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This paper presents, on the basis of high Peclet number, a mathematical model for the activation and
initial adhesion of flowing platelets onto a surface. In contrast to past work, the model is applicable to
general 2D and axi-symmetric flows where the wall shear stress is known a priori. Results indicate that
for high activation reaction rates there exist two layers, one containing only activated platelets and the
other both activated and non-activated platelets. Fundamental relationships are proposed between the
adhesion rate of platelets to the surface and the characteristic parameters of Peclet number and
Reynolds number. Activation in the bulk fluid (blood) is characterised by the Damkohler number,
which is a function of activation rate and the free-stream velocity. It is shown that, as the free-stream
velocity varies, there exists a maximum of activated platelet flux to the wall for particular values of the
velocity. These values, at which the maximum occur, are themselves functions of the platelet activation
rate. As the free-stream velocity increases the activation of platelets ceases altogether and adhesion is
reduced to a very small value strengthening the hypothesis of the correlation between
atherogenesis/thrombogenesis and areas of low shear.
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INTRODUCTION

Atherosclerosis is one of the leading causes of death in

the world today. In the United States alone, in 1995,

there were nearly half a million deaths attributable to

coronary disease (Wilson and Ferguson, 1999). It is now

reasonably well established that there exists a strong

relationship between the flow of blood, the permeability

of the endothelium to cholesterol and other LDLs (low-

density lipoproteins) leading to the formation of

atherosclerotic plaques. Platelet adhesion and sub-

sequent aggregation are also important in atherogenesis,

along with endothelial dysfunction and atherosclerotic

plaque instability. In addition, the first stage of

thrombogenesis is platelet adhesion on a surface

followed by aggregation and the formation of platelet

mural thrombi (Friedman and Leonard, 1971). The

resulting thrombosis and/or embolisation from diseased

arteries produces a wide variety of clinical scenarios;

myocardial infarction, strokes and gangrene. Vascular

geometry can now be regarded as a risk factor due to

the influence of that geometry on local haemodynamic

effects. In particular, it is extremely important to gain a

thorough understanding of the relationship between

vascular geometry, blood flow and the onset of

thrombus formation in both the natural and diseased

arteries. Although the formation of thrombi and platelet

activation in stasis is fairly well understood, the

influence of blood-flow characteristics has yet to be

fully investigated. Fluid dynamic studies of blood flow,

in models of arteries, suggest a set of fluid dynamic

conditions that appear to predispose thrombus formation

(platelet adhesion), principally at arterial bifurcations,

T-junctions and curved sections.

Over the past 20 years, there have been a number of

proposed models for platelet adhesion and its relationship
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to blood flow and vascular geometry (Leonard et al., 1972;

Turitto and Baumgartner, 1975; Kratzer and Kinder, 1986;

Affeld et al., 1995) as well as a considerable amount of

experimental data collected (Petschek et al., 1968;

Friedman and Leonard, 1971; Leonard et al., 1972;

Turitto and Baumgartner, 1975; Kratzer and Kinder,

1986; Strong et al., 1987; Tippe et al., 1992; Reininger

et al., 1993; Schoephoerster et al., 1993; Affeld et al.,

1995; Reininger et al., 1996). The models concentrated on

both stagnation point flow as well as simple linear shear

flow. However, initially it was assumed that a diffusion-

controlled system existed where the adhesion rate was

large compared to the diffusion coefficient. Recently,

workers have begun to call into question the diffusion-

controlled system and look more closely at intermediate

kinetics. Wall shear stress has been proposed as a possible

mediator for platelet adhesion (Rajagopalan et al., 1988;

Weiss, 1995).

Experiments have been done in parallel plate

flow chambers, annular expansion tubes (Turitto and

Baumgartner, 1975; Karino and Goldsmith, 1979) and in

stagnation flow regimes. However, the main theoretical

analysis has been attempted (Turitto and Baumgartner,

1975; Strong et al., 1987) only for the parallel flow

system, where wall shear rate is constant. Numerical

models have been developed that include the integration

of computational fluid dynamics with relatively complex

kinetic mechanisms (Sorensen et al., 1999a,b). However,

the flow regime was of constant shear type and the

presented results concentrated on obtaining reaction-rate

parameters from comparison with experiment, although

this model could very well be used for more complex flow

conditions. Affeld et al. (1995) investigated platelet

adhesion in a stagnation point flow chamber. The results

from the experiment indicated, as had others, that the

small neighbourhood of the stagnation point streamline

was devoid of platelets along with the existence of a

domain of maximum platelet adhesion just downstream of

the stagnation point streamline. They put forward the

hypothesis that thrombin emanating from the adhered

platelet granules would be convected downstream and

activate other platelets flowing above the adhesion surface

and that the maximum adhesion rate occurred for a

“critical wall shear rate”.

The presented work puts forward a boundary-layer type

model for platelet activation and adhesion. This model is

applicable to axi-symmetric flows, commonly found in the

neighbourhoods of stagnation points and 2D flows where,

in both cases, the wall shear stress is known a priori. It

covers a large range of kinetic rates, from reaction

controlled through intermediate kinetics to diffusion-

controlled systems. We investigate the role of thrombin,

emanating from adhered platelets on the activation of

flowing non-activated platelets and we compare the results

with experiment. The model provides a parametric

representation of platelet activation and adhesion through

the three fundamental parameters of Peclet, Reynolds

and Damkohler numbers and indicates a fundamental

relationship between adhesion rate and the roles of

convection and diffusion.

MATHEMATICAL MODEL

In order to fully understand the mechanism of thrombo-

genesis, it is important to investigate the chemicals

important to platelet activation. One proposed mechanism

(Hubbell and McIntire, 1986) is that adherent platelets, if

sufficiently activated, produce local high concentrations of

platelet activating substances, which then diffuse and

convect into the flow thereby activating platelets in the bulk

flow. These highly reactant chemicals are important in

determining the complex chemical mechanisms, which

make up the clotting cascade; they all essentially diffuse

outward from the activated and adhered platelet. This may

then activate other platelets that may be convected and/or

diffused into the reaction neighbourhood.

Three chemicals have been identified as playing

important roles in platelet activation;

Adenosine diphosphate: released from the dense

granules of the platelet.

Thromboxane A2: enzymatically generated on or near

the membrane of the platelet.

Thrombin: secreted from platelets both when activated

and adhering.

