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Measurement of cardiac output is often investigated using a technique based on hot-film anemometry.
Here, we discuss a modification to hot-film anemometry, which involves a cylindrical heating element
mounted flush on the surface of a typical Swan-Ganz catheter. In contrast to traditional thermodilution,
the method discussed here has the potential to allow continuous monitoring of cardiac output.

This paper demonstrates that there is a simple approximate relationship between the power input to
the device to maintain a temperature of one degree above blood heat and cardiac output. Since, the heat
transfer and the fluid flow decouple, a numerical model of the heat transfer of a cylindrical catheter
(with heating element) sitting concentrically within a rigid cylindrical artery is developed. Numerical
results were obtained for a wide selection of flow profiles, including experimental data. The results
indicate that the cardiac output/power input relationship is extremely robust with respect to flow profile
and system parameter variation.
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1. Introduction

Cardiac output (CO), is simply the volume of blood

passing through the heart in a given time. Typically, it is

measured in litres per minute and can be thought of as the

product of stroke rate and volume for the chambers of the

heart. For an average patient, the CO should be around 4 or

5 l min21 but can drop to as low as 2 in critical situations.

It is an important diagnostic factor [1,2] during high risk

surgery, particularly transplantation, where it is used in

conjunction with blood pressure to assess the performance

of the heart. It is also used post-operatively in intensive

care.

Traditionally, clinicians have used thermodilution to

measure CO [1]. This involves inserting a catheter into the

subclavian or jugular vein at the neck and feeding it

through until it reaches the right atrium. The catheter is

then guided into the right ventricle and subsequently the

pulmonary artery by inflation of a balloon at the catheter

tip. Once the balloon has carried the catheter into position

an injection of cold saline (, few degrees centigrade) is

injected through the catheter and emerges from a port

which should reside in the right atrium. A thermistor is

located downstream prior to the tip in the pulmonary

artery and measures the new temperature of the mixture at

this point. The CO can then be calculated based on a

modification of the Stewart–Hamilton equations, which

involve various quantities of the blood and the saline e.g.

densities, pre/post injection temperatures, etc. The

Stewart–Hamilton equations were originally used to

predict CO from dye indicator methods [3] but suffer from

many assumptions [4].

There are many disadvantages of thermodilution. For

each CO measurement required, one has to carry out a

separate injection. To obtain an accurate value, it is often

the case that about three or four measurements have to be

taken consecutively and the average value is used.

Measurements are therefore time consuming and far from

ideal if constant monitoring is required. Available nursing

time is very often the limiting factor in the use of

thermodilution in post-operative case. Repeated injections

of saline also present an infection risk and the possibility of

fluid imbalance in patients thereby limiting the amount

of measurements that can be taken. Recent work by [5] has

Journal of Theoretical Medicine

ISSN 1027-3662 print/ISSN 1607-8578 online q 2005 Taylor & Francis

http://www.tandf.co.uk/journals

DOI: 10.1080/10273660500158712

*Corresponding author. Email: smck@maths.strath.ac.uk. Tel.: þ44-141-548-3671. Fax: þ44-141-552-8657

Journal of Theoretical Medicine, Vol. 6, No. 3, September 2005, 161–172



shown that a single injection of controlled duration can give

at least the same accuracy as the traditional averaging

method and so some of the problems above are alleviated.

However, the calculation of CO from thermodilution also

relies on a number of assumptions, one of which is that the

injectate enters as a single bolus and then mixes thoroughly

with the blood. To ensure the former depends greatly on the

skill of the person administering the injection and can vary

between different clinicians.

One of the biggest disadvantages of this method,

however, is in the discrete nature of the results obtained.

Furthermore, an assumption of the Stewart–Hamilton

equations is that the blood flow is steady and so changes in

CO cannot be accurately measured. A technique, which

could allow continuous monitoring of CO would be an

enormous improvement provided all other factors are

equal i.e. accuracy, cost, etc. There has been considerable

work attempting to adapt thermodilution so that the

technique might provide continuous readings. For

example, it is possible to use a heat exchanger where the

saline is part of a closed loop and does not mix with the

blood as described by [6]. This technique allows continual

repeated measurements but these are still roughly half a

minute apart. The initial results also showed that the

technique suffered from a bias of around 20.5 l min21

compared to conventional thermodilution measurements

i.e. across a range of cardiac outputs it underestimated CO,

on average, by 0.5 l min21.

