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Although interest in the biomechanics of the brain goes back over centuries, mathematical models of
hydrocephalus and other brain abnormalities are still in their infancy and a much more recent
phenomenon. This is rather surprising, since hydrocephalus is still an endemic condition in the pediatric
population with an incidence of approximately 1–3 per 1000 births. Treatment has dramatically
improved over the last three decades, thanks to the introduction of cerebrospinal fluid (CSF) shunts.
Their use, however, is not without problems and the shunt failure at two years remains unacceptably
high at 50%. The most common factor causing shunt failure is obstruction, especially of the proximal
catheters. There is currently no agreement among neurosurgeons as to the optimal catheter tip position;
however, common sense suggests that the lowest risk location is the place that remains larger after
ventricular decompression drainage. Thus, success in this direction will depend on the development of a
quantitative theory capable of predicting the ultimate shape of the ventricular wall. In this paper, we
report on some recent progress towards the solution to this problem.
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1. Introduction

Hydrocephalus is a clinical condition, which occurs when

normal cerebrospinal fluid (CSF) circulation is impeded

within the cranial cavity. Normally, there is a delicate

balance between the rate of formation and of absorption of

the CSF, the entire volume being absorbed and replaced

once every 12–24 h [1].

On the basis of extensive data concerning the

migration of dyes, radioisotopes and other tracers

injected into the CSF, it is now established that the

CSF which is formed by active secretion by the choroid

plexus, circulates along the craniospinal pathways to be

absorbed predominantly via arachnoid granulations into

the superior sagittal sinus [2–4]. The rate of absorption

is proportional to the pressure gradient between pressure

in the subarachnoid CSF space and venous pressure in

the sagittal sinus. This pressure may be enhanced by the

arterial pulsations of the brain with a small movement

towards the superior sagittal sinus with each heartbeat.

Hence, the CSF flow is neither slow nor steady [5]. An

increase in CSF-production, an obstruction of CSF-

circulation, or an obstruction of the venous outflow

system may cause hydrocephalus [6]. As a result, in a

hydrocephalic brain, the amount of CSF increases while

the amount of white matter is compressed, producing a

symmetrical dilatation of the ventricular system as can

be seen in figure 1a [7].

The incidence of hydrocephalus, regardless of type and

irrespective of race, sex or geographic differences, is

approximately 1–3 per 1000 births. Untreated hydro-

cephalus has a poor natural history, with a death rate of 20

to 25% and severe physical and mental disabilities in

survivors [8]. The efforts in treatments have been

principally through CSF fluid diversion. More recently,

different types of extra-cranial shunting and other

innovative mechanical techniques have been extensively

used. The shunt mechanics is based mainly on the

difference in pressure between the inlet (ventricular)

pressure and outlet (peritoneal) pressure; the shunt will

start to drain the excess CSF when the ventricular pressure

acting on it exceeds some threshold [9]. Within limits

(thanks to the elastic properties of the brain parenchyma),

the dilatation of the ventricles can be reversed by shunting

procedures as can be seen in figure 1b showing the same

hydrocephalic brain as in figure 1a 3 months after

shunting. Unfortunately, even though CSF shunting

appears to be an effective treatment, the rate of shunt
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failure is still unacceptably high with less than 50% of the

shunts still functioning after 10 years [6].

The three main problems of shunting are (1) shunt

obstruction, (2) infection and (3) over/under drainage of

CSF [10]. The most common factor causing shunt failures

is obstruction, especially of the proximal catheters

[11,12]. There is currently no agreement among

neurosurgeons as to the optimal catheter tip position;

however, common sense suggests that the lowest risk

location is the place that remains larger after ventricular

decompression drainage [9,10,13,14]. Thus, success in

this direction will depend on the development of a

quantitative theory capable of predicting the ultimate

shape of the ventricular wall.

In this paper, we report on some recent progress towards

the solution of such a problem. To simplify the

mathematics, we consider the two dimensional case

depicted in figure 1a, which reproduces a typical

horizontal CT scan of a 3 year old hydrocephalic child.

The intersection of the ventricular wall with the horizontal

plane is the ventricular CSF-tissue boundary, which is a

non-convex simple closed curve. By using image

processing techniques based on chain encoding and

elliptical Fourier descriptors, we construct a parametric

representation of this curve in section 2. In the next three

sections we present three different methods—namely the

Lagrangian (section 3), perturbation (section 4) and level

set (section 5) methods—which may be used to describe

the time evolution of the ventricular wall position when

the wall speed is given. In section 6, we apply these

methods to hydrocephalus (more precisely, to the curve

representing the ventricular CSF-tissue boundary) and

conclude that the level set method is the most reliable

method. Finally, we discuss the results and the prospects

for future improvements in the last section.

As we have mentioned before, all the methods used in

our numerical simulation of hydrocephalus require that we

know beforehand the velocity of each point of the

ventricular wall as it moves inwardly under the decreasing

pressure gradient produced by the shunting process.

Finding the ventricular decompression speed is not an easy

task and is still an open problem because it may depend on

factors like the initial ventricular size, reconfiguration of

the cerebral mantle with ventricular decompression by the

shunt, cranium growth in young children, the intrinsic

stiffness of the catheter [12]. Taking into account, the lack

of information concerning this ventricular decompression

speed we will consider for simplicity the two easiest

possible cases: (1) when the wall speed is constant and (2)

when the speed is linearly dependent on the curvature at

each point of the ventricular wall. Case (2) was inspired by

the fact that, intuitively, the evolution of any point on the

ventricular wall will be affected by the evolution of its

neighbours, and hence by the local bending (curvature) of

the ventricular wall. Thus, a speed which is linearly

dependent on the curvature of the ventricular wall is an

easier case worthwhile investigating.

2. Chain encoding and elliptical Fourier descriptors

One of the modern processes which allows us to achieve an

accurate outline of a given image is called digitization [15].

Digitization may be viewed schematically as a method for

placing a grid of sufficiently fine mesh over the outline of

an image and then defining an m £ n incidence matrix M,

Figure 1. (a) Horizontal section of a hydrocephalic brain before shunt implantation. (b) Horizontal section of a hydrocephalic brain 3 months after
shunt implantation.
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of 0’s and 1’s, to represent the image, where a 1 in the (i, j)

position ofM denotes the fact that the outline intersects the

(i, j) grid cell of the mesh. For example, for the contour

given in figure 2a one possible digitized image associated

to it is the matrix shown in figure 2c.

The digitized data may then be given a representation

through a so-called chain code which identifies the

direction one goes from the current cell with a 1 to an

adjacent cell with a 1, and so on. Any continuous closed

contour can be approximated by a chain code which is a

sequence of piecewise linear fits that consist of eight

standardized line segments [16]. The code of a contour is

then the chain V of length K, V ¼ a1a2. . .aK ; where each

link ai is an integer between 0 and 7 and corresponds to a

directed line segment of length 1 or
ffiffiffi
2

p
in the xy-plane, the

directions of the segments being multiples of 458. Figure 3

gives the numeration scheme for the chain code.

The properties of a chain code are easy to derive. If

V ¼ a1a2. . .aK is a chain code then its total arc length S is

given by

S ¼
XK
i¼1

1þ

ffiffiffi
2

p
2 1

2
ð12 ð21ÞaiÞ

� �
:

Let sð0 # s # SÞ be the arc length of the unique piecewise

linear line-type image v associated with the chain code V.

Thenv ¼ vðsÞ ¼ ðxðsÞ; yðsÞÞ;where x(s) and y(s) specify the
x and y coordinates, respectively, ofv; x(s) and y(s) are called

the x and y projections, respectively. The timeDsi required to

traverse a particular link ai in the assumption that the chain

code is followed at constant speed, is equal to 1 if ai is an

even number or is equal to
ffiffiffi
2

p
if ai is odd. The time required

to traverse the first p links in the chain is

sp ¼
Xp
i¼1

Dsi:

The changes in the x and y projections of the image

induced by the chain as the link ai is traversed are Dxi ¼

sgn ð62 aiÞsgn ð22 aiÞ;Dyi ¼ sgn ð42 aiÞsgn ðaiÞ;where

sgn ðzÞ ¼

1 if z . 0

0 if z ¼ 0

21 if z , 0

8>><
>>:

For example, if the direction chosen to pass from one

cell with a 1 to an adjacent cell with a 1 is clockwise, then

the chain code corresponding to figure 2a is

V ¼ 0005676644422123 and it is shown in figure 4.

The Fourier series representation of a chain-encoded

contour has the following parametric form:

xðsÞ ¼ A0 þ
XN
n¼1

Ancos
2nps

S
þ Bnsin

2nps

S

� �
; ð2:1Þ

yðsÞ ¼ C0 þ
XN
n¼1

Cncos
2nps

S
þ Dnsin

2nps

S

� �
; ð2:2Þ

where n equals the harmonic number, N equals the

maximum harmonic number and the coefficients A0, An,

Figure 2. Example of an image (a), one of its associated grids (b) and
one of its digitization matrices (the 1’s correspond to the black circles of
the grid while the 0’s correspond to the white circles) (c). Figure 4. Chain code of the image.

Figure 3. Chain-code line segments.

Ventricular cavities in hydrocephalus 153



Bn, C0, Cn, Dn are given by:

An ¼
S

2n2p2

XK
p¼1

Dxp

Dsp
cos

2npsp

S
2 cos

2npsp21

S

� �
;

Bn ¼
S

2n2p2

XK
p¼1

Dxp

Dsp
sin

2npsp

S
2 sin

2npsp21

S

� �
;

Cn ¼
S

2n2p2

XK
p¼1

Dyp

Dsp
cos

2npsp

S
2 cos

2npsp21

S

� �
;

Dn ¼
S

2n2p2

XK
p¼1

Dyp

Dsp
sin

2npsp

S
2 sin

2npsp21

S

� �
;

A0 ¼
1

S

XK
p¼1

Dxp

2Dsp
s2p 2 s2p21

� �
þ jpðsp 2 sp21Þ

� �
;

C0 ¼
1

S

XK
p¼1

Dyp

2Dsp
s2p 2 s2p21

� �
þ dpðsp 2 sp21Þ;

� �

with

j1 ¼ d1 ¼ 0;

jp ¼
Xp21

j¼1

Dxj 2
Dxp

Dsp

Xp21

j¼1

Dsj;

dp ¼
Xp21

j¼1

Dyj 2
Dyp

Dsp

Xp21

j¼1

Dsj:

The convergence of the Fourier series (2.1) and (2.2) is,

in general, fast and can be achieved with fewer harmonics

than N [16,17]. For example, for the chain code V ¼

0005676644422123 the Fourier series (2.1) and (2.2)

converge to the given image in only four harmonics (see

figure 5).

The chain codes are dependent upon size, orientation,

initial point and the grid mesh used in the digitization of

the given image. The components

xnðsÞ ¼ An cos
2nps

S
þ Bn sin

2nps

S
;

and

ynðsÞ ¼ Cn cos
2nps

S
þ Dn sin

2nps

S

describe elliptical contours. For this reason the Fourier

representations (2.1) and (2.2) are called elliptical Fourier

series. The ellipse defined by the first pair of components

x1(s) and y1(s) can be used to make the representation free

of size and orientation and we implemented this in our

numerical algorithm. The representation becomes in-

dependent of translation or initial point for tracing around

an outline by ignoring the terms A0 and C0.

3. Lagrangian method

We consider a simple, smooth, closed initial curve (or

front) v(0) in R2 whose parametric representation is given

by the elliptical Fourier series. Let v(t) be the one-

parameter family of curves, where t [ ½0;1Þ is time,

generated by moving the initial curve along its normal

vector field with speed F, a given function of curvature

[18]. We denote by ~xðs; tÞ the position vector which

parameterizes v(t) by s, 0 # s # S; ~xð0; tÞ ¼ ~xðS; tÞ:
Following [18], we parameterize the curve so that s

increases in the counter-clockwise direction. If k(s, t) is

the curvature at ~xðs; tÞ; classical kinematics gives

~nðs; tÞ·
›~xðs; tÞ

›t
¼ Fðkðs; tÞÞ;

~xðs; 0Þ ¼ vð0Þ prescribed;

s [ ½0; S�; t [ ½0;1Þ

ð3:1Þ

where ~nðs; tÞ is the external unit normal vector at ~xðs; tÞ:
Written in terms of the coordinates ~xðs; tÞ ¼
ðxðs; tÞ; yðs; tÞÞ; an equivalent formulation is

xt ¼ F
yssxs 2 xssys

ðx2s þ y2s Þ
3=2

 !
ysffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2s þ y2s
� �q

yt ¼ F
yssxs 2 xssys

ðx2s þ y2s Þ
3=2

 !
2xsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2s þ y2s
� �q

ðx ðs; 0Þ; yðs; 0ÞÞ ¼ v ð0Þ; 0 # s # S

ð3:2Þ

where kðs; tÞ ¼ ðyssxs 2 xssysÞ=ðx
2
s þ y2s Þ

3=2 and where we

denoted by f s ¼ ›f=›s; f t ¼ ›f=›t:
This is a Lagrangian representation because the range

of (x(s, t), y(s, t)) describes the moving front.

In the case when the front moves at a constant

speed F ¼ 21 (in arbitrary units) the solution of theFigure 5. First four harmonic approximations of the chain code V.
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system (3.2) is

xðs; tÞ¼2
ysðs; t¼ 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2s ðs; t¼ 0Þþy2s ðs; t¼ 0ÞÞ
p tþxðs; t¼ 0Þ

yðs; tÞ¼
xsðs; t¼ 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2s ðs; t¼ 0Þþy2s ðs; t¼ 0ÞÞ
p tþyðs; t¼ 0Þ

ð3:3Þ

A front propagating at constant speed can form corners

as it evolves. At such points, the front is no longer

differentiable and a weak solution must be constructed to

continue the solution.

When the front speed is curvature-dependent then only

a numerical solution can be found for system (3.2).

A standard approach to modelling moving fronts comes

from discretizing the Lagrangian form of the equations of

motion given in equation (3.2). In this approach [18], the

parameterization is discretized into a set of marker

particles whose positions at any time are used to

reconstruct the front.

In the present work, the discretization has to be in

agreement with the chain code associated with the given

front. The parameterization interval [0, S ] is divided into

K intervals of sizes Dsi, i ¼ 1; �K; where Dsi were defined

in the previous section. We obtain in this way K þ 1 mesh

points sp ¼
Pp

i¼1Dsi; p ¼ 1; �K and sKþ1 ¼ s1 (in order to

close the curve, the first and the last mesh points must be

the same). We divide the time interval into equal intervals

of equal length Dt. The image of each mesh point si at each

time step n Dt is a marker point ðxni ; y
n
i Þ on the moving

front. The goal is to obtain a numerical algorithm that will

produce new values ðxnþ1
i ; ynþ1

i Þ from the previous

positions.

In order to approximate parameter derivatives at each

marker point we use central difference schemes based on

Taylor series and get

dxni
ds

<
xniþ12 xni21

siþ12 si21

;
dyni
ds

<
yniþ12 yni21

siþ12 si21

d2xni
ds2

< 2
ðsi2 si21Þx

n
iþ12 ðsiþ12 si21Þx

n
i þðsiþ12 siÞx

n
i21

ðsi2 si21Þðsiþ12 si21Þðsiþ12 siÞ

d2yni
ds2

< 2
ðsi2 si21Þy

n
iþ12 ðsiþ12 si21Þy

n
i þðsiþ12 siÞy

n
i21

ðsi2 si21Þðsiþ12 si21Þðsiþ12 siÞ

Time derivatives may be replaced by the forward

difference approximations

dxni
dt

<
xnþ1
i 2 xni

Dt
;

dyni
dt

<
ynþ1
i 2 yni

Dt

Substitution of these approximations into the equation

(3.2) produces the scheme:

xnþ1
i ;ynþ1

i

� �
¼ xni ;y

n
i

� �
þDtF kni

� �
�

ðyniþ12yni21Þ2 ðxniþ12xni21Þ

ðxniþ12xni21Þ
2þðyniþ12yni21Þ

2
� �1=2 ð3:4Þ

where

kni ¼
ðsiþ12si21Þ

2

ðsiþ12siÞðsi2si21Þ

£
1

xniþ12xni21

� �2
þ yniþ12yni21

� �2
� �3=2

£ yniþ122yni þyni21

� �
xniþ12xni21

� �
2 xniþ122xni þxni21

� ��
£ yniþ12yni21

� �	
is the curvature at point xni ;y

n
i

� �
:

Using the fact that the curve is closed, the above

numerical scheme (3.4) updates all the positions of the

particles from one time step to the next.

4. Perturbation method

We consider again equation (3.2) with a speed function

linearly dependent on the curvature of the given front:

F ¼ 212 ek:
As we will see later in the application section, the

Lagrangian method for this kind of speed function is

unstable even for sufficiently small e.

In this section we try to improve the Lagrangian

method for e ! 1 by using a perturbation method

technique.

Thus we look for a solution to equation (3.2) of the

form [19]:

xðs; tÞ ¼ x0ðs; tÞ þ ex1ðs; tÞ þ Oðe 2Þ;

yðs; tÞ ¼ y0ðs; tÞ þ ey1ðs; tÞ þ Oðe 2Þ

ð4:1Þ

If we substitute equation (4.1) into the expression of the

curvature kðs; tÞ ¼ ðyssxs 2 xssysÞ=ðx
2
s þ y2s Þ

3=2 and we

assume that

2e
x0s x1s þ y0s y1s

x2
0s
þ y2

0s

, 1

then we get the following expression for k:

k < a0ðs; tÞ þ ea1ðs; tÞ ð4:2Þ
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where

a0ðs; tÞ ¼
y0ss x0s 2 x0ss y0s

x20s þ y20s

� �3=2

a1ðs; tÞ ¼ 2
1

x2
0s
þ y2

0s

h i3=2

£

"
y1ss x0s þ y0ss x1s 2 x1ss y0s 2 y1s x0ss

23ðy0ss x0s 2 x0ss y0s Þ
x0s x1s þ y0s y1s

x20s þ y20s

#

Also, if we use again equation (4.1) and power series

properties, we get:

1

ðx2
s þ y2

s Þ
1=2

¼ b0ðs; tÞ þ eb1ðs; tÞ ð4:3Þ

where

b0ðs; tÞ ¼
1

ðx2
0s
þ y2

0s
Þ1=2

b1ðs; tÞ ¼ 2
1

ðx2
0s
þ y2

0s
Þ1=2

x0s x1s þ y0s y1s
x2

0s
þ y2

0s

If we now substitute equations (4.1)–(4.3) into equation

(3.2) we obtain:

x0t þ ex1t ¼ 2b0y0s 2 e½b0ðy1s þ a0y0sÞ þ b1y0s�

y0t þ ey1t ¼ b0x0s þ e½b0ðx1s þ a0x0sÞ þ b1x0s�
ð4:4Þ

Thus, from equation (4.4), e0-equations are:

x0t ¼ 2b0y0s ¼
2y0s

x20s þ y20s

� �1=2
y0t ¼ b0x0s ¼

x0s

x20s þ y20s

� �1=2
ð4:5Þ

which are exactly equation (3.2) for F ¼ 21 whose

analytical solutions are given by equation (3.3). The e1-

equations are:

x1t ¼ g0½x0s y1s 2 x1s y0s�2 a0b0y0s

y1t ¼ d0½x0s y1s 2 x1s y0s � þ a0b0x0s

ð4:6Þ

where we denoted by g0 ¼ 2x0s x20s þ y20s

� �23=2

;
d0 ¼ 2y0sðx

2
0s
þ y20s Þ

23=2:
The parabolic system (4.6) does not have analytical

solutions. To find numerical solutions for equation (4.6)

we will use an implicit Cranck-Nicholson scheme which

for parabolic systems is, in general, a stable numerical

scheme [20].

We discretize the time interval of interest and the

parameter interval [0,S ] in the same way as in the previous

section. Let xij ¼ xðti; sjÞ; yij ¼ yðti; sjÞ; and using a

forward difference approximation for the time derivatives

and an implicit Crank-Nicholson approximation for the

parameter derivatives we obtain the following algorithm

to get numerical solutions of system (4.6):

xiþ1
1j

¼xi1jþ
Dt

2
giþ1

0j
xiþ1

0sj

yiþ1
1jþ1

2yiþ1
1j

Dsjþ1

2yiþ1
0sj

xiþ1
1jþ1

2xiþ1
1j

Dsjþ1

" # "

2ða0b0y0sÞ
iþ1
j

!

þ gi0j xi0sj

yi1jþ1
2yi1j

Dsjþ1

2yi0sj

xi1jþ1
2xi1j

Dsjþ1

" #
2ða0b0y0s Þ

i
j

 !#
;

yiþ1
1j

¼yi1jþ
Dt

2
diþ1

0j
xiþ1

0sj

yiþ1
1jþ1

2yiþ1
1j

Dsjþ1

2yiþ1
0sj

xiþ1
1jþ1

2xiþ1
1j

Dsjþ1

" # "

þða0b0x0s Þ
iþ1
j

!

þ di0j xi0sj

yi1jþ1
2yi1j

Dsjþ1

2yi0sj

xi1jþ1
2xi1j

Dsjþ1

" #
þða0b0x0s Þ

i
j

 !#
ð4:7Þ

where xi0sj
; yi0sj

; ai
0j
; bi

0j
; gi0j ; d

i
0j
are the values of x0s ; y0s ;

a0; b0; g0; d0 for which we have analytical formulas at the

points of the constructed mesh.

Finally, the numerical solution of equation (3.2) for the

given speed F ¼ 212 ek with e ! 1 is given by

equations (3.3), (4.1), and (4.7).

5. Level set method

First, we will motivate the method presented in this section

by a simple example [18,21]. We suppose that a circle in

the xy-plane is an initial front G at t ¼ 0 (figure 6a). We

imagine that the circle is the level set f ¼ 0 of an initial

surface z ¼ fðx; y; t ¼ 0Þ in R3 (figure 6b). We can then

match the one-parameter family of moving curves G(t)

with a one-parameter family of moving surfaces in such a

way that the level set f ¼ 0 always yields the moving

front (figures 6c,d). All that remains is to find an equation

of motion for the evolving surface.

In general, let G be a curve in the plane propagating in a

direction normal to itself with speed F such that G(t) gives

the position of the front at time t [18]. We consider that the

initial position of the front is the zero level set of a higher-

dimensional function f. The evolution of this function f

and the propagation of the front can be connected through

a time dependent initial value problem. At any time the

front is given by the zero level set function f(x, y, t), i.e. at
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any time t the curve is described by the set

{ðx; yÞjfðx; y; tÞ ¼ 0}: In order to derive an equation of

motion for f and match the zero level set of f with the

evolving curve, we consider a particle moving on the

curve with a path given by (x(t), y(t)) at time t. But at time t

the front is given by fðx; y; tÞ ¼ 0: Since the particle is on
the front we must have fðxðtÞ; yðtÞ; tÞ ¼ 0:

Differentiating with respect to t yields

ft þ 7f · ðxt; ytÞ ¼ 0 ð5:1Þ

If we assume that the particle moves with velocity F~n;
where F is the curvature dependent speed and ~n ¼

ð7f=j7fjÞ is the outward unit normal then the velocity is

ðxt; ytÞ ¼ F
7f

j7fj
ð5:2Þ

From equations (5.1) and (5.2) we get an evolution

equation for f of the form

ft þ Fj7fj ¼ 0 ð5:3Þ

where fðx; y; t ¼ 0Þ ¼ ^d; d being the distance from the

point (x, y) to the curve at t ¼ 0: The plus sign is chosen if
the point is outside the curve, while the minus sign is

chosen if the point is inside the curve.

Equation (5.3) describes the time evolution of the level

set function f in such a way that the zero level set of this

evolving function is identified with the propagating

interface.

When F ¼ 212 ek; equation (5.3) becomes:

ft 2 j7fj ¼ ekj7fj ð5:4Þ

Equation (5.4) is a Hamilton-Jacobi equation with

viscosity and its numerical solution can be constructed

using well-known techniques borrowed from hyperbolic

conservation laws [18,19,21,22].

6. Application to hydrocephalus

Figure 1a shows an example of a pre-op ventricular wall

configuration in a horizontal CT scan of a three year old

hydrocephalic brain. As mentioned in the introduction,

our first task is to find the parametric expression of this

image, using the chain code and the elliptical Fourier

series.

We proceed as follows. Using Matlab’s image

processing toolbox, we display the brain image on the

computer screen and extract the ventricular wall which is

the closed curve of interest to our numerical simulation

(see figure 7). The digitization process, the chain code and

the parameterization of the curve are done easily by a

Matlab code.

Taking into account the lack of information regarding

the speed at which the ventricular wall moves we consider

for simplicity the easiest two possible cases:

(i) The speed is constant, F ¼ 21:
(ii) The speed at each point depends linearly on the

curvature at that point, F ¼ 212 ek with e . 0

a given parameter.

In the end, we compare the images obtained using the

Lagrangian method and the level set method in both cases

(i) and (ii). Also, in case (ii), for small enough e,

we compare results of the Lagrangian method, the

Figure 6. Motivational example of the level set method.

Figure 7. The ventricular CSF-tissue boundary.
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perturbation method and the level set method. In figures

8–10 we show the inward evolution of the original curve

at eight equally spaced time points.

(i) When F ¼ 21; we can easily see that, because the

Lagrangian method uses a local (parametric) represen-

tation of the front rather than a global one, it is not able to

take into account the proper weak solutions when

singularities appear. Indeed, if a front which forms a

sharp corner moves at constant speed, then we know that an

entropy condition must be invoked to produce a reasonable

weak solution beyond the formation of the singularity.

However, a marker particle approach does not know about

the necessary entropy condition, because it uses a local

representation of the front in which the swallowtail

solution formed by letting the front pass through itself is an

acceptable weak solution (see figure 8a).

But from a geometrical point of view it seems that the

front at time t should consist of only the set of all points

located at distance t from the initial curve [21]. Roughly

speaking, we want to remove the tail from the swallowtail.

One way to do this is by taking into account the weak

solution which satisfies the following entropy condition:

If the front is viewed as a burning flame, then once a

particle is burnt it stays burnt.

This is exactly what the level set method does in order

to keep the smoothness of the front at any moment of time

(see figure 8b).