From a modelling viewpoint, we may simplify this

system somewhat by lumping these chemicals into a

single species, which for the purpose of clarity, shall be

denoted as thrombin. Both activated and non-activated

platelets can adhere to the wall or surface although this

will be at different rates.

Basic Theory

In this section, we set out the basic conservation equations

for both fluid flow and reactive species. In order to compare

with other workers, we assume that firstly blood be

modelled as a Newtonian fluid, secondly that the system is

of constant density and temperature and finally, although

physiological blood flows are pulsatile in nature, we

assume a steady-state system. The steady-state conserva-

tion of mass and momentum in vector form is written as

7·u ¼ 0 ð1Þ

and

r 7
u2

2

� �
2 u £ ð7 £ uÞ

� �
¼ 27pþ m72u ð2Þ

Here u is the velocity vector in a general orthogonal set of

co-ordinates, r is the density, m is the dynamic viscosity

and p is the pressure that varies due to dynamic variations
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in fluid velocity alone. Red blood cells (RBC) have a

considerable effect on the diffusion of platelets, an effect

that is enhanced by shear rate. However, the main

experimental evidence with which we compare our

analysis was done with platelet-rich plasma containing no

RBCs (Affeld et al., 1995). Hence for the present we

assume constant diffusion coefficients.

Although adhesion is a time-dependent process for

initial adhesion Strong et al. (1987) have shown that for

small times adhesion is the product of a constant rate of

adhesion and time. We can assume steady state and then

use a simple product of platelet flux and small time to

evaluate the number of platelets adhering. Hence, for this

present model, we look at steady state only (the similarity

solution method is not restricted to steady-state methods

see David et al., 2001a). A general conservation equation

for the ith cellular/chemical species can be written, again

in vector form, as

7·ðufiÞ ¼ 7·ðDi7fiÞ þWi i ¼ 1; . . .;N ð3Þ

fi is the ith mass fraction defined as fi ¼ ri=r; Wi is the

rate of production of the ith species mass fraction and Di is

the ith species diffusion coefficient assuming a Fickian

diffusion model. Since the bulk fluid density is constant,

the momentum and species-conservation equations are

effectively de-coupled.

The diffusion coefficient for platelets may be

determined by the use of the Stokes–Einstein equation

Dpl ¼
BT

6pmrpl

ð4Þ

Here B is the Boltzmann constant, T is the absolute

temperature, m is the coefficient of viscosity of plasma and

rpl is the radius of a platelet. Using the above and an

assumption of a core-body temperature of 378 for T, Dpl,

the platelet diffusion coefficient was calculated as

1.7 £ 10213 m2 s21. This compares favourably with

values calculated by many other workers (Strong et al.,

1987). If RBC augmentation is modelled, then this

diffusion coefficient value can increase by as much as

two orders of magnitude (Strong et al., 1987), depending on

the shear rate.

For the case presented here, it was assumed that platelet

activation occurred in the bulk fluid, through a reaction

with thrombin, and that the phenomenon of platelet

adhesion to the wall is represented by a simple reaction

boundary condition, where platelets are either “free” or

permanently adhered. Once adhered, it is assumed that

thrombin is diffused outward from the adhered platelet at a

specified rate. The thrombin emanates from the internal

part of the cell and it has been shown that the time taken to

diffuse out is quite long due to the canalicular structure of

the platelet membrane (Fogelson and Wang, 1996). For

this model, we can assume that although the platelet may

be activated in the bulk fluid, it does not release thrombin

until adhered at the surface. In addition, it is assumed that

no reversible reactions occur representing the worst-case

scenario for thrombogenesis. The reaction mechanisms

are given by

thrombinþ platelets
kb
! activated plateletsþ thrombin

surfaceþ activated platelets
kwa
! adhered plateletsþ surface

surfaceþ platelets
kwp

! adhered plateletsþ surface

adhered platelets
kwt
! adhered plateletsþ thrombin

ð5Þ

Here kb, is the forward rate for the bulk reaction and kwa,

kwp and kwt are surface (or wall) reactions for activated

platelets, non-activated platelets and thrombin, respec-

tively. The constraint that thrombin is effused from an

activated platelet only when it has adhered can be relaxed

so that the first reaction mechanism given in Eq. (5) can be

rewritten as

thrombinþ platelets
kb
! activated platelets

þ a thrombin
ð6Þ

where a . 1; this essentially corresponds to a non-zero

source term in the conservation equation for thrombin. We

assume that the both platelets and activated platelets

become adhered at the surface at a rate proportional to

their concentration at the wall in a similar manner to that

given by Sorensen et al. (1999b). We can write these

surface boundary conditions as

Dact pl

›fact pl

›n

����
surface

¼ kwafact pljsurface

Dpl

›fpl

›n

����
surface

¼ kwpfpljsurface

ð7Þ

Here n is the co-ordinate normal to the reacting surface.

Finally, the production of thrombin is determined by the

rate of adhesion of platelets. So that in a similar manner

we can write

Dth

›fth

›n

����
surface

¼ 2kwt½kwafact pl þ kwpfpl� ð8Þ

The modelling procedure has been split into two distinct

areas, an analytical solution for the limiting case of infinite

Damkohler number and a numerical procedure for the

general coupled equations of species conservation.

The analysis is applicable to both axi-symmetric and 2D

flows and Fig. 1(a) and (b) shows the co-ordinate systems

for both cases

For clarity the fluid domain will be assumed to be of an

axi-symmetric form, modelling the stagnation point flow.

However, this analysis may be used for any a priori known
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2D velocity field where the boundary-layer flow does not

detach. We concentrate on phenomena in the viscous

boundary layer and the mass-transfer sub-layer and as

such use a boundary-layer formulation. As a first step in

the solution process, we assume that mass diffusion in the

stream-wise radial (R̃ ) direction is negligible compared to

that in the axial (z̃ ) direction. With these assumptions, the

constant density conservation equation for the mass

fraction of the ith cellular species, fi, can be written in the

boundary-layer type form (Schlichting, 1960) as

~u
› ~fi

› ~R
þ ~v

› ~fi

›~z
¼ ~Di

›2 ~fi

›~z2
þ ~Wi i ¼ 1; . . .;N ð9Þ

where ~u and ~v are the velocity components for the ~R and ~z

directions, respectively, and N is the total number of

species participating within the domain. Again, in a

similar manner to Sorensen et al. (1999b), Wi can be

modelled as a first-order reaction mechanism so that

~Wi ¼ kib½fk�½fl�

where the associated reaction is given by

species k þ species l
kib
!species i

By choosing appropriate length, velocity and concen-

tration scales, L, U1 and fpl 1, respectively, such that

u ¼
~u

U1

; v ¼
~v

U1

; R ¼
~R

L
; z ¼

~z

L

fi ¼
~fi

fpl 1

the non-dimensionalised form of the species equation is

given as

u
›fi

›R
þ v

›fi

›z
¼

Di

Pe

›2fi

›z2
þWi i ¼ pl; th; act pl ð10Þ

where Pe, is the Peclet number defined as

Pe ¼
U1L

~Dpl

the non-dimensional diffusion coefficient Di is defined as

Di ¼
~Di

~Dpl

If only a single bulk reaction is modelled, then the non-

dimensional production rates for platelets, activated

platelets and thrombin are given as

Wpl ¼
~WplL

U1

¼
kbL

U1

½fpl�½fth� ¼ Dm½fpl�½fth�

Wact pl ¼
~Wact plL

U1

¼ 2Dm½fpl�½fth�

W th ¼
~WthL

U1

¼ 0

Dm is the Damkohler number, a ratio of fluid transit time

to chemical reaction time. The diffusion coefficients for

cells moving in blood plasma are extremely low and, thus,

Pe is correspondingly high. For physiological conditions,

the velocity boundary-layer thickness, d , Re1=2; is large

compared to the species mass-transfer boundary layer,

1 , Pe1=2 as shown in Fig. 2. The velocity profile can,

therefore, be assumed to have a linear form and the

velocity vector field may be evaluated independently.

For the cases presented here, the velocity field is

assumed known a priori and the wall shear stress evaluated

from this. For the particular case of a stagnation point flow,

the non-dimensional wall shear stress function, tw(R ),

may be analytically generated using the Heimenz solution

(Schlichting, 1960). However, this solution is only valid in

FIGURE 1 (a) Co-ordinate system for stagnation point flow. (b) Co-ordinate system for parallel plate flow.

FIGURE 2 Comparison and characteristic depths of the boundary layer
for momentum, d, and mass transfer, 1.
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a small neighbourhood of the stagnation streamline where

the shear stress is a linear function of the radial co-

ordinate, R. It was felt important, especially when

comparing with the results of Affeld et al. (1995), that a

much wider domain should be considered. Hence tw(R )

was derived from a numerical solution to the Navier–

Stokes equations (David et al., 2001b). The computational

domain mimicked the experiment by Affeld et al., (1995),

with no slip boundary conditions on the lower and upper

walls, a specified parabolic profile at the pipe entrance

(positioned at right-angles to the adherent surface) and a

zero gradient condition at the outlet. In the interests of

brevity, we refer to the work of David et al. (2001b) for a

description of the computational domain. Figure 3 shows

the wall shear stress as a function of the radial co-ordinate,

R. This compares very well with that given by Affeld et al.

(1995) as shown by Thomas (2000).

Results for a single species model (David et al., 2001b)

have shown that for high Pe with the stream-function

definition given by

c ¼
1

2
twðRÞRez2 ð11Þ

and an appropriate von Mises transformation (Schlichting,

1960) a similarity variable, h, defined by

h ¼ z
{twðRÞ}

1=2ðPeReÞ1=3

9
Ð R

0
{twðgÞ}

1=2dg
h i1=3

¼ zbðRÞ ð12Þ

may be used, where the non-dimensional wall shear stress

is given by

twðRÞ ¼
~twð ~RÞ

rU2
1

and the Reynolds number Re is defined as

Re ¼
rU1L

m

A full derivation of the similarity variable is given in the

appendix. We note that close to the stagnation point

streamline the shear stress is a linear function of the radial

coordinate, twðRÞ ¼ aR; say. Substitute this form into

Eq. (12) then it is easy to show that

R!0
lim½bðRÞ� ¼

aRePe

6

� �1=3

ð13Þ

So that even though the wall shear stress tends to zero at

the stagnation point, the similarity variable is defined at

R ¼ 0: In comparison with other workers where the flow

in the Cartesian co-ordinate system is of a Poiseuille type,

then twðxÞ is of a constant value and the similarity variable

has the form given by

h ¼
RePetw

9ðx 2 x0Þ

� �1=3

y ð14Þ

with twðxÞ; the non-dimensional constant wall shears

stress in the stream-wise direction x. Using either Eq. (12)

or (14) to define the similarity variable depending on

whether a cylindrical or Cartesian co-ordinate system is

considered. In both cases, the non-dimensional species

conservation equation becomes for the ith species mass

fraction

Di

d2fi

dh2
þ 3h2 dfi

dh
¼M½fk�½f1�

M ¼ Dm
Pe

b2ðRÞ
:

ð15Þ

The resulting ordinary differential equations can be used

in a variety of fluid flow cases where tw(R ) is known a

priori and is well behaved. The flux boundary condition at

the surface is of the form (for the cylindrical case)

›fi

›z
¼

dfi

dh

›h

›z
¼

dfi

dh
bðRÞ ¼ kifi wall

ki ¼
kiL

fpl 1
~Di

ð16Þ

Here ki may be thought of as a Sherwood number for the

ith species. However, since only a single reaction occurs

in the bulk fluid, the Damkohler numbers Dmi can

be considered to be equal for all i, Dmi ¼ Dm; ;i ¼ pl; th:
Finally, a boundary condition modelling the species mass

fraction at a large distance away from the surface

is needed. We assume that far away from the

adhesion surface the concentration of species is a constant.

So that

h ! 1; fiðhÞ! fi 1 ð17Þ

We note that there are two limiting conditions to the

problem. Firstly, where the Damkohler number is small

and secondly, where it is large. It is normally the case

that the activation of platelets is fast and hence the

Damkohler number is large for values of L=U1 , Oð1Þ:

FIGURE 3 Wall shear stress, tw(R ) as a function of non-dimensional
radial co-ordinate for the axi-symmetric stagnation point flow.
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Large Damkohler number cannot occur for negligibly

small U1, since this would invalidate the similarity

variable. We investigate first the case of Dm ! 1

where we obtain an analytical solution and then use a

numerical procedure for the case for intermediate values

of Dm. The analytical and numerical solutions are then

compared.

Analytical Solution for Dm ! 1

For this case, the domain of reaction, where the activation

of platelets by thrombin takes place, is an infinitely small

sheet. Let us assume that the position of this sheet is h*.

The concentration of non-activated platelets at this

position is zero and all platelets have been activated.

The set of ordinary differential equations for platelets,

activated platelets and thrombin become

Di

d2fi

dh2
þ 3h2 dfi

dh
¼ 0 i ¼ 1; . . .3 ð19Þ

The RHS of Eq. (19) is zero since all the reaction terms are

now embedded in a infinitesimally thin reaction sheet

and the equation is satisfied in the entire domain excluding

the point h ¼ h*: The domain is split into two sections

0 # h , h* and h* , h , 1: The boundary conditions

are set out in Tables I and II.

To close the system, we have to find the value of h*.

Since the convective velocity for reacting species at the

reaction surface is the same, then thrombin and platelets

can only approach each other by a diffusive process and

only in stoichiometric proportions. This means that the

diffusive mass flux must be in stoichiometric proportions,

thus

mth

dfth

dh

����
h¼h*

¼ 2mpl

dfpl

dh

����
h¼h*

ð20Þ

where mth and mpl are the molecular masses of thrombin

and platelets, respectively.

We are now in a position to solve the resulting equations

(19) subject to the boundary conditions (18) and (21). For

the individual domains the solutions are

0 # h < h*

Platelets

fpl ¼ 0

Activated platelets

fact plðhÞ ¼
3kwa

3Dact plbðRÞ þ kwaGð1=3;h*Þ

� �

£

ðh
0

expð2g3Þdg

þ
3Dact plbðRÞ

3Dact plbðRÞ þ kwaGð1=3;h*Þ

ð22Þ

Thrombin

fthðhÞ ¼
23kwt

3DAct plbðRÞ þ kwpGð1=3;h*Þ

£

ðh
0

exp 2
g3

Dth

� �
dg 2

D
1=3
th Gð1=3;1Þ

3

 ! ð23Þ

h* # h < 1

Platelets

fplðhÞ ¼
3fpl 1

Gð1=3;1Þ2 Gð1=3;h*Þ

£

ðh
0

expð2g3Þdg 2
Gð1=3;h*Þ

3

� � ð24Þ

Activated platelets

fact plðhÞ ¼
3fpl 1

Gð1=3;h*Þ2 Gð1=3;1Þ

£

ðh
0

expð2g3Þdg 2
Gð1=3;1Þ

3

� � ð25Þ

TABLE I 0 # h , h* (18)

Platelets Activated platelets Thrombin

h ¼ 0;
›fpl

›h
¼

kwp

bðRÞ
fpl h ¼ 0;

›fact pl

›h
¼ kwa

bðRÞ
fact pl h ¼ 0; ›fth

›h
¼ 2 kwt

bðRÞ
½kwafact pl þ kwpfpl�

h ¼ h*; fpl ¼ 0:0 h ¼ h*; fact pl ¼ 1:0

TABLE II h* # h , 1 (21)

Platelets Activated platelets Thrombin

h ¼ h*;fpl ¼ 0:0 h ¼ h*;fact pl ¼ 1:0 h ! 1; fth ! 0:0

h ! 1;fpl ! 1:0 h ! 1; fact pl ! 0:0
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Thrombin

fthðhÞ ¼
23kwt

3Dact plbðRÞ þ kwpGð1=3;h*Þ

£

ðh
0

exp 2
g3

Dth

� �
dg 2

D
1
3

thGð1=3;1Þ

3

 ! ð26Þ

Here, Gða; xÞ ¼
Ð x

0
e2tt a21 dt is the incomplete gamma

function. The concentrations are continuous across the

reaction sheet; however, the derivatives are not, except

that for thrombin where all its derivatives are continuous.

This is due to the fact that thrombin is essentially a catalyst

in the reaction. To complete the analysis for large

Damkohler number we use the stoichiometric Eq. (20) for

the fluxes of thrombin and platelets and substitute in the

derivatives of the known solutions (evaluated as h ! h*
^)

and the masses for thrombin and platelets. To find h*, we

require the root of the following equation

mth

mpl

kwaexp
2h* 3

Dth

� �
G

1

3
;1

� �
2 G

1

3
;h*

� �� �

2 exp 2h* 3
ÿ �

3bðRÞ þ kwpG
1

3
;h*

� �� �
¼ 0

ð27Þ

The above equation is solved using a Maplee root finding

algorithm for specific values of the molecular masses and

the surface reaction rates.

Numerical Solution for Intermediate Dm

For the case where the Damkohler number is neither large

nor small, we use a numerical solution method. The

domain is treated as a continuous range and here the set of

differential equations governing the concentration of

species are written as

Dpl

d2fpl

dh2
þ 3h2 dfpl

dh
¼ 2Mpl½fth�½fpl�

Dact pl

d2fact pl

dh2
þ 3h2 dfact pl

dh
¼Mact pl½fth�½fpl�

Dth

d2fth

dh2
þ 3h2 dfth

dh
¼ 0

Mpl ¼Mact pl ¼
kbL

U1

Pe

b2ðRÞ

ð28Þ

The boundary condition for the numerical model are the

same as those used in the analytical solution for h ¼ 0 and

h ! 1: A NAG (Ltd., N., 1999) routine (D02RAF) is

used to solve the coupled set of o.d.e.’s [Eq. (28)] for a

range of values of the reduced Damkohler number M.

D02RAF solves the two-point boundary-value problem

with general boundary conditions for a system of ordinary

differential equations, using a deferred correction

technique and Newton iteration. In this case, a

continuation parameter was used that incremented the

reduced Damkohler number M from zero to the prescribed

value. The routine also uses a mesh refinement technique

that equidistributes an estimate of the truncation error

across the mesh.

M is a function of both the bulk reaction-rate kb and the

free-stream velocity U1. Thus, variation in the source

term for the conservation of species equation can come

from either a variation in bulk reaction-rate or a change in

U1. It is noteworthy to investigate the relationship

between the reduced Damkohler number and that of the

free-stream velocity U1. We can write

M ¼
kbL

U1

½Pe�1=3
9
Ð R

0
n*dR

h i2=3

n2
*

¼
kbL

U1

9
Ð R

0
n*dR

h i2=3

n2
*

U1

DL

� �1=3

/U22=3
1

ð29Þ

Here n* is a wall slip velocity defined from the wall shear

stress (see Appendix). From the above, it is seen that

variations in the free-stream velocity U1 may have a

pronounced effect on M and thus a considerable influence

on the activation of platelets.