Alternatively, some techniques heat the blood directly

with a heating element e.g. [7]. For one such method

including a review of previous work see [8]. These

methods can be limited by the resolution of the

downstream temperature measurements when compared

to the background thermal noise since the blood can only

be heated minimally before cell damage occurs. More

recently, this limitation has been overcome using

improved signal processing techniques and varying the

position and duration of the heat pulses; however, this

approach suffers from a delayed response to changes in

CO e.g. [9–11]. There has also been disagreement in the

literature over the comparison of this technique with

conventional thermodilution. [12] report a bias as low as

0.03 l min21 and [13] quote one as high as 20.8 l min21.

In contrast to thermodilution, methods utilizing hot-film

anemometry (HFA) ([14]), can provide continuous CO

measurements with little or no intervention required after

the initial catheter insertion. The principle of HFA is that

the power required to maintain the temperature of the

element at a fixed difference to the ambient blood is

related to the speed of the blood flowing past it. The

catheter itself is guided into position in an identical way to

the thermodilution case. Early studies ([15–17]) used a

double conical quartz probe where the film is located at the

extreme tip of the catheter and oriented transversely to the

flow in the traditional spirit of HFA. Since the cross-

sectional area of the artery is unknown, the probe is

calibrated in-situ via an initial thermodilution injection.

[18] reported good correlation between this approach and

traditional thermodilution measurements in a laboratory

set-up although they did note that recalibration was

required if the catheter changed position.

A factor that is particularly important in this approach is

the profile of the blood velocity within a blood vessel

whose average diameter is of the order of a few

centimetres. This is further complicated by the fact that

the artery radius changes throughout the heart cycle.

Details of measured flow profiles are discussed later in this

paper. However, in summary, the flow can be quite

complicated and can exhibit nonaxisymmetric behaviour

and reversing flow. This is compounded by the catheter

itself, which affects the flow by its presence within the

chambers of the heart through to the artery itself. The flow

behaviour is clearly patient dependent and so it is

important that the technique be insensitive to parameter

changes if it is to be of any real value.

In this work, we wish to study a hot-film anemometer

with a configuration which differs from the previously

discussed work in two ways. Firstly, the heating element is

located prior to the tip, typically 7 or 8 cm from it, and

therefore, resides in the pulmonary artery. Secondly, the

film itself takes the form of a cylindrical heating element

mounted flush with the length of the catheter, see figure 1.

The reason for studying this particular device was through

a data fitting request from an industrial partner looking for

the correct functional form for the relationship between

CO and the input power to the device. After early

discussions the question was reposed as, “Can we use the

underlying conservation equations to deduce a simple

relationship between CO and power input?” Once this

relationship was established, the next question was, “Is

this relationship robust with respect to the assumptions

made and the parameters of the system?” Primarily, how

important is neglecting the viscous boundary layer? Is the

relationship robust with respect to pulsatility? What is the

effect of varying the pulmonary artery size, the heart beat

and the amplitude of the heart beat. Does varying the

velocity profiles make a significant difference to the

CO/power relationship?

An outline of the rest of the paper is as follows. First we

review some known results and present a simple

mathematical model in two dimensional Cartesian coordi-

nates; this is then employed to study the effect of parameter

variation. Next we consider the flow profiles generated

by periodic pressure gradients in a cylindrical geometry.

Figure 1. The position and nature of the heating element on the catheter.
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A numerical model for this cylindrical geometry is then

developed in which various velocity profiles (some based on

experimental results) are used to convect heat away from the

device. The paper concludes with a discussion of these

results.

2. Elementary heat transfer models

2.1 Notation

We shall denote fluid velocity by the vector u with

Cartesian components ux, uy and uz and the temperature

field by T. The power input to the heating element (per unit

length in the x-direction) will be represