is statistically significant at 
a level cr = 0.05 (Figs. 4(a)-(d)). However, the 
greater the variance the wider the set of indices the 
energy of the signal is distributed on. Here we can 
use the Eq. (17) to control the probability of type I1 
error as well. If we use the threshold to05 = 0.371, 
we obtain the error probability qN(to,os) = 0 for the 
cases where variance is I00 or 1000. This means that 
within M I  = 1000 replicates the maximum period- 
ogram in both systems is always larger than 0.371. In 
the case where the variance is 10000, however, the 
corresponding probabilities are 0.092 and 0.01 1 for 
the Fourier and Walsh systems, respectively. One 
such realization, where both periodograms are less 
than the threshold value, is shown in the bottom row 
of Fig. 4. If this signal describes a process under the 
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Frequency index. k 

Frequency index, k 

e 

0 2 4 6  8 1 0 1 2  
Frequency index, k 

2 4 6 8 1 0 1 2  
Sequency index, k 

2 4 6 8 1 0 1 2  
Sequency index, k 

2 4 6 8 1 0 1 2  
Sequency index, k 

FIGURE 4 Simulation study of periodic signals. Each row represents a normalized Fourier (left column) and Walsh (right column) 
periodogara~ns with an increasing variance (100, 1000, and 10000). Test statistic and its parametric significance are as follows: (a) 
pp(0.864) = 5.21 X lo-", (b) pp(0.844) = 2.70X lo-'. (c) pp(0.749) = 8.13 X lo-'. (d) pp(0.764) = 3.88 X 10 7 ,  (e) 
pp(0.358) = 0.0637,and (f) pp(0.358) = 0.0637. Note the different scale in y-axis between the rows. 

alternative hypothesis, then with the chosen threshold Monte Carlo approximation (Eq. (16)), the control of 
value, we have a positive probability for both types probability of type I1 error is more complicated 
of errors. because it depends on the alternative hypothesis. 

These few examples should clarify that the main Naturally we can no simulate all kinds of periodic 
problem in the hypothesis testing procedure is the signals in order to obtain the exact distribution P(T 5 

determination of the threshold value, which in turn tlHI) but with a large set of training examples one 
determines the error probabilities. Whereas the type I obtains a good approximation of the distribution by 
error is easily controlled by the flexible analytical null Eq. (17). This approach will be described in the next 
distributions (Eqs. (14) and (15)), or by using the section. The simulations demonstrated also that both 
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the Fourier and Walsh periodogram analysis gave 
similar statistical decisions. 

5. RESULTS ON SCSB SIGNAL 

The SCSB is a cardiorespiratory monitoring method 
introduced by Alihanka et a/. (1981). Because no 
electrodes need to be attached to the subject, it is well 
adapted for sleep recordings. The critical part of the 
bed is a movement sensor placed under a standard 
foam plastic mattress. The sensor operates like a 
capacitor, the charge of which is modified by static 
charge layers, which are activated by body move- 
ments. The potential differences between the capaci- 
tor plates produce the raw signal. The sleep study 
included continuous all-night monitoring of two 
SCSB signals and other conventional signals (e.g. 
EEG and ECG), which were all sampled at a 
frequency of 250Hz. The present analysis focuses 
only on the high-frequency band (HFB) of the SCSB 
signal describing the frequency range of 6- 16 Hz 
which is suitable for detection of the HFRM events. 
Fig. 5 shows some examples of parts of a HFB signal. 
During quiet breathing the HFB signal reflects the 
mechanical activity of the heart. The systolic waves 
are generated by the minor body movements foot- 
ward due to rapid acceleration of blood in the 
ascending aorta (Fig. 5(a)). Increased respiratory 
efforts generate HFRM patterns that are superimposed 
on the cardiac activity (Fig. 5(c)). These events occur 
at regular intervals with distance of approximately 4 s, 
which is the average duration of an adult respiratory 
cycle. 

Applying the Fourier periodogram analysis to the 
HFB signal is the first natural choice in order to detect 
the clusters of periodic HFRM events. In Fig. 5 we 
show the problems involved in this approach. As 
expected, there exists a peak in the Fourier period- 
ogram at index k = 8 when the signal contains 
periodic HFRM patterns (Fig. 5(d)), but the other 
periodogram components are quite large as well. The 
problem is that the signal with no HFRM events may 
produce major peaks to the Fourier periodogram (Fig. 
5(b)). In fact, in these example signals, the observed 

value of the test statistic is larger in the nonperiodic 
case than in periodic case. Since the continuous HFB 
signal presents all kinds of periodic activities, the 
signal that contains either irregular HFRM events or 
no events at all is not a white noise signal in the 
Fourier sense. This kind of background signal is often 
called as colored noise. Moreover, some of these 
periodicities occur at the frequency band centered 
around k = 8, and therefore the procedure presented 
in section 3 is unsuitable for the detection problem in 
question. There have been several attempts to 
overcome this problem with so called mixed-spectra 
procedures (Priestley, 1981) which try to estimate 
simultaneously the spectrum of the background noise. 
However, the spectrum is usually approximated by 
smoothing the periodogram, and therefore these 
procedures are very uncertain in the situations where 
the periodogram of nonstationary background noise 
possesses large peaks. 

To avoid the difficulty mentioned above, we took 
another, though a little bit more complicated approach 
to the problem. The first step was the preprocessing of 
the continuous HFB signal in order to identify each 
HFRM pattern (Aittokallio et al., 2000). The 
preprocessing gives us a binary event sequence, 
where a burst of 1's indicates a HFRM pattern (Fig. 
5(e)). Inspired by the simulation results of the 
previous section, we use the Walsh periodogram 
(Fig. 5(f)) in identifying the clinically relevant 
episodes of IRR during all night monitoring. More 
precisely, we compute the DWT of each window of 
length N = 8192 points in the binary sequency by the 
FWT routine of Beer (1981). Then the test statistic in 
Eq. (13) of the window is determined as the maximum 
of normalized Walsh periodogram components (Eq. 
(9)) within the set K = { 1,2 .  . . . , 13 1. In order to 
examine the practical recognition performance of the 
method, we implemented these phases using the 
programming language C++. Although no particular 
attention was paid to the optimization of the 
algorithm, a normal PC (300MHz Pentium) was 
sufficient and enabled real time cluster identification. 

The rest of this section describes the selection of a 
good threshold value for the above algorithm 
(training), and the evaluation of the method (testing) 
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FIGURE 5 Examples of a real HFB signal. (a) Signal during quiet breathing, and (b) its normalized Fourier periodogram. Test statistic is 
t , ~  = 0.202, and its significance is pP(tF) = 0.714. (c) Signal with periodic HFRM patterns, and (d) its normalized Fourier periodogram. Test 
statistic is tl. = 0.197, and its significance is pp(tF) = 0.749. (e) Preprocessed binary sequence, and (0 its normalized Walsh periodogram. 
Test statistic is t ~ :  = 0.616.and its significance is p p ( t ~ )  = 0.000134. 

using independent test data. The training and test data 
were collected from three male patients with previous 
sleep apnea, which had been treated with surgery of 
the soft palate. After operation, all subjects improved 
in terms of sleep apnea frequency but continued to 
suffer from partial upper airway obstruction, which 
manifested as prolonged episodes of IRR in the SCSB 
recording. The persistence of partial obstruction after 
upper airway surgery is typical and has been described 
earlier by Polo et al. (1989). All subjects had the 

clinical symptoms of snoring and excessive sleepi- 
ness. The patient characteristics with the conventional 
arterial oxyhemoglobin saturation (Sa02) analyses are 
shown in Table 1. The Sa02 was measured with a 
finger pulse oximeter. The frequency of sleep apnea 
episodes with significant (24% units) decreases in 
SaOz are presented as the oxyhemoglobin desatura- 
tion index (OD14). The patients represented a wide 
range of O D 4  from 0 (only IRR) to 55.5 (IRR in 
conjunction of servere OSA). 
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5.1 Training 

The threshold value of the algorithm was determined 
by utilizing the visual judgment of an expert physician, 
i.e., we chose an appropriate value so that the method 
identifies clusters that coincide with the clusters 
marked by the expert. The expert markings were made 
using a special-purpose graphical software. Two 
simple rules were employed when marking a cluster 
of HFRM events as periodic one. First, the length of the 
cluster must be more than 81921250 = 30s, and 
secondly, the length between two successive periodic 
clusters must be more than 30 s as well. The goodness 
of a threshold value t was determined through the 
estimated error probabilities of the method based on 
the training data. Formally, let {tl ,  t2, . .., ~ L - N + ,  } be 
the set of observed values of the test statistic Eq. (13) 
computed from the training sequence on a window-by- 
window basis. Here L = 432 X 60 X 250 = 6480000 
is the length of the sequence. We can estimate the 
probability of type I error from the formula forpN(t) in 
Eq. (16), where Mo = 4592021 is the number of points 
outside the periodic clusters marked by the expert. We 
use the number of the points i outside the clusters as the 
numerator which also satisfy the inequality i - 
maxCjlj 5 i, t, > t }  < N to indicate that the period- 
icity of a window involves all points within it. (The 
numerator is sometimes known as the number of false 
positive detections.) Likewise, the probability of type 
I1 error can be estimated using the Eq. (17) for qN(t) 
with M I  = L - Mo = 1887979 and similar modifi- 
cation in the numerator (false negative detections ). 
This type of Monte Carlo analysis produces very rough 
estimates, but the large number of sample signals under 
the both hypotheses justifies the approximation. 