Reaction rates for the activation of platelets are not

readily available in the literature, however, experimental

evidence suggests that a figure of order 106 s21 (Strong

et al., 1987) is not uncommon since the overall rate for the

inhibition of thrombin by anti-thrombin III is of the same

value. Using the value of 1.7 £ 10213 m2 s21 for the

diffusion coefficient of platelets and, due to its size a value

10 times higher for thrombin, along with L ¼ 0:003 m;

U1 ¼ 0:01 m s21; provides the characteristic Peclet

number and Reynolds number for the flow conditions

similar to those found in Affeld et al. (1995). It should

be noted that Affeld et al.’s experiment had a value of

Re ¼ 2: Adhesion rates from earlier mathematical models

are available, however (Strong et al., 1987), Table III

provides data used in the solution of both the analytical

and numerical models.

RESULTS

Figure 4 shows platelet, activated platelet and thrombin

concentrations for both the analytical and numerical

solutions using the input data given by Table III and a

reduced Damkohler number of M ¼ 5:0 £ 106: The root

TABLE III

Kb (m s21) Pe kwt
~Dth kwp

~Dpl kwa
~Dact pl

5.0 £ 106 1.0 £ 106 0.1 10.0 1.0 1.0 2.0 1.0
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finding algorithm solution for Eq. (27) places the reaction

sheet at h ¼ 3 for the cylindrical stagnation point system

(accurate to three significant figures). Non-activated

platelets diffuse toward the reaction sheet from h . 3;
whilst activated platelets diffuse from the reaction sheet

toward the outer boundary. For values of smaller h, the

concentration of activated platelets maintains a maximum

value of 1 and then decreases towards the surface at h ¼ 0.

The numerical solution shows that platelets are activated

in a very small reaction zone, in this case in the

neighbourhood of h ¼ 3; and this position separates the

inner layer where, apart from very small concentrations of

thrombin, only activated platelets exist and the outer layer

where there are platelets and diffusing activated platelets.

The thrombin concentration is small and is unaffected by

the reaction since it is only a catalyst in the activation

process.

When the Damkohler number is of intermediate size

only the numerical solution can be used. From the results

of the numerical model and using identical data to that of

Fig. 4, apart from a reduction in kb to allow a smaller

reduced Damkohler number of M ¼ 5:0 £ 103; Fig. 5

shows the concentration of all three species as a function

of the similarity variable h. The maximum concentration

of activated platelets is now reduced, only 90% of that

previously. In addition, the reaction zone is considerably

larger, centred at a different position and occurring over

the approximate range of 0:6 , h , 1:6: The concen-

tration of activated platelets at the adhesion surface is

however similar to that for M ¼ 5:0 £ 106:
Figure 6 again shows platelet and activated platelet

concentrations but this time with a Damkohler number

(again by reducing kb) of M ¼ 5:0 £ 101: For this case the

activated platelet concentration is a small perturbation to

the non-reactive case. Almost no activated platelets are

generated.

As an indicator of how thrombin production affects

platelet adhesion, Fig. 7 illustrates the variation of the total

platelet flux to the surface (for activated and non-activated

platelets), _q; as a function of the rate of thrombin

production at the adhesion surface per unit adhesion

of platelets, kwt. The value of kb is now such that

M ¼ 5.0 £ 106, as in the case presented by Fig. 4. The

total platelet flux to the wall is defined as

_q ¼ bðRÞ
dfact pl

dh
þ

dfpl

dh

� �����
h¼0

ð30Þ

As the thrombin production (per unit concentration of

activated platelet), kwt, increases, then the flux initially

rises rapidly but tends to a constant value as kwt ! 3: This

plateau is possible due to the mass-transfer boundary layer

being completely composed of activated platelets and

hence saturated.

FIGURE 4 Analytical and numerical solutions for platelet, activated
platelet and thrombin concentrations using the data of Table III and
Damkohler number M ¼ 5:0 £ 106 as a function of the similarity
variable h.

FIGURE 5 Concentrations of activated, non-activated platelets and
thrombin versus similarity variable h with M ¼ 5:0 £ 103 using the
numerical solution.

FIGURE 6 Concentrations of activated, non-activated platelets and
thrombin versus similarity variable h with M ¼ 5:0 £ 101 using the
numerical solution.
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It is important to investigate how the bulk reaction-rate

affects the platelet adhesion at the surface. The variation

of total platelet flux, q̇, as a function of bulk reaction-rate,

kb, is shown in Fig. 8. Here the bulk reaction-axis is

logarithmic. In a similar manner to Fig. 7, the flux

increases as the bulk reaction-rate increases until a plateau

is reached for kb . 106: Thus all variation of the platelet

flux occurs over a range of approximately 100. In this case

the plateau corresponds to the situation modelled by the

analytical solution given by Eqs. (22–26).

In the light of the variation of Damkohler number with

both kb and U1, it is also necessary to look at the total

platelet flux to the adhesion surface, _q; as a function of

characteristic velocity U1 and this is shown in Fig. 9. Two

curves are plotted for values of the bulk reaction-rate

kb ¼ 4 £ 105 and 4 £ 107. For the case of kb ¼ 4 £ 105;
the flux increases to a maximum value where U1 < 0:6: It

then decreases rapidly over the range 0:6 # U1 # 2:0:
When the bulk reaction-rate is increased to kb ¼ 4 £ 107;
then the platelet flux maximum is reached at U1 < 2:0:
The shape of the curve is similar for both values of the

bulk reaction-rate and it should be noted that for smaller

values of U1, the curves lie on top of each other. For lower

but increasing values of U1, more platelets are being

convected into the mass-transfer boundary layer, however,

as U1 increases beyond a critical value, then the bulk

reaction cannot be sustained and platelet activation

decreases.

Figure 10 shows the calculated flux of platelets to the

surface for the stagnation point flow case as a function of

the stream-wise co-ordinate R. This shows clearly that the

maximum flux occurs at the stagnation point streamline, in

contrast to that found in the experimental data of both

Affeld et al. (1995) and Karino and Goldsmith (1979). In

addition, the platelet flux for a constant shear flow profile

(Poiseuille flow), where the downstream co-ordinate is x,

is also shown for comparison. For both cases, the flux is

dominated by the shape of the function b(R ) or b(x ) [see

Eqs. (12) and (14)].

For initial platelet adhesion, the steady-state solution

may be used to estimate the number of platelets adhered to

the surface at a certain time; this assumption has been used

previously as shown by Strong et al. (1987).

