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A model of growth of icosahedral capsids is proposed. It is similar to the stochastic model of fullerene
growth, but takes into account variations in the composition of pentamers and hexamers that are
responsible for the final capsid size. We show that the observed high yield of capsid production implies
a high level of self-organization of the elementary building blocks.
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1. Introduction

Since Caspar and Klug [1] introduced simple rules

predicting a sequence of viral capsids, several models of

growth dynamics of these structures have been proposed,

for example by Zlotnick [2]. It is amazing that these

structures, known to mathematicians since Coxeter’s [3]

classification, are also observed in the so-called fullerenes,

huge molecules composed exclusively of carbon atoms,

predicted by Smalley and Kroto, and discovered in the

eighties.

The common geometrical feature of many viral

capsids and fullerenes is their icosahedral symmetry,

with twelve pentagons found on the opposite sides of six

five-fold symmetry axes, and an appropriate number of

hexagons in between. The number of hexagons is given

by the following simple formula: N6 ¼ 10ðT 2 1Þ; T ¼

ðp2 þ q2 þ pqÞ; where p and q are two non-negative

integers. Although certain virus species grow medium-

size capsids corresponding to N6 ¼ 20 (as in the C60

fullerene molecule), or N6 ¼ 30 and N6 ¼ 60; some of

them form pure dodecahedral capsids (with exclusively

pentamers as building blocks), e.g. certain Comoviridae

or Cowpea virus [4], while some others, e.g. human

Adenovirus [5], form very large capsids with N6 ¼ 240;
corresponding to p ¼ 5; q ¼ 0:

In some cases, the similarity with the fullerene structure is

striking: For example, the TRSV capsid is composed of 60

copies of a single capsid protein (56,000 Da, 513 amino acid

residues) [6], which can be put in a one-to-one correspon-

dence with 60 carbon atoms forming a fullerene molecule.

The process of fullerene formation differs essentially

from the building of icosahedral viral capsids: Fullerenes

are formed in a hot plasma around an electric arc between

two graphite electrodes, from carbon atoms and small

carbon agglomerates (C2, C3, up to C9 or C10), whereas

capsids are built progressively in liquid medium, from

giant protein aggregates displaying pentagonal or hexa-

gonal symmetry, or from smaller units called dimers or

trimers. It also seems that there is no such thing as

universal assembly kinetics: The way the capsids are

assembled differs from one virus to another. The T ¼ 7

phage HK97 appears to build pentamers and hexamers

first, then assemble these capsomers to form the final

capsid structure, whereas another T ¼ 7 phage (P22)

appears to assemble its capsids directly from individual

coat proteins (see [7,8]).

The common point is the presence of pentagons and

hexagons in the resulting structure, and the strict topological

rules that result from Euler’s theorem on convex polyhedra:

V 2 E þ F ¼ 2; with V number of vertices, E number of

edges and F number of faces. From this one derives the fact

that when only pentagonal and hexagonal faces are allowed,

the number of pentagons is always N5 ¼ 12; while the

hexagon number is N6 ¼ 10ðT 2 1Þ:
In this article we shall apply the idea of statistical self-

similarity [9] to icosahedral virus capsid growth. It states

that statistical properties of randomly chosen parts of the

construction must reflect the overall statistics obtained at

final stages of agglomeration. Unlike the case of fullerene

molecules, whose yield from the hot plasma is in the best

case no higher than 10% of the total mass of carbon soot,

viruses use almost 100% of pentamers and hexamers at

their disposal to form perfect icosahedral capsid structures,

into which the viral genetic material is densely packaged

afterwards.
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This means that the initial nucleation ratio of pentamers

versus hexamers is very close to its final value in the

capsids in order to minimize the waste. The final size of

the capsid depends on particular assembly rules, many

of which can be deduced from the statistical weights of

various agglomeration steps, found by maximizing the

final production rate.