(ii) When F ¼ 212 ek; the Lagrangian method

becomes unstable even for very small values of e because

of a feedback cycle [18]: (1) small errors in approximate

marker positions produce (2) local variations in the

computed derivatives leading to (3) variation in the

computed particle velocities causing (4) uneven advance-

ment of markers, which yields (5) larger errors in

approximate marker positions. Within a few time steps,

the small oscillations in the curvature have grown and the

computed solution becomes unbounded (see figure 9a).

For small values of e, the perturbation method gives

results comparable with those obtained using the level set

method. In this particular case, the perturbation method is

Figure 8. (a) Lagrangian method for F ¼ 21. (b) Level set method for F ¼ 21.

Figure 9. (a) Lagrangian method for F ¼ 21–0.01k. (b) Perturbation method for F ¼ 21–0.01k. (c) Level set method for F ¼ 21–0.01 k.
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better than the Lagrangian method because it is stable but

it is still not as good as the level set method due to its lack

of smoothness (figure 9).

This method still uses a local representation of the front

so when corners appear swallowtails develop in time,

exactly as before. The difference consists in the fact that

the scheme considered here is not unstable, or, at least, the

oscillations which might appear due to the accumulation

of small errors develop at later times than in the

Lagrangian method for the same e (see figures 9a and b).

As it is shown in [18], the formation of sharp corners

and the breaking of the curve are handled naturally by the

level set method. Also, this method is stable (see figure 10).

Comparing figures 8, 9 and 10 we can see that, while the

constant speed 21 acts as an advection term, contracting

the curves, the term ek is a diffusive term which smooths

out the high curvature regions and hence has a

regularizing effect on the evolving curves. Also, we

notice the similarities between the shape of the ventricular

wall from figure 1b and the curve from figure 11 which is

just one of the evolved curves of figure 8b.

Thus we can conclude first that the level set method has

better chances at successfully representing the evolution

of the ventricular wall after shunt implantation. And

secondly, based on our simulation using the level set

method (figures 8b, 9c and 10) we can say that a catheter

placed in the occipital horn (the lower side of the

ventricular wall) has better chances of survival than in the

frontal horn (the upper side of the ventricular wall), which

is in agreement with the experimental study of [12].

7. Discussion and conclusions

A well recognized risk factor for ventricular CSF shunts

failure in the treatment of hydrocephalus is obstruction

of the ventricular catheter and improper positioning of

the catheter tip may play a significant role. Unfortu-

nately, no scientifically sound method has been found

so far to help the neurosurgeon find the optimal

location; in fact, catheter location has been the source

of a long-standing controversy in the treatment of

hydrocephalus [9].

This paper reports some preliminary results on the

analytic approach to this problem, which appears to be

extremely promising. Using chain encoding, elliptical

Fourier descriptors, and level set methods we are able to

predict the ultimate shape of the ventricles in shunted

hydrocephalus. Obviously, information of this type would

greatly assist the neurosurgeon in choosing the optimal

position of the ventricular catheter tip.

We have characterized our current results as

preliminary for two main reasons. One of them is the

restriction to the two-dimensional geometry of a single

horizontal brain scan when, in reality, the problem is

three-dimensional and the motion of the ventricular wall

must be predicted. Another is the limitation implicit in

our current assumption that each point of the ventricular

wall moves at constant speed, when it is very likely that

there is an effect of the local curvature on the ventricular

motion. We are confident, however, that these problems

do not pose insurmountable difficulties. For example,

the extension to the three-dimensional case is straight-

forward and was carried out and recently reported by

[23]. Regarding the problem of finding the ventricular

decompression speed, one needs to construct a

mathematical model which describes as well as possible

the fluid/tissue interaction in the brain, i.e. the brain

dynamics. This is a much more demanding problem and

the reader interested in this topic is directed to [19] and

the references within.

Figure 11. One of the evolving curves from figure 8b.
Figure 10. Level set method for F ¼ 21–2k.
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