The nonparametric reference function rN(t) for the 
goodness of t is defined here as the average of the 
error probabilities: 

The values 1 -p and 1 -q are called as the spec$rify 
and sensitivity of the method, respectively. Therefore, 
minimization of Eq. (18) corresponds to maximiza- 
tion of equally weighted specificity and sensitivity 
values. We perform this by a simple grid point 
method, see Fig. 6. Probability pN(t) is always a 
decreasing function of t, and q d t )  an increasing 
function of t (Fig. 6(a)). Note that p d r )  is again 
surprisingly close to the asymptotic distribution (Eq. 
(14)) (see Fig. 3(c)). The value t, = argrnin{rN(t)lt = 

0,0.02, ..., 1 )  = 0.34 is selected as the threshold 
value of the method (Fig. 6(b)). This value yields the 
probabilities pN(tm) = 0.0749, qN(twi) = 0.0645, and 
rN(t,,,) = 0.0697. The reference function rN(t) 
remains relatively constant in the neighborhood of 
t, from which we can conclude that the method is not 
very sensitive to the threshold value. 

5.2 Testing 

We treat the test data of the two subjects separately in 
order to study the inter-subject bias of the method as 
well. The recognition performance based on the the 
test subjects 1 and 2 is shown in Figs. 7 and 8, 
respectively. The length of the signal of test subject 1 
was L = 5670000 which was divided to the points 
inside the periodic clusters marked by the expert 
( M I  = 3679602) and to the points outside the clusters 
(Mo = 1990398). The identifications made by the 

TABLE I The characteristics of the training and test subjects with the conventional diagnostic measurements and frequencies of the visually 
scanned IRR episodes 

BMI* TIB i 
Subject Age (years) (kg/m2) (min) SaOz mean(%) ODI, (eventslh) IRRS (min) 

Training 51 28.7 432 95.4 0.0 24 (126) 
Test 1 52 31.7 378 91.3 7.9 42 (245) 
Test 2 57 35.7 474 89.6 55.5 49 (212) 

" Body mass index. 
.:Time in bed. 
$Number (duration) of IRR clusters. 
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FIGURE 6 Training the method. (a) Probabilities of type I error 
(decreasing function) and type I1 error (increasing function). (b) 
Statistic value t ,  = 0.34 is a local minimum of the reference 
function (Eq. (18)). The grid size is At = 0.02. 

method correspond closely to those of the expert 
(Fig. 7). Here the detections of the method (i.e. 
ti > t ,  = 0.34) are extended to all points within the 
window as described in the previous section. The 
overall error probabilities, computed point-wise like 
in the training phase, were pN(t,) = 0.138 and 
qN(t,,) = 0.0712. Thus, the overall goodness value 
of the method is rN(tm) = 0.106 when evaluated 
using the test subject 1. The recognition perform- 
ance in the case of test subject 2 was consistent 
with the test subject 1 (Fig. 8). Here L = 71 10000, 
Mn = 3930056, and M I  = 3179944. The corre- 
sponding probability values for the test subject 2 
were pN(t,,,) = 0.147, qN(tm) = 0.0722, and 
rN(t , )  = 0.110. The point-by-point analysis is 
naturally a very crude performance measure since 

FIGURE 7 The markings of the expert (upper line) and of the 
method (lower line) for the test subject 1. Each row represents 
500000 points, i.e. 2000 s. 

it punishes for every erroneous instance in a 250-' 
scale, but it is in its simplicity quite illustrative. 

Although the probability of type I error (or the 
specificity) weakens from the training subject to the 
test subjects, the two test subjects produced almost 
identical error probabilities. The probability of type I1 
error (sensitivity) is similar in all three subjects. In 
summary, the statistical method has a very good 
sensitivity to identify the same periodic clusters as 
marked by the expert physician, but it is inclined to 
identify some extra clusters as well. The test also 
suggests, that the inter-subject bias is negligible at 
least for the two test subjects. 

FIGURE 8 The markings for the test subject 2 (see the legend of 
Fig. 7). It is seen that the method usually identifies wider clusters 
than the expert which weakens the specificity value. We note that 
there occur only two predictions of the method in the row number 
five, but no markings by the expert. 



244 T. AITTOKALLIO et al. 

6 DISCUSSION 

We have described the statistical properties as well as 
the practical considerations of the problem of 
periodicity detection using an orthonormal transform 
together with hypothesis testing. The statistical 
inference included the derivation of the parametric 
null distribution for the test statistic and its 
comparison to a nonparametric one using Monte 
Carlo analysis in different situations (see Figs. 2 and 
3). Although the DFT is the most common transform, 
the simulation studies demonstrated that the DWT has 
a similar detection power in the case of binary 
sequences (Fig. 4). The aim of the medical application 
was to analyze the SCSB signal with respect to the 
presence or absence of repetitive HFRM patterns 
which is a manifestation of an IRR period (Fig. 5). 
The practical implementation issues were the use of 
the procedure in a long SCSB signal by moving 
window, the selection of a good threshold value based 
on a set of training examples (Fig. 6), and the 
evaluation of the method using the test data (Figs. 7 
and 8). 

There are at least two aspects deserving still more 
attention in the basic periodogram analysis described 
in this work. First, the power of the hypothesis testing 
procedure decreases when the true periodicity falls 
midway between two consecutive spectral indices, and 
second if multiple periodicities are present the test 
suffers as well. These situations have received some 
interest in the statistical literature. To overcome the 
multiple peak problem, several alternatives for the test 
statistic in Eq. (13) have been suggested, including the 
use of rth largest (Hannan, 1970) or all large 
periodogram values (Siegel, 1980) in the numerator, 
and the use of winsorized (Bolviken, 1983a) or 
trimmed (Chiu, 1989) mean in the denominator. Also 
several works have proposed searching for the 
maximum of the periodogram among all possible 
periodicities, see e.g. the technique introduced by Chen 
(1 988). Although all these investigations are based on 
the Fourier analysis, the results are extendable for other 
orthonormal function systems as well. 

Although the number of training samples were 
large, the selection of the threshold value was based 

on one subject only. One can increase the number of 
signals under the null hypothesis by the binary 
bootstrap method of Kim et al. (1993), but the 
problem is the generation of independent signals 
under the alternative hypothesis. Also, the evaluation 
of the method was performed using only two test 
subjects. This is because of the very tedious and time- 
consuming visual detection of periodic clusters. 
However, although the test recordings represented a 
wide range of variation in the manifestation of sleep- 
disordered breathing (see Table I) ,  the subject-to- 
subject variation in the recognition performance was 
found negligible. Therefore, the method based on the 
Walsh periodogram is considered good enough to 
warrant further testing in larger patient populations. 
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APPENDIX A 

This appendix gives the theoretical background of 
parametric inference approach of the section 3. The 
results follow from the orthonormality property (Eq. 

(1)) and from the fact that the first row of the matrix U 
consists entirely of constants l / f i  both in Fourier 
system (Eq. (6)) and in Walsh system (Eq. (8)). These 
two properties give 

C fk(t) = f i8k( i ,  k = 0, 1, . . .. N - 1. (Al) 
t=o 

We recall that the random signal x under the null 
hypothesis is generated from a white noise process; x 
is a sequence of independently and identically 
distributed random variables with finite mean E(x,) = 

,u and variance Var(x,) = a 2 .  Since the U-transform 
is given by Eq. (3), we get by using Eq. (Al)  that 

N - l  
E(c) = UE(x) = (,ufi8kO)k=o , and further Cov(c) = 

UCov(x)UT = Ua21UT = a21 because of Eq. (2). 
Moreover, the central limit theory for variable 
distributions (Feller, 1968) states that c has asympto- 
tically a N-dimensional normal distribution with mean 
vector E(c) and covariance matrix Cov(c). 

We next consider the random variables c k / a ,  where 
k = 0,  1, ..., N - 1. By the above derivations, these 
are asymptotically independent and have asymptotic 
normal distributions with mean ,ufi&/a and unity 
variance. According to Eq. (9), the random variable 
pk/a2 has asymptotically a chi-square distribution 
with two degrees of freedom (i.e. exponential 
distribution with mean 2) for all k = 1 ,2 ,  . . ., N/2 - 
1. Likewise, pNlz/a2 has asymptotically a chi-square 
distribution with one degree of freedom, and po/a2 

has asymptotically a non-central chi-square distri- 
bution with one degree of freedom and non-centrality 
parameter pfi/a2. For simplicity, we do not test the 
first and last periodogram components po and p,,,, 
and therefore the null distribution (Eq. (14)) follows 
from the results on rational functions of order 
statistics of independent random variables from 
exponential distributions derived by B ~ l v i k e n  
(1983b). 


