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This paper reviews a number of the mathematical models used in cancer modelling and then chooses a
specific cancer, breast carcinoma, to illustrate how the modelling can be used in aiding detection. We
then discuss mathematical models that underpin mammographic image analysis, which complements
models of tumour growth and facilitates diagnosis and treatment of cancer. Mammographic images are
notoriously difficult to interpret, and we give an overview of the primary image enhancement
technologies that have been introduced, before focusing on a more detailed description of some of our
own recent work on the use of physics-based modelling in mammography. This theoretical approach to
image analysis yields a wealth of information that could be incorporated into the mathematical models,
and we conclude by describing how current mathematical models might be enhanced by use of this
information, and how these models in turn will help to meet some of the major challenges in cancer
detection.
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INTRODUCTION

Cancer is the second biggest killer in the western world

and its incidence is rapidly increasing. Despite the

huge proliferation of experimental data and clinical

treatments, there has been no decrease in the death

rates caused by the most common cancers. This is

despite the immense progress that has been made in

understanding the causes and progression of cancer,

particularly from the perspective of biology. There

have been concomitant developments in drugs, chemo-

therapies and radiotherapies which together have meant

that several kinds of cancer now have very positive

prognoses.

However, much remains to be done on the modelling,

early diagnosis (critical for improved prognosis) and

effective treatment and treatment planning of cancer.

Mathematics, in several different forms, is increasingly

the basis of major developments across a range of

disciplines in the understanding of cancer. The

mathematics ranges from differential equations that

model aspects of tumour growth to models of the

formation of mammographic (X-ray) images, as well as

newer imaging modalities such as contrast-enhanced MRI

and ultrasound.

To date, the mathematics of tumour formation and

spread has developed largely independently of the

mathematics that underpins image analysis. This paper

aims to illustrate how these two developments may

usefully be integrated. We therefore begin with a review of

the mathematics of tumour growth, before presenting a

brief introduction to the mathematics of image analysis.

This allows us to go on to discuss a number of situations in

which the mathematical methods and the problems

mentioned might be usefully combined.

The review of the mathematical literature given in

“Previous mathematical models” describes previous

models of cancer growth and proliferation. Over the past

30 years, a number of mathematical models have been

proposed to attempt to describe various key stages of

tumour development. However, there is still no basic

consensus model of tumour growth and survival,

metastasis (the process whereby potentially fatal second-

ary tumours are formed from a primary tumour), tumour

angiogenesis (whereby nutrients are diverted to the

tumour), or the breakdown of the extracellular matrix
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tumour cells. One of the major challenges of the next

decade is to develop biologically realistic mathematical

models which clarify these fundamental processes and

which can predict new strategies of clinical therapy.

Although some of this modelling work has contributed

towards the search for non-invasive treatments of cancer,

the most effective therapeutic approach remains the

detection and excision of the malignant tumour and the

surrounding tissue. In no area is this approach more

emotionally traumatic for the patient than in breast cancer,

and in this case, the early detection of cancerous growths

is vital not only to improve the chance of survival but also

to minimise the disfigurement caused by subsequent

surgery. In “Breast cancer detection” the section, we

sketch a number of recent advances in mammographic

image analysis, before focusing on a more detailed

description of some of our own recent work in

mammography, which is based on modelling of the

underlying physics of the image processing techniques,

primarily for mammography.

In addition to providing a vitally important tool in

identifying tumours, this theoretical approach can also be

used to generate more realistic descriptions of both the

composition and mechanics of breast or other types of

tissue. In the “Enhancement of image processing through

mathematical models” section we suggest ways in which

this information might be incorporated into the existing

mathematical models to give more realistic and useful

descriptions of the physiology, and describe the

advantages that would accrue in terms of the detection

and treatment of cancer.

PREVIOUS MATHEMATICAL MODELS

In vivo cancer growth is a complicated phenomenon

involving many inter-related processes. Solid tumour

growth occurs in two distinct phases, initial growth being

characterised as the avascular phase, later growth as the

vascular phase. The transition from avascular growth to

vascular growth depends upon the crucial process of

neovascularisation and is necessary for the tumour to

attain nutrients and dispose of waste products. To achieve

vascularisation, tumour cells secrete a diffusible substance

known as tumour angiogenesis factor (TAF) into the

surrounding tissues. This has the effect of stimulating

nearby capillary blood vessels to grow towards and

penetrate the tumour, re-supplying the tumour with vital

nutrient (Chaplain and Stuart, 1993). Invasion and

metastasis can now take place. By the time a tumour has

grown to a size whereby it can be detected by, in the case

of breast-cancer, simple self-examination, there is a strong

likelihood that it has already reached the vascular growth

phase. The primary aim of screening and the associated

image enhancement technologies is therefore to detect

cancers prior to this stage.

The initial avascular growth phase can be studied in

the laboratory by culturing cancer cells in the form of

three-dimensional multicell spheroids (see, for example,

Sutherland (1988)). It is well known that these spheroids,

whether grown from established tumour cell lines or

actual in vivo tumour specimens, possess growth kinetics

which are very similar to in vivo tumours. Typically, these

avascular nodules grow to a few millimetres in diameter.

Cells towards the centre, being deprived of vital nutrients,

die and give rise to a necrotic core. Proliferating cells can

be found in the outer three to five cell layers. Lying

between these two regions is a layer of quiescent cells, a

proportion of which can be recruited into the outer layer of

proliferating cells.

Many models have been proposed to account for the

early stages of avascular growth. Early models considered

simple diffusion of nutrients and growth inhibitory factors

(Greenspan, 1972, 1974; Adam, 1987) and showed that a

number of different hypotheses on chemical kinetics and

mode of diffusion could result in concentration profiles

that were not incompatible with experimental data

(Chaplain et al., 1994). A comprehensive account of

modelling avascular tumour growth is given in (Marušić

et al., 1994), where several mathematical models for

growing multicellular spheriods are compared with

experimental data. Byrne and Chaplain (1996a) developed

a mathematical model for the growth of a multicellular

spheriod that comprised a central core of necrotic cells

surrounded by an outer annulus of proliferating cells.

Their model distinguished between necrosis and apoptosis

and considered the effect of nutrients and growth

inhibitors.

More detailed and sophisticated models were later

introduced. For example, Byrne (1997) assumed that

growth rate depends on the external supply of nutrients

and the intercellular adhesion forces which maintain

tumour compactness. Her model equations consider the

spatiotemporal dynamics of nutrient concentration and

pressure within the tumour. Ward and King (1997)

describe a continuum of cells which, through local volume

changes, create movement described by a velocity field.

This approach results in the evolution of a three layer

tumour structure of proliferating, quiescent and necrotic

cells. Stott et al. (1999) simulated growth of an avascular

tumour embedded in normal tissue by evoking energy

minimization to effect cell sorting between normal and

tumour cell types, also leading to the formation of a three-

layered tumour structure. In Byrne and Chaplain (1996a)

it was shown how a radially symmetric avascular tumour

could become unstable, possibly leading to tumour

invasion.

When a tumour reaches a critical size, it begins to

release so called angiogenesis factors into surrounding

tissue which diffuse towards the neighbouring vasculature

creating a chemical gradient. Capillary sprouts are formed

as the blood vessel wall breaks down and releases

endothelial cells. The sprouts then grow towards the

tumour and each other, and loops are formed in a process

known as anastomosis, establishing a blood supply for the

tumour.
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The process of angiogenesis has been extensively

modelled by Chaplain and co-workers, who consider both

continuous and discrete mathematical models which take

into account the complex interaction of chemotactic

agents, and endothelial cell-extracellular matrix inter-

actions via the adhesive molecule fibronectin. By

appropriately discretizing their continuum partial differ-

ential equation model, they develop a biased random-walk

model, which allows them to track the motion of

individual cells. This provides a model framework

which can incorporate anastomosis, mitosis and branch-

ing. The two- and three-dimensional capillary networks

generated by these models compare very favourably with

those observed in in vivo experiments (Anderson and

Chaplain, 1998). This latter approach can also be used to

address metastasis and it has been shown that whereas a

continuum model will predict a spreading mass, the

probabilistic-type model does show single cells breaking

away from the central mass, reminiscent of observations

on mammograms showing breast cancer (Anderson et al.,

2000).

The above models mostly consider the medium in

which tumours grow to be homogeneous. However, in

vivo, tissues have a high degree of fine-scaled spatial

structure and the paper by Anderson et al. (2000)

investigates the effects of spatial heterogeneity. Math-

ematical models of cancer chemotherapy have also been

developed to investigate, for example, the use of targeted

antibody-enzyme conjugates for the selective activation of

anti-cancer prodrugs (Jackson et al., 2000) and the effects

of drug resistance on the optimal scheduling of drugs

(Murray, 1997).

Swanson (1999) and Swanson et al. (2000) considered

tissue heterogeneity in the case of brain gliomas, which

are generally highly diffuse. These are usually detected

using computerised tomography (CT) and magnetic

resonance imaging (MRI). However, even after surgical

excision well beyond the visible tumour boundary, a

recurrence near the edge of resection ultimately results.

This is because the presently available imaging techniques

only detect a small proportion of the actual, highly diffuse,

tumour.

Experiments in rats show that malignant glioma cells

implanted in rat brain disperse more quickly along white

matter tracts than grey matter. Swanson (1999) and

Swanson et al. (2000) considered a reaction–diffusion

model for glioma cell invasion on a two-dimensional

anatomically accurate slice of brain tissue in which they

imposed a spatially dependent cell diffusion coefficient to

account for different cell motility rates in grey and white

matter. Using numerical simulation, they characterised

how the proportion of tumour detected depended on the

cell diffusion coefficient and cell proliferation rate. They

also showed that the heterogeneity within the brain caused

the dynamics of tumour invasion to vary significantly

depending on the initial location of the tumour. These

results have important implications on how much tissue a

surgeon should aim to remove when a tumour is detected.

The aforementioned models have resulted in a novel

perspective on the different stages of tumour growth.

Mathematically, the models all essentially amount to

systems of differential equations. It is known that the

spatiotemporal dynamics of such types of models can be

dramatically changed if the environment is allowed to be

spatially heterogeneous. For example, in Maini et al.

(1992) the authors considered the problem of diffusion-

driven instability in a system of reaction-diffusion

equations. They found that if they chose a bifurcation

parameter (in their case, the ratio of chemical diffusivities)

to vary across a one-dimensional domain, the patterns

exhibited by the system varied in amplitude and/or

wavelength across the domain. In particular, they found

that if the parameter was chosen to be above its bifurcation

value only in a sub-interval of the domain, then it was

possible for patterns to propagate into the domain where

linear analysis would predict stability of the uniform

steady state—a situation they described as “environmental

instability” (Benson et al., 1993). A detailed weakly non-

linear bifurcation analysis for the two-dimensional case

showed how degenerate bifurcation points could be split

using a spatially varying parameter (Benson et al., 1998).

These results show that environmental inhomogeneity

could be an important regulator of biological pattern

formation.

Understanding how the predictions of the above models

depend on the (spatiotemporally) varying material

properties of the matrix surrounding the growing tumour

is one of the next key steps in the modelling effort.

BREAST CANCER DETECTION

The work of Swanson and co-workers illustrates the

importance of tissue heterogeneity in mathematical

models of cancer, and suggests that by using such models

we might improve the efficacy of non-invasive cancer

detection techniques which are based on image analysis.

One of the most common cancers is breast cancer, which is

developed by approximately 10% of women in first world

countries during the course of their lives. Early detection

of breast cancer gives the best chance of survival, and so

breast self-examination is encouraged throughout the

(Western) world. However, it has been shown that most

women can only reliably detect a lump when it has

reached a size—typically 0.75 cm—at which it is likely

already to have metastasised. While breast self-examin-

ation continues to be encouraged, not least because it

raises the awareness of women to breast cancer, additional

means of early detection are necessary.

To this end, screening programmes based on (X-ray)

mammograms have been established in many countries. In

the UK, for example, the current breast screening

programme invites women between the ages of 50 and 70

for breast screening. The reason for restricting screening to

women in this age group is that younger, pre-menopausal

women have dense breasts whose milk-bearing tissues
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strongly attenuate X-rays, so that the resulting mammo-

gram is often entirely white, and it is extremely difficult or

impossible to detect small lesions. During the menopause,

milk bearing tissue involutes into fat, which is radio-

transparent, enabling high contrast images to be taken.

The effectiveness of mammography for younger women

has not yet been established. If a mammogram displays

any suspicious signs, the woman is invited back to an

assessment clinic where other views and imaging

modalities are utilised. In other countries, for example

the USA, France, and Germany, there is not (yet) a

national screening programme; however, women are

encouraged to have a mammogram regularly. The

increased awareness of breast cancer has, contrary to

almost all other forms of cancer, led to a slight increase in

the detected incidence over the past 20 years.

It is important, at the outset of any discussion of

mammographic image analysis, to emphasise the need for

mathematical modelling, and the severity of the challenge.

. In order to reduce the radiation dose, the breasts are

tightly compressed while a mammogram is taken. The

compression depends qualitatively upon the operator’s

experience and judgement of the density of the

woman’s breasts. The compression typically varies by

as much as 0.5 cm at successive mammograms. To

date, there is no realistic model of breast compression.

While such a model would have immediate application

in image analysis, the complexity of breast anatomy

means that models will inevitably be coarse approxi-

mations for the foreseeable future.

. Screening practice in the UK increasingly recommends

that two different mammogram views are taken of each

breast, namely cranio-caudal (CC)—head to toe—and

mediolateral oblique (MLO)—shoulder to the opposite

hip. The MLO view enables axillar involvement, a

strong indicator of metastasis, to be detected in many

cases. It has been demonstrated clinically that two-

view mammography has significantly better diagnostic

outcomes than single view mammography (as is

practised in the screening programmes in several

other countries). However, breasts are not cylindrical in

cross-section, and the separation between the com-

pression plates typically differs by 1 cm from CC and

MLO. The difference in compression and the lack of a

reasonable model of compression implies that it is

difficult to combine the CC and MLO views into a

three-dimensional representation. We have developed

an initial computational model to combine these

images, and it is sketched in “Matching between

views” below.

. It was noted about 20 years ago that small deposits of

calcium salts, called microcalcifications, are often the

earliest indicators of the presence of a tumour. The

detection of microcalcifications has been a major goal

of screening programmes, hence of mammographic

image analysis. Microcalcifications attenuate X-rays

strongly (about 50 times more than normal tissue,

cancerous tissue, or fat) and, though they are some-

times obscured by normal parenchymal tissue, they can

often be detected as small regions of high contrast in

mammograms.

Mammographic Image Processing

Mammograms are extremely complex images for a

radiologist (or computer program) to assess. Partly, this

reflects the intrinsic complexity of breast tissue. It also

reflects the relatively poor signal-to-noise ratio of the

images, the complexity of the image formation process,

and the subtlety of the clinically significant signs that

appear. While increasing numbers of women are

demanding mammograms, there is increasing concern

about the level of diagnostic accuracy of the radiologists

who assess those mammograms. More importantly, there

is growing concern over the low number of radiologists

specialising in mammography. For these reasons, coupled

with the tumbling costs of computing, improvements in

software systems, and the increasing bandwidth of

communications there is substantial and growing interest,

both within the academic community and in industry, in

developing mammographic image-analysis technologies

to support a radiologist, either by prompting locations in

an image, or acting as a “second reader”. Indeed, evidence

has recently been presented that shows that the

combination of a radiologist and a Computer-Aided

Detection (CAD) algorithm has significantly higher

specificity and sensitivity than either working alone.

Initially, mammographic image analysis consisted

simply of the application of standard image analysis

techniques to digitised mammogram films. Such tech-

niques comprise image enhancement, region segmenta-

tion, feature detection, texture modelling, and image

matching. Most current mammographic image processing

systems rely on techniques borrowed from other fields. For

example, software used for detecting stars in the sky is

converted to detecting small white dots in mammograms.

Air-force technology based on neural nets and target

recognition is transformed to be used for breast cancer

recognition. Such approaches ignore the massive differ-

ences between the imaging systems and consequently lead

to systems which work poorly, something which is

unacceptable in this safety-critical application. In High-

nam and Brady (1999), Chapter 1, a detailed clinical

overview of the breast, breast cancer, and breast cancer

screening using mammography is given, together with an

account of the use of image processing in this context.

As noted in the previous section, an important goal of

mammographic image analysis has been the detection of

microcalcifications (Highnam and Brady, 1999, Chapter

11). Most of the many approaches have attempted to

detect regions of elevated local contrast in the intrinsically

noisy images. This approach has been largely unsuccess-

ful and most authors have taken recourse to non-linear

D.J. GAVAGHAN et al.6



pattern classifiers such as neural networks in a (largely

vain) attempt to improve the performance of the detection

algorithm.

An alternative approach is to model the physics of

image formation, including the mammogram-specific

noise processes that degrade the image, and the X-ray

scatter that blurs the image. The first successful algorithm

of this type was by Karssemeijer (1993), an algorithm that

has subsequently become the basis of the first commercial

microcalcification detection system to be accorded FDA

approval (Karssemeijer et al., 1998). The most compre-

hensive attempt to model mathematically the physics of

mammogram image formation is the monograph Highnam

and Brady (1999). This has led to novel mathematics and

algorithms across the spectrum of clinical problems in

breast cancer diagnosis, and has been termed physics-

based modelling (PBM).

Physics-based Modelling (PBM)

The Physics of Mammographic Image Processing

When a mammogram is performed, a beam of low energy

X-ray photons is directed towards a compressed breast.

The intensity of the beam exiting the breast is related to

the thickness and type of tissue, which attenuates the

photons. The X-ray photons leaving the breast have to pass

through an anti-scatter grid before reaching a phosphorous

intensifying screen. If the X-ray photon is absorbed in the

screen, light photons are emitted by the phosphor and

these light photons expose a film, which is processed to

produce a mammogram. The exposure to the breast is

stopped once an automatic exposure control, positioned

under a section of the breast, has received a set exposure.

This highly simplified description of the mammo-

graphic imaging process omits mention of a number of

factors which significantly degrade the mammogram.

These factors include: scattered radiation; “beam hard-

ening” (a process, which causes the contrast in bright parts

of the image to be reduced. The process occurs because

low energy X-ray photons are differentially absorbed so

that the beam energy rises (gets harder)); intensifying

screen blur (the X-ray is absorbed in the intensifying

screen and causes the screen to emit many light photons in

all directions, these light photons expose the film over an

area, not a precise point, and thus produce a blurring

effect); and sometimes poor exposure due to the automatic

exposure control being inappropriately located. A number

of additional factors make it difficult to analyse

mammograms quantitatively. These include variable

processing results when developing films, system

geometry, and the “anode heel effect”. The latter refers

to the considerable variation in radiation intensity

throughout the volume of interest. Techniques to estimate

and correct for it are outlined in Chapter 2 of Highnam and

Brady (1999).

Digitisation further complicates the system. Mathemat-

ical models have been developed based on the underlying

physical processes which attempt to minimise all of these

factors, and the most important of these are summarised

below.

Mammographic Model

Highnam and Brady’s (1999) fundamental observation is

that on the basis of the X-ray attenuation coefficients there

consists only fat, “interesting” tissue (fibrous, glandular,

cancerous), and calcification. Making an initial assump-

tion that there is very little calcification present enables the

breast to be considered as fat or interesting tissue. This,

along with knowledge of certain calibration data, such as

breast thickness, enables a mapping from any pixel within

a mammogram to a quantitative measure of the breast

tissue. This is termed the hint, and its generation and

subsequent use for many applications including cleaning

up pictures and simulation is the basis of the PBM

approach.

The hint Representation

The hint representation is a normalised representation of

the mammogram, which is computer-generated from a

digitised version of the mammographic image. For each

column of breast tissue (that projects to a pixel) the

program calculates the percentage of “interesting” tissue

which leads to a novel surface representation for

mammography, whose value at image location (x,y ) is

hint (x,y ). The importance of the representation is twofold.

First, it enables normalisation of a mammogram by

removing the variations due to changing imaging

parameters and conditions such as time of exposure and

placement of the automatic exposure control. Second, it

encourages analysis of mammograms using the math-

ematics of surfaces rather than of images. For example, if

a mammogram contains a cyst, then in the corresponding

hint representation the cyst appears as a hill with a

characteristic topography.

Quality control of breast screening centres dictates that

most of the calibration data required to monitor the whole

imaging process is routinely recorded. Using this data, the

major challenges in generating hint are, for analogue

mammographic systems, collecting calibration data such

as breast thickness, time-of-exposure, and film-screen

parameters, and modelling the various degrading factors

described above. The steps taken to generate hint are

outlined below.

. Given the appropriate calibration data, the first step in

generating hint is to convert the digitised image to one

representing the energy imparted to the intensifying

screen, as illustrated in Fig. 1. This involves knowing

the relationship between pixel value in the image, X-

ray exposure and energy imparted which can be

determined using calibration data derived from a step-

wedge (see Highnam and Brady, 1999 for fuller

details).
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. The intensifying screen blur is then modelled using

established theoretical models of how a phosphor

intensifying screen functions. This provides a point

spread function specific to each screen, which can then

be used in a deconvolution to remove the blur. This is

illustrated in Fig. 2.