2. Model of agglomeration and growth

A fullerene cage, composed of 60 carbon atoms,

corresponds to a T ¼ 3 geometry, i.e. to ðp; qÞ ¼ ð1; 1Þ:
The agglomeration and growth at high temperatures

depend only on energetic and combinatorial factors.

A high yield of perfect C60 molecules can be obtained only

if during the agglomeration process the ratio of pentagons

in the k-th intermediates,PðkÞ
5 ; is very close to the value

observed in the final structure, which is P5 ¼ 12=32 ¼

3=8 ¼ 0:385:
The simplest stochastic model of growth successfully

applied to fullerene formation [10,11], is based on the

assumption that the dominant agglomeration processes

consist of forming new polygons in the cavities between two

polygons on the border of the existing cluster, by adjoining a

C2 or a C3 molecule to a cavity found in a cluster already

formed. One of such processes is shown in figure 1 below.

It is clear that the resulting (655) cluster is wasted for

further fullerene formation, whereas a (656) cluster can be

used in the next agglomeration step. Because the (666)

clusters are also absent in the final fullerene cage, it is easy

to see that at each consecutive agglomeration step the yield

of “proper” clusters, useful for further fullerene construc-

tion, is exactly 1/2. After about 23 to 24 steps leading from

the initial three-polygon structure to an almost finished

fullerene cage with 27 to 28 (out of a total of 32) polygons

already in place, the total yield would approach 2224 .
1028 instead of the observed 1021, i.e. 10%. This means

that there is a mechanism that favours the creation of

“correct” structures versus the “incorrect” ones, so that the

average yield of “proper” clusters becomes close to q ¼

0:957; ensuring q 24 to be of order 1021.

In the case of fullerenes, the correction is due to the

Boltzmann factors that reflect the energy differences

between the following basic processes: Creation of a new

pentagon in a (6,6) cavity, or the creation of a new

hexagon in a (5,6) or in a (6,6) cavity, under the

assumption that the energy barrier against creation of two

or three pentagons sticking together is so large that the

corresponding Boltzmann factor is close to 0. These

factors could be evaluated by requiring that the successive

probabilities of finding pentagons among all polygons in

clusters of a given size (after the n-th agglomeration step)

and the corresponding yields form a geometric pro-

gression [10,11].

3. Combinatorics of icosahedral capsid growth

We investigate here a model in which purely statistical

factors play the decisive role in ensuring that the “correct”

configurations are produced at each consecutive step

almost without exception, i.e. practically with a 100%

yield. Let us show now how these statistical factors can be

evaluated, and what constraints they imply on the

structures of the capsomers.

From symmetry considerations (and confirmed by

chemical analysis) it follows that the pentamers are

composed from five identical building blocks, so that their

five edges are perfectly equivalent.

Let us denote the concentration (or the nucleation rate)

of pentamers by c, that of hexamers by ð1 2 cÞ: Then the

probabilities of doublets are readily calculated as follows:

P56 ¼ 2�W56cð12 cÞ=Q; P66 ¼ W66ð12 cÞ2=Q; ð1Þ

whereWjk, j; k ¼ 5; 6 are the statistical weights depending
on the virus type and chemical barriers between various

sides, and Q ¼ 2�W56cð12 cÞ þW66ð12 cÞ2 is the

normalizing factor. Note that we exclude two pentamers

coming together, i.e.W55 ¼ 0: Similarly, the probabilities

of admissible “triplets” in the next agglomeration step

displayed in figure 2 are given by:

P566 ¼ P56 þ P66W66;5c=Q2;

P666 ¼ P66W66;6ð12 cÞ=Q2;
ð2Þ

whereW66,5 andW66,6 denote the statistical weights of the

corresponding agglomeration processes, and Q2 ¼

W66;5cþW66;6ð12 cÞ:
Now, we can evaluate the average pentamer ratio c (k) in

clusters of a given size after the kth agglomeration step.

The first three values are given by:

c ð1Þ ¼
1

2
P56; c ð2Þ ¼

1

3
P566;

c ð3Þ ¼
1

4
ð2P5665 þ P5666 þ P6665Þ; etc:

(In the expression for c (3) we use the probabilities for

three different allowed clusters, which are not presented

here due to lack of space).Figure 1. Adding a pentagon to a ((5,6)) doublet.
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We can use these formulae in two different ways. Either we

impose the statistical weights, and determine the consecutive

pentamer concentrations in growing clusters, starting from a

given initial concentration c, or we treat the statistical weights

as unknowns and determine them from self-similarity

equations for successive pentamer concentrations:

c ðnþ2Þ 2 c ðnþ1Þ

c ðnþ1Þ 2 c ðnÞ
¼

c ðnþ1Þ 2 c ðnÞ

c ðnÞ 2 c ðn21Þ
; n ¼ 2; 3; 4; . . . ð3Þ

where thegeneral expression for pentamer concentration inall

clusters resulting from the nth agglomeration step is given by

the recurrent formula:

cn ¼
1

n

X

k

kPðk£5Þððn2kÞ£6Þ; ð4Þ

the summation going up to themaximal admissible number of

pentamers in clusterswith n capsomers; thismaximal number

depends on n and we can get it only by direct inspection of all

configurations with edge-sharing pentamers excluded. The

resulting solutions for the limit valuesof cand for the auxiliary

variables j ¼ ðW56Þ=ðW66Þ; h ¼ ðW56;6Þ=ðW66;5Þ; z ¼

ðW66;6Þ=ðW66;5Þ; etc. although usually not in the form of

simple fractions, give very good hints concerning the

assembly rules leading to particular capsid structures.

For example, if the sides of all hexamers were

equivalent and could stick with equal probability to the

sides of the pentamers as well as between themselves, the

rate of production of proper ðT ¼ 3Þ capsids would be

close to 2223, which is not the case. Therefore, hexamers

and pentamers must display sticking rules discriminating

against the undesired configurations.

Now, as the capsid production rate from initial protein

material is close to 100%, for fullerene-like ðT ¼ 3Þ

capsids we should have an initial ratio of pentamers versus

all capsomers of 3:8. Based on symmetry considerations,

we suggest the three possible scenarios for hexamers

shown in figure 3.

Let us denote the edges of the pentamers by the symbol

k, and the two different edges of the hexamers as a and b

(first case in figure 3). Supposing that a hexamer can stick

to a pentamer only with a combination of k and a edges,

whereas two hexamers can stick to each other only with a

combination of two b edges, with a combination of both k

and b edges, and a and b edges, being forbidden by

chemical potential barriers, we get the following statistical

factors: W56 ¼ 15; W66 ¼ 9 W56;6 ¼ 3; W66;5 ¼ 5 and

W66;6 ¼ 0: With these rules the statistics in clusters

naturally converges to the final value of c ¼ 3=8:
Similarly, with the second scheme (abgabg) and with

the assembling rules allowing only the sticking of k and a

edges and bond b and g edges, respectively, we get with

probability 1 the T ¼ 4 capsid ðc ¼ 2=7Þ; while for the

third possibility, ðabgd1zÞ; displayed in figure 3, and the

sticking rules allowing combinations of k and a edges, b

and z edges, d and e edges, and two g edges, we obtain the

T ¼ 7 capsid ðc ¼ 1=6Þ:
For bigger capsids, in which the ratio of pentamers is

lower, one cannot obtain proper probabilities unless more

than one type of hexamers is present, out of which only one is

allowed to agglomerate with pentamers. In the case of two

different types of hexamer, one obtains either the T ¼ 9

capsid, or, with more exclusive sticking rules, the T ¼ 12

capsid. Finally, in order to get the T ¼ 25 adenovirus capsid,

one must introduce no less than four hexamer types, out of

which only two can agglomerate with pentamers.
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Figure 2. Second agglomeration step.

Figure 3. Three distinct hexamer structures.
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