Figure 11 shows the dimensional number of adhered

platelets per unit area, as a function of axial distances as

evaluated by Sorensen et al. (1999a) with parallel plate

FIGURE 8 Platelet flux to the adhesive surface [Eq. (28)], evaluated at
R ¼ 0 versus platelet activation rate kb for M ¼ 5:0 £ 106:

FIGURE 9 Platelet flux to the adhesive surface [Eq. (28)], evaluated at
R ¼ 0 versus free-stream velocity U1 for kb ¼ 4 £ 105 and 4 £ 107.

FIGURE 10 Platelet flux to the adhesive surface [Eq. (28)], versus non-
dimensional radial co-ordinate for the stagnation point flow and axial
co-ordinate.

FIGURE 7 Platelet flux to the adhesive surface [Eq. (30)], evaluated at
R ¼ 0 versus thrombin flux rate kwt for M ¼ 5:0 £ 106:
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experiments (after 75 s), compared with that calculated by

the present theory (b(x ) defined by Eq. (14)). By

comparing these two models, it should be noted that the

kinetic mechanism of Sorensen is considerably more

complex, especially in the inhibition of thrombin in the

bulk flow.

For values of the downstream co-ordinate x . 3; the

agreement is excellent. However, for smaller values of the

downstream co-ordinate, the present theory predicts a

smaller flux. Fogelson and Wang (1996) provided a model

of thrombin production diffusing through the canaliculae

of activated platelets. This can be modelled in a simple

fashion by including a non-zero source term (proportional

to the bulk concentration of activated platelets) in the

conservation equation for thrombin [Eq. (28)]. The

coefficient of proportionality is the same as that for

the surface boundary condition for thrombin. Thus the

activated platelets are a source for thrombin both in

the bulk fluid and at the surface. Figure 12 shows the

concentrations for platelets, activated platelets and

thrombin (magnitude £ 100) for this case where the

same input data has been used as that for Fig. 5. The

activated platelets, in exuding thrombin, have increased

the concentration of activated platelets and have moved

the reaction zone further from the adhesion surface

(compare with Fig. 5). If the production of thrombin per

unit concentration of activated platelets is increased, then

the reaction surface is moved even further away from the

adhesion surface and the maximum concentration of

activated platelets is increased.

On the basis of a power law relationship between shear

rate and platelet diffusion, Turitto and Baumgartner (1975)

plotted platelet adhesion data from parallel perfusion

chamber experiments on log–log axes. In doing so, they

stated that the initial data point value was too low according

to their theory and put this down to its axial position being

“too close to the vessel edge.” Their straight-line fit,

therefore, did not use this data point. Figure 13 compares

the present theory with the experimental data of Turitto and

Baumgartner where their experiment used a simple flat-

plate perfusion chamber. Due to the possible uncertainty of

the value of the diffusion coefficients, we can write the

equation for platelet flux in the form

qðxÞ ¼
k

1þ kax 1=3
ð31Þ

and use a least squares Marquardt–Levenberg algorithm to

fit to the experimental data of Turitto and Baumgartner’s

rate of platelet adhesion (Turitto and Baumgartner, 1975)

via the parameters a and k. For this case, the parameter a

takes into account the constant shear stress found in a flat-

plate perfusion chamber experiments of Turitto and

Baumgartner. Table IV shows values found for a and k.

TABLE IV

Variable Value 63% conf. interval

k 46.18 ^3.74 ,8%
a 0.00257 ^0.000911 ,35%

FIGURE 11 Number of adhered platelets per unit area, as a function of
axial distance as evaluated by Sorensen et al. (1999a) with parallel-plate
experiments (after 75 s), compared with that calculated by the present
theory.

FIGURE 12 Concentrations for platelets, activated platelets and
thrombin (magnitude £ 100) versus the similarity variable h, the input
data is as that for Fig. 5.

FIGURE 13 Log–Log plot of platelet flux versus axial distance
compared with that of Turitto and Baumgartner (1975).
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Figure 13 shows the data of Turitto and Baumgartner

(1975) along with the least squares fit using Eq. (31). In

addition, using the same type of analysis as that of Turitto

and Baumgartner, Fig. 13 also shows a linear least

squares fit of the form logðqÞ ¼ m logðxÞ þ logðcÞ: The

present theory shows a very good agreement with

experiment.

DISCUSSION

The analytical solution for Dm ! 1 shows excellent

agreement with that from the numerical model. In fact, for

values of h , 3; the curves lie on top of one another and

similarly for h . 5: Asymptotic analysis could be used to

investigate the details of the reaction region when Dm is

large, but not infinite. However, this may be counter

productive since the region would certainly be of the order

of the cell diameter for platelets.

The three different cases where the bulk reaction-rate is

reduced, shown above in Figs. 4–6, indicate that as the

Damkohler number is reduced, the reaction zone both

widens and moves closer to the adhesion surface. Below a

value of kb ¼ 105 the activation of platelets has virtually

ceased and only non-activated platelets are adhering

and present at the adhesion surface and this is a

limiting condition. Whilst for large values of kb the flux

attains a plateau, again a limiting case, whose value is

essentially controlled by the adhesion rate of activated

platelets kwa.

The platelet flux as given by Eq. (30) is a function of the

thrombin flux emanating from the adhered platelets and is

shown in Fig. 7. Here, as kwt decreases and the flux of

thrombin from the surface tends to zero, then the

concentration of activated platelets reduces and the

platelet flux tends to a limiting case. This is where cells

diffusing toward the surface are only non-activated

platelets in a manner similar to that of the platelets

when no bulk reaction occurs. In contrast, as the value of

kwt gets much larger than unity, then the reaction zone

moves farther away from the surface and there exist

essentially two layers. The inner layer, where only

activated platelets exist, and the outer layer, where there

are platelets yet to be activated. The activated platelets

diffuse toward the adhesion surface from a maximum

value of unity and the situation is similar to that found in

Fig. 4. The outer layer consists of non-activated platelets

diffusing toward the reaction zone, where their concen-

tration is negligibly small, and activated platelets

diffusing outward from the reaction zone. The resulting

flux to the adhesion surface comes from the activated

platelets only and tends to a limiting value as kwt ! 1 as

shown later. The same condition arises for the case of the

reaction rate of activation when kb ! 1 as shown in

Fig. 8. The inner layer is populated by activated platelets

alone and the flux is determined almost entirely by the

rate of adhesion at the surface. For the case of high

or even moderate values of bulk reaction-rate, the

activated platelet concentration behaves in a manner

given by a simple convection diffusion equation, not

unlike Eq. (19). Thus the concentration profile has the

form at the surface given by

fact plð0Þ ¼
3 ~Dact plbðRÞ

3bðRÞ þ kwaGð1=3;h*Þ
ð32Þ

[derived from Eq. (22)] and the flux to the surface is

_q ¼
3kwa

~Dact plbðRÞ

3bðRÞ þ kwaGð1=3;h*Þ
ð33Þ

We note that Gð1=3;h*Þ is not too dissimilar in value to

Gð1=3;1Þ: When the surface adhesion rate, kwa, is high

then the flux is given by

kwa!1
limð_qÞ ¼

3 ~Dact plbðRÞ

Gð1=3;h*Þ

� �
ð34Þ

which is a constant for constant values of either R or x

depending on whether the co-ordinate system is

cylindrical or Cartesian, respectively. Equation (33)

shows that for intermediate adhesion kinetics and high

activation rate, then for there to be a significant reduction

in the flux to the surface we must have that

1 ,
kwaGð1=3;h*Þ

3bðRÞ
)

3bðRÞ

Gð1=3;h*Þ

¼
3

Gð1=3;h*Þ

{twðRÞ}
1=2ðPeReÞ1=3

9
Ð R

0
{twðgÞ}

1=2dg
h i1=3

< kwa

ð35Þ

The relationship between adhesion rate and fluid

dynamics becomes a simple balance between b(R ) and

kwa. The convective and diffusive terms are taken into

account by the similarity coefficient that shows the

fundamental relationship between wall shear stress and

the diffusion of platelets. This will be true for all 2D

flow conditions provided the flow is fully attached or is

in the neighbourhood of an attachment stagnation

point (wall shear stress is well behaved) and is known

a priori.

In contrast to the reduction in Damkohler number due to

a reduction in bulk reaction rate kb, an increase in U1,

although providing a similar decrease in Damkohler

number, can produce a maximum in the platelet flux. For

this maximum to exist, there must be two competing

effects. As the velocity U1 decreases, b(R ) also decreases

(for all R or x if a 2D system is being considered) and

effectively reduces the platelet flux to the adhesion

surface. However, the Damkohler number increases due to

Eq. (28) and effectively strengthens the reaction source

term whilst in contrast to moving the reaction zone away

from the adhesion surface. The activated platelets have to

diffuse further toward the surface and their concentration

at the adhesion surface thereby reduces. As the velocity
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U1 increases, the reaction surface moves toward the

adhesion surface, but the Damkohler number decreases

sufficiently to cause a significant decrease in the amount

of activated platelets generated and the total platelet flux is

reduced. As the bulk reaction-rate increases, the position

of maximum platelet flux also increases.

If the characteristic length, L, is maintained constant,

then Fig. 8 could be thought of as showing the relationship

between platelet flux and a characteristic “global” shear

rate given by U1=L: For the stagnation point flow regime

this ratio could be thought of as the “strength” of the

stagnation flow. However, it should be noted that this

“shear rate” is not a local one, but characteristic of the

“experiment” as a whole. Experiments by Turitto et al.

(1979), where the rate of platelet adhesion is plotted

against “global” shear rate, also show this maximum

behaviour for both rabbit and human blood. They

stated that the reason for this maximum was, at the

time, unclear. Although, it should be stated that

the experiments were carried out with a sodium citrate

anticoagulant that has the effect of inhibiting activation by

thrombin.

In comparing the work of Sorensen et al. (1999a,b) with

the present theory, we see that the more complex numerical

kinetic mechanism of Sorensen predicts a larger number of

platelets adhering to the upstream surface than that

evaluated by the present model. There could be several

reasons for this. Firstly, the Sorensen simulation is time

dependent and the reactive surface boundary conditions

take account of a reducing area available for adhesion.

Initial studies with a time-dependent algorithm (David

et al., 2001a) show that this is possibly due to axially

dependent scaling factors multiplying the diffusive and

convective terms for the time-dependent equation. A fuller

investigation is left for a further paper. Secondly, the bulk-

reaction scheme takes into account the inhibition of

thrombin using the work of Griffith (1982a,b). If this were

incorporated into the present scheme, the first-order

reaction rate for heparin and antithrombin III would

increase as the platelets moved downstream.

In the present model, the activation of platelets has been

taken into account using the reaction of thrombin with

platelets where thrombin has emanated from activated and

adhered platelets. In the work by Affeld et al. (1995) using

a axially symmetric stagnation point flow, it was

hypothesised that the thrombin would be convected

downstream and “at some critical shear rate” induce a

higher (maximum) value of platelet flux away from the

stagnation point streamline, which had been observed in

the experiments. The platelet flux to the surface is

evaluated by Eq. (30). Consequently, the variation with

downstream co-ordinate R varies as b(R ). It has already

been shown (David et al., 2001b) that b(R ) is a monotonic

decreasing function for both stagnation point flow and

for constant wall shear stress conditions. By inspection

of Fig. 10, the maximum non-dimensionalised platelet

flux occurs at the stagnation point streamline ðR ¼ 0Þ;
in contradiction to that found by experiments

(Reininger et al., 1993; Affeld et al., 1995; Reininger

et al., 1996). Although it is recognised that RBCs can

augment the diffusion of platelets, Affeld et al.’s

experiments used platelet-rich plasma and hence con-

tained no RBCs. Nor can the flux of thrombin emanating

from the adhesion surface, assumed by Affeld, alone cause

the particular adhesion distribution found. An additional

phenomenon must be present for the variation in R, found

by experiment, to occur. It has been shown (David et al.,

2001b) that an adhesion rate, which, if defined as a

function of shear rate, can provide the required variation,

as suggested by Rajagopalan et al., 1988; Weiss, 1995).

However, the comparison is not so good far downstream

of the maximum wall shear stress. As in the case of

Sorensen et al., this may be due to the time-dependency of

the adhesion process and experiment.

Experiments by Vaishnav et al. (1983) on determining

the erosion stress of endothelium under a stagnation point

flow show a striking resemblance to the platelet-adhesion

experiments of Affeld and may point the way to showing

the relationship between the local shear stress and platelet

adhesion. Platelet-adhesion reduction was also seen in the

neighbourhood of the stagnation point by Karino and

Goldsmith (1979).

For a stagnation point flow condition, the local shear

rate does vary as mentioned earlier and this variation is

taken into account by the similarity coefficient b(R ). This

would also be the case for any 2D flow where the

wall shear stress varies as a function of the stream-wise

co-ordinate. Hence, for stagnation flows such as that

exhibited by reattachment points downstream of stenotic

vessels, which can be characterised with a certain strength,

or any flow field where the wall shear stress varies, platelet

adhesion may not occur at all if the reduced Damkohler

number given by

M ¼
kbL

U1

Pe

b2ðRÞ

is decreased sufficiently. For the stagnation point flow

case M is a minimum at the stagnation point streamline

and the bulk reaction mechanism is virtually extinguished.

The presented model has been used, with only a

different shear stress substituted into the similarity

variable definition (implicitly defined by the least squares

fit), for comparison with the experiments of Turitto and

Baumgartner (1975). This comparison shows that the

model agrees very well with the experimental data. In fact,

it predicts that the data point left out by Turitto and

Baumgartner is a true representation of the adhesion

mechanism and not a “rogue” point as assumed by Turitto

and Baumgartner.

CONCLUSIONS

A mathematical model is presented for the convection,

diffusion and reaction of platelets and thrombin. The local
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shear rate is incorporated into the representation by the

definition of a similarity variable such that the model can

allow for any a priori known 2D or axi-symmetric “well-

behaved” wall shear stress. The results show that for large

values of the Damkohler number, which can occur for

high platelet activation reaction or low free-stream

velocity, there exist two layers. The inner layer consists

of activated platelets that diffuse toward the adhesion

surface and an outer layer consisting almost entirely of

non-activated platelets. The layers are separated by the

infinitesimally thin reaction zones where the platelets are

activated. In this high Damkohler number case, the flux of

platelets to the wall is dominated by the adhesion rate of

activated platelets.

The mathematical model provides a simple relationship

between this adhesion rate and the parameters of Peclet

and Reynolds number for a range of kinetic conditions,

reaction or diffusion controlled or intermediate.

As the Damkohler number decreases, the reaction zone

broadens and moves toward the surface. If wall shear

stress is assumed to be a function of free-stream velocity,

then the model shows that, in accordance with the

hypothesis set out by Caro et al. (1971), as the free-stream

(characteristic) velocity increases, the bulk reaction

decreases until no activation takes place and adhesion

essentially stops. For this case, the convection of cells

through the reaction site is so fast that activation, and

hence adhesion, has little time to take place. Local areas of

platelet adhesion may therefore occur for “advantageous”

values of the local wall shear stress as this directly affects

the reduced Damkohler number. Corresponding “in vivo

scenarios” would be in the immediate downstream portion

of stenosed vessels where slow recirculating flow exists as

well as reattachment stagnation points. Similar situations

arise in the sinus region of the aortic root when prosthetic

valves are in place, especially if insufficient washout

occurs.

In varying the free-stream velocity, the platelet adhesion

flux to the surface attains a maximum value. The free-

stream velocity value at which this occurs varies with the

platelet activation reaction rate.

Comparison with the parallel-plate perfusion model of

Sorensen et al. (1999a,b) shows that the present model

predicts a lower platelet flux close to the start of the

reactive surface. However, this is probably due to

the presented model being of a steady-state form.

Earlier work has shown that if time-dependency is taken

into account the convective and diffusive terms have a

stream-wise scaling factor that provides for a higher

platelet adhesion at low values of the stream-wise

co-ordinate.

The presented model representing both adhesion and

the presence of the activating species thrombin emanating

from either the adhered platelets or non-adhered activated

platelets does not provide the required variation in platelet

flux for a stagnation point flow compared to that seen in

experiments. It is probable that another factor, possibly a

shear-rate dependent adhesion reaction-rate, is in play in

contrast to the “critical shear rate” theory proposed by

Affeld et al. (1995).
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APPENDIX

TRANSFORMATION OF THE CONSERVATION

INTO THE O.D.E. BY SIMILARITY VARIABLE

For brevity we look at only the cylindrical case in detail.

The non-dimensionalised conservation equation for the

platelet mass fraction can be written as

u
›fpl

›R
þ v

›fpl

›z
¼

1

Pe

›2fpl

›z2
ðA1Þ

The velocity profile is assumed to be of a linear form since

the ratio of mass-transfer boundary-layer thickness to the

viscous boundary-layer thickness is small. A stream-

function c is thus defined as

~cðR; zÞ ¼
r

2

~v2
*

m
~z2 ðA2Þ

where v* is the “friction” velocity defined by

~v* ¼
~twðRÞ

r

� �1=2

ðA3Þ

~twðRÞ; a wall shear stress function whose values are

known a priori. It should be noted that for the axi-

symmetric case the stream-function given by Eq. (A2) is

not the normal Stokes stream-function. If ~twðRÞ is non-

dimensionalised by rU2
1 so that

v2
*
¼ twðRÞ

then the non-dimensional velocity components can then

be written as

u ¼ v2
*
z
rU1L

m
¼ v2

*
zRe;

v ¼ 2
r

2

~z2

m

dðv2
*
Þ

d ~R
¼ 2

z2

2

dð~v2
*
Þ

dR
Re

ðA4Þ

We define two new variables thus,

j ¼ R; z ¼ v*zRe ðA5Þ

and substituting the velocity expressions into the

convective part of the conservation equation we have

u
›fpl

›R
þ v

›fpl

›z
¼ v2

*
zRe

›fpl

›j
¼

Re2

Pe
v2

*

›2fpl

›z2

)
z

v*

›fpl

›j
¼

Re 2

Pe

›2fpl

›z2

ðA6Þ

By transforming again through the variables

s ¼ z
Pe

Re 2

� �1=3

x ¼

ðj
j0

v* dj

ðA7Þ

and

h ¼
s

ð9xÞ1=3
ðA8Þ

Upon substituting into Eq. (A6) we have, with a little

algebra,

d2fpl

dh2
þ 3h2 dfpl

dh
¼ 0

the similarity variable h can be written now in terms of the

initial variables thus,

h ¼ z
{twðRÞ}

1=2ðRePeÞ1=3

9
Ð R

0
{twðzÞ}

1=2dz
h i1=3

¼ zbðRÞ ðA9Þ

Using a stream-function given by

~cð~x; ~yÞ ¼
r

2

v2
*
ð~xÞ

m
~y2;

a similar method provides the similarity variable for the

Cartesian system.

T. DAVID et al.108