. The scatter component at a pixel is modelled as being

closely related to the breast tissue in the surrounding

neighbourhood. Using this model, together with results

from numerous medical physics experiments, it is

possible to derive a weighting mask, which describes

the relationship between the neighbourhood and the

scatter component in the centre of the neighbourhood.

Fig. 3 shows an original mammogram, an energy

imparted version and the corresponding scatter

component.

. Extra-focal radiation is known to be a problem around

the edge of the breast. Models of the expected curve of

the breast edge are derived in order to estimate extra-

focal radiation penetration. The models are based upon

FIGURE 1 The original digitised image on the left is first converted to one which represents energy imparted to the screen shown on the right. See text
for details.

FIGURE 2 The image on the left shows the original energy imparted image, whilst the one on the right shows the blur removed image. See text and
(Highnam and Brady, 1999) for further details.
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assumed knowledge of the breast and knowledge of its

constituents in certain areas.

The end result of this processing is a floating point

image where the pixel values have been converted to

values representing hint. These values are quantitative and

objective values, independent of the imaging system itself.

The most obvious way for an engineer to represent this is

as a surface, as shown in Fig. 4. However, radiologists

have no experience of diagnosing from surfaces and thus

in order to show the images to radiologists the hint values

must first be converted back to appear like an ideal

mammogram. This improved image then becomes the

basis for a wide range of image enhancement techniques.

Image Enhancement

Because of the number of degrading factors involved in

the mammographic imaging process, the final image is

relatively poor compared to what an ideal image should

FIGURE 3 An original mammogram, an energy imparted version, and the corresponding scatter component.

FIGURE 4 An example of the hint representation.
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be. Our modelling of the degrading factors allows us to

remove their effects and thus guarantee a cleaner, easier to

diagnose image. The use of models rather than

conventional ad hoc algorithms make it less likely that

the processing will introduce any artifacts or remove any

important signs: vitally important in a safety-critical

application such as mammography. A classic example is

of a tumour blending in to the background due to some of

the processes outlined above. An “edge enhancement”

button might well sharpen up the tumour’s appearance to

make it look benign rather than malignant.

Reducing the Radiation Dose

Modelling scattered radiation, as outlined above, enables a

soft removal of its effects rather than using a hard solution,

namely an anti-scatter grid which requires a doubling of

the radiation dose. Fig. 5 shows on the left a section from a

mammogram taken with a grid and on the right the same

area but taken without a grid and then digitally enhanced.

Detecting Microcalcifications

It will be recalled that the detection of microcalcifications

has been a major goal of mammographic screening and

image analysis. Microcalcifications are quite often benign,

for example, they may be small deposits of calcium in

blood vessels. The detection and the characterisation of

microcalcifications as benign or malignant continues to be

a major open problem, though there has lately been some

encouraging progress. Microcalcifications rarely exist

singly, and it is widely considered that the position, shape,

FIGURE 5 Image enhancement by modelling of scattered radiation. The left image shows a section from a mammogram taken with an anti-scatter grid,
whilst the right image shows the same area but taken without a grid and then digitally enhanced.

FIGURE 6 Removal of shot noise: the section on the left is an original mammogram with shot noise, i.e. dust and dirt, and on the right is the detected
noise shown as tiny white dots.
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and statistics of a cluster of microcalcifications contributes

to the characterisation of the cluster. Recall however that

the breast is tightly compressed to different extents in the

CC and MLO views. This means that the statistics of a

cluster estimated in either view confound both the

compression and the projection of mammography.

There are four stages to this work, all based on and

derived from our model of the imaging process. The first

stage involves suppressing radiographic noise with

appropriate model-based image processing, the second

stage involves removing shot-noise due to dust and dirt

and the third stage involves the identification of individual

microcalcifications. The final stage detects clusters of

microcalcifications.

The removal of shot noise is illustrated in Fig. 6. This

algorithm, based directly on the physics of the imaging

process, detects 97% of all shot noise and does not remove

any microcalcifications. The algorithm works by deter-

mining those points which cannot possibly have been

present throughout the imaging process since they are too

sharp. The maximum degree of sharpness can be

determined using the physics models of the blurring

functions present (Highnam et al., 1999).

The microcalcification detection algorithm is based

upon a quantitative assessment of the size and contrast of

the suspect regions. The fundamental assumption

underlying the generation of the hint representation is

that the breast consists of only fat and interesting tissue,

which is reasonable since pixels corresponding to

calcifications make up only a fraction of a percent of the

total number of pixels. The X-ray attenuation coefficient

of a calcification is typically 26 times that of interesting or

fatty tissue, and is therefore equivalent to the attenuation

through a much thicker layer of interesting tissue.

Calcifications can therefore be detected by considering

the ratio of interesting tissue volume, computed from the

hint surface, to the total volume of a localised region of

breast tissue computed from its spatial dimensions and an

appropriate three-dimensional model. This ratio will be

high for calcifications. Further details of this method can

be found in Highnam and Brady (1999), where the

technique is shown to be working at near 97% detection of

individual microcalcifications with small numbers of false

positives. This process is illustrated in Fig. 7. On a small

dataset, this algorithm is currently returning very low false

positives and about 98% detection of true positive

clusters.

Matching Between Views

It is often very difficult for a radiologist to observe an

object in both cranio-caudal and medio-lateral oblique

views of the same breast. The key step in aiding this task is

to model the effects of breast compression. We have

developed models which allow a marked point in one

image (the round circle on the left in Fig. 9) to be matched

to a curve of likely position in the other view (the white

curve on the right in Fig. 9). The six stages of the

algorithm to combine a cranio-caudal and mediolateral

oblique image to form a representation of the 3D

uncompressed breast are outlined in Fig. 8.

Our method, which is based on assumptions about

certain reference points and tissue movement and

elasticity, works by mapping from a point A to the

three-dimensional line along which that point must lie.

The three-dimensional line, in the compressed breast, is

then uncompressed using our mechanical model of the

breast. It is then rotated to be in the other view and

“compressed”. Projection down onto the two-dimensional

plane gives the corresponding line for the point. Our

method is typically 2 mm closer than the radiologists’.

The straight lines indicate where trained radiologists

expect the mass to be. The methods that we have

developed (Yam and Brady, 1999) perform significantly

better on average than experienced radiologists.

The use of a model allows us to map to three-dimensional,

if an object’s position in both the two-dimensions views is

known. This can also be applied to microcalcifications,

where two views of the same cluster can be matched and

combined to provide a three-dimensional representation.

FIGURE 7 Detection of microcalcifications: the left panel shows an image which has had the shot noise removed; the right panel shows the results of
the detection algorithm.
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Statistics computed from the three-dimensional represen-

tation should be more robust in differentiating between

benign and malignant microcalcifications than their two-

dimensional counter-parts.

Detecting and Removing CLS

Curvi-linear structures (CLS) in mammograms arise for a

variety of reasons including fibrous strands, blood vessels

and the lymphatic system. Apart from their intrinsic

interest, the CLS greatly complicate the visual appearance

of a mammogram and make the detection of masses

(benign or malignant) more difficult.

Several approaches have been pursued to detect the

CLS in mammograms. First, conventional feature

detectors do not give good results, largely because the

elevation in intensity at points perceived as belonging to a

CLS is often slight, and the whole image region is noisy.

Instead, we model CLS both spatially (local linear

structures) and in 3D as being structures of elliptic profile

full of interesting (non-fat) tissue (Highnam and Brady,

1999; Cerneaz, 1994). Then, by modelling the image

formation process, the expected visual appearance of a

CLS is derived. The model is then used to detect such

CLS. This algorithm, developed by Cerneaz (1994), works

only on a single spatial scale, whereas CLS occur at a wide

FIGURE 8 The six stages of the algorithm to combine a cranio-caudal and mediolateral oblique image to form a representation of the 3D
uncompressed breast.

FIGURE 9 Tracing the movement of objects in moving from the cranio-caudal to the medio-lateral oblique views of the same breast.
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FIGURE 10 Removing CLS: the modelling allows the structures shown in the right image to be determined from the original mammogram shown on
the left.

FIGURE 11 The image on the left was taken in 1992, whilst that on the right is from 1996.
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range of spatial scales in mammograms. More recent

work (Zwiggelaar et al., 1996) attempts to detect CLS

using a set of “modal variations” determined by principal

components analysis on a training set of idealised cases

of CLS. Current work aims to apply recently developed

techniques for feature detection, based largely on the

observed phase congruency of features. Fig. 10

illustrates this method and shows an original

mammogram and the curvilinear structures determined

by this process.

Detecting Masses

Detecting masses on the basis of matching temporal and

bilateral mammograms can be done by building up a

representation of each breast which accurately reflects the

internal anatomy (Kok-Wiles et al., 1998). Assumptions

about compression and movement over time are then used

to match those structures. An alternative approach that is

being developed is to warp one outline onto the other

outline and to use internal land-marks to aid that process.

In Figs. 11 and 12 this is illustrated for mammograms

taken 4 years apart. In this example, a mass is detected on

the basis of there being no corresponding match in the

earlier mammogram: the marked region in Fig. 12 is

indicative of a newly formed mass, in this case cancer.

The work in Marias et al. (2000) has resulted in a robust

registration framework for comparing temporal mammo-

grams. This non-rigid system uses a two-step approach for

firstly deforming the images using a curvature analysis of

the breast boundary and secondly, utilising internal

landmarks to complete the complex internal deformation

of the breast, typically due to the slightly different

compression characteristics of successive mammograms.

A good example of this process is shown in Fig. 13 where

FIGURE 12 The results of the matching algorithm applied to the
images shown in Figure 11. The marked region is cancerous.

FIGURE 13 Registration of temporal mammograms for screening, postoperative assessment and pathology comparison.
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a patient has had 4 years of successive mammograms

where in year 4, some coarse calcifications indicative of

DCIS (ductal carcinoma in-situ ) were observed. This is a

particularly interesting case as the patient had previously

undergone an upper-quadrant mastectomy to remove an

earlier lesion and it was uncertain whether or not the

calcifications were due to surgical scarring or an active

lesion.

This elastic matching of temporal mammograms

extends very naturally to screening, where compensation

for changes in compression and geometrical normalisation

enables much better comparison between changes in

breast tissue. This has been shown to be applicable to

interval cancers and the evaluation in local changes due to

HRT (Marias et al., 2000). Fig. 14 shows a typical

example where an interval cancer has appeared in a patient

screening and where registration has enabled a retro-

spective evaluation of the tumour pathology (and

consequentially the clinical decision making).

Combining Information from Mammography and

MRI

Although screening mammography is critical for early

cancer detection and has been shown to have significantly

affected mortality statistics in women (Kok-Wiles et al.,

1998), mammography is not particularly useful for

diagnosis in young women, women with dense breast

tissue (perhaps due to HRT) and women who have already

had surgical intervention. In these cases, other modalities

such as contrast-enhanced MRI and ultrasound have an

important role in understanding the pathology and tissue

characteristics.

In the case of DCIS, the typical indicator in

mammography is coarse, highly localised clusters of

microcalcifications. The work by Highnam et al. (1996)

with respect to hint normalisation makes the detection of

the calcifications quite robust. However in younger

women, or women with dense breast tissue, it is difficult

to differentiate the extent of the pathology from the rest of

the parenchyma. Contrast-enhanced MRI provides comp-

lementary information about the tumour by enhancing the

angiogenesis of the breast pathology. The use of a

pharmacokinetic model (Kaiser, 1990; Tofts and Ker-

mode, 1991; Hoffman et al., 1995; Heyton et al., 1997) to

segment the cancer has been shown to be diagnostically

useful (Behrenbruch et al., 2000). Such pharmacokinetic

techniques are based on a model of gadolinium chelate

uptake and exchange between blood plasma and the tissue

extracellular space. By parameterising the contrast

enhancement with such a model, it is possible to segment

enhancing regions on the basis of the rate and amplitude of

contrast uptake. The problem with DCIS is that it typically

does not enhance well with MRI (due to the lack of

extensive blood supply other than from the ductal tissue)

and therefore is often missed in an MRI examination.

Our current research (Behrenbruch et al., 2000)

involves using a projection of the contrast enhancement

information and non-rigid registration to match the

geometry of the two mammogram views (CC and MLO)

to the geometry of the MRI acquisition. This data fusion

approach enables indicators such as calcifications to be

resolved in the reference frame of the MRI volume. This

enables the radiologist to detect better subtle enhancement

through knowing the location of calcifications in three-

dimensional. This three-dimensional reconstruction

approach is complementary to the work in Yam and

Brady (1999) although it provides additional information

by fusion of the structural representation in the

mammogram with the functional representation of MRI.

An example of this is shown in Fig. 15a where three

clusters of calcifications are seen in the two mammogram

views and have been reconstructed in the geometrical

reference frame of the MRI scan. It was then possible for

the clinician to look at a specific region of the MRI scan

for subtle enhancement (shown in Fig. 15b).

FIGURE 14 An interval cancer compared using non-rigid registration of temporal mammograms. The interval cancer was actually present (but
undetected) in the first mammogram.
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The comparison of pathological indicators is not

restricted to DCIS, however. In terms of understanding

the relationship between the imaged structure of a tumour

and the functional characteristics, X-ray/MRI data fusion

provides complementary information for pathology

assessment (Behrenbruch et al., 2000). An example is

shown in Fig. 16, where a large, poorly differentiated

carcinoma appears in the mammogram as a dense,

speculated mass. The clinical response to such a mass

would typically be a localised excision as it is a large, but

relatively contained pathology with very little connective

vascularity. However, analysis with the MRI “functional”

representation shows that in fact the tumour has two foci,

indicating a more invasive grade of cancer which may

have a different treatment requirement.

Data fusion is likely to be an important aspect of future

work involving modelling of the growth characteristics of

cancer, particularly if correspondence between dynamic

imaging techniques and the results of drug treatment

regimes can be understood. Current research involves

studying the effects of neo-adjuvant chemotherapy on the

pharmacokinetic enhancement of breast MRI (Moore

et al., 2001). By using non-rigid registration combined

with robust segmentation algorithms (that once again use

physics-based models to perform T1 correction of

gadolinium enhancement (Armitage and Brady, 2000))

we have been able to quantify the change in angiogenesis

of a tumour within the framework of oncological models

for tumour proliferation. In the future, this research may

form the basis of an inverse problem that may provide a

better understanding of cancer growth. Fig. 17 shows an

example of a visualised change in vascularity due to neo-

adjuvant chemotherapy.

PBM in Simulation and Teaching

The modelling of the imaging process provides all the

information necessary to teach radiographers. Much more

FIGURE 15 (a) An example of data fusion, showing the location of calcifications in the geometrical reference frame of the MRI volume. (b) The
corresponding pre- and post- contrast enhancement of a suspicious calcification cluster (fusion with mammography).
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FIGURE 16 Structural vs. “functional” comparison of pathology through mammography-MRI data fusion. (A) shows the projection of the contrast-
enhanced MRI volume, clearly showing two necrotic centres; (B) shows the same tumour in the mammogram. It is worth noting (via C) that some
thresholding and edge detection of B also indicates multifocal growth. (D) and (E) show surface representations of the MRI enhancement and the
mammogram, respectively. The colour map is simply for improved visualisation (i.e. relative height is colour coded).

FIGURE 17 Registration, physics-based modelling and image processing for assessing the change in tumour vascularity (growth) due to neo-adjuvant
chemotherapy.

BREAST CANCER: MODELLING, DETECTION 17



powerful though, is the ability to add on to the hint surface

objects representing breast cancer. An example might be a

sphere filled with non-fat tissue. After addition to the hint

surface, the X-ray process can be simulated to show how

that object might appear. In this way, cancers can be added

to many previously normal mammograms and used to

monitor radiologists’ performance and help teach, “what

would it look like if there was a mass just there?”. This can

be advanced to become a diagnostic tool: “this mass when

added to the breast looks like the mass which is actually

present, therefore I know the properties of the present

mass and can use those parameters to help me diagnose”.

However, accurate simulation requires parameters relating

to tumour growth, tumour shapes, and how tumours

deform under compression.

ENHANCEMENT OF IMAGE PROCESSING

THROUGH MATHEMATICAL MODELS

In the above reviews we have given a brief outline

of recent developments in the mathematical modelling

of cancer development, and of recent advances in

breast mammography using PBM. As we suggested

in the Introduction, the information gained from this

approach to image analysis can be incorporated into

existing models to give improved mathematical descrip-

tions of the physiology, which can then in turn be used

to help overcome some of the current challenges in

image processing and hence improve the detection of

cancer.

Current Challenges in Image Processing

The appearance of a mass in an intensity image depends

strongly on the compression of the breast. Benign masses

tend to have sharper boundaries, whereas malignant

masses blend more gradually into their surroundings.

Since it is not obvious how to combine a number of

such features into a decision, most research involves

training neural networks. The best (clinical) performance

reported to date is about 70% correctly labelled

masses, that is to say it could not be relied upon for

three women in 10 presenting with a lump! It is therefore

important to study the ways in which mathematical

models might be used to suggest features that “charac-

terise” a mass and that are stable/invariant under small

changes in compression.

Increasingly, radiologists take both a cranio-caudal

(CC) and a medio-lateral oblique (MLO) mammogram,

typically angularly separated by 608. However, the

problem is substantially more complicated than the

wide-angle stereovision problem because the breast is

compressed to a significantly different extent in the two

views. This problem necessitates the incorporation of

more realistic mathematical models into the development

of better algorithms for matching a CC to a MLO

mammogram. This would open the way to the solution of

two important problems:

. microcalcification clusters could be viewed as three-

dimensional constellations. The overlapping projec-

tions of those clusters in a mammogram could be

separated. Spatial (three-dimensional) statistics could

be derived for each cluster; statistics of projected

clusters are misleading. The spatial structure of a

cluster is conjectured by radiologists to be an important

indicator of malignancy. For example, if there are many

microcalcifications within a 1 cm cube then that cluster

is more likely to be malignant.

. There has been debate among radiologists about the

existence or otherwise of a “halo of safety” surround-

ing a mass in a mammogram, and, if it exists, whether it

is relevant to a diagnosis of malignancy. Highnam et al.

(1996) developed the first quantitative measure for

such a halo, and presented evidence that if its size is

consistent between an MLO and a CC mammogram

then it is strongly suggestive of malignancy. If this

conjecture turns out, after rigorous experimentation, to

be correct, then a CC-MLO algorithm would give

additional important information to characterise the

mass.

Improving the Mathematical Models

Development of a Model of Breast Compression

The above points illustrate the importance of developing a

sequence of increasingly realistic models of breast

deformation under compression, and of incorporating

them into image analysis algorithms to improve on those

developed to date. Mathematical modelling of soft-tissue

deformation is an area of much current research, with

primary application areas being in medical simulation

(e.g. surgical simulators), whole-heart modelling, soft

connective tissue and solid tumour modelling (e.g.

cartilage and intervertebral discs) (Fung, 1993; Skalak

et al., 1996; Byrne and Chaplain, 1996b; Netti et al., 1997;

Delingette, 1998; McCulloch et al., 1998). The math-

ematical approach taken is largely determined by the

application: in surgical simulation, of primary

importance is speed of computation, and linear elasticity

theory is commonly used; in whole heart, and for

models of breast deformation, modelling accuracy of

deformation is paramount and the much more complex

finite deformation elasticity theory must be used. A

major problem arising in modelling the deformation of the

breast is the number of biological structures that are

present, each with different elastomechanical properties,

with each giving varying constitutive laws throughout

the breast.

The constitutive laws required in developing such

models depend crucially on the materials that are being

deformed. The geometry of the breast is also important,
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and basic breast anatomy can now be determined from

digitised MRI images. A three-dimensional finite element

model for a particular heterogeneous breast must

incorporate a realistic representation of the three-

dimensional domain incorporating descriptions of the

spatial arrangements and heterogeneous mechanical

properties of the different tissues. This may be developed

from the results of matching the CC-MLO mammograms,

or from contrast-enhanced MRI data. The influence of age

on tissue must also be considered.

Development of a Model of Tumour Growth in Spatially
Heterogeneous Tissue

A mathematical model such as that described above would

provide insight into the effects on anatomical structures of

physical compression from different directions, the way

that abnormal (both malignant and benign) structures

interact with the local tissues; and the tissue composition

of anatomical structures. The information is now available

to provide a detailed map of the spatial heterogeneity of

breast tissue within specific breasts. Using the mathemat-

ical modelling techniques outlined in “Previous math-

ematical models”, it should therefore be possible to build a

mathematical model of cancer growth from its initial

inception right through to metastasis. Such models would

build on existing work on tissue growth due to internal

dynamics (Dillon, 2001). By “growing” a breast-specific

cancer in a breast in this way, and by using realistic

compression models, one could determine where and how

that cancer will appear in both cranio-caudal and medio-

lateral oblique mammograms. The model would provide

information to radiologists about the 3D shapes and

compositions of abnormalities. Additionally, since

tumours are rarely seen in a breast screening clinic, the

ability to summon up simulations on demand could be a

powerful teaching tool as well as proving useful in testing

image analysis algorithms and allowing in-service testing

of radiologists.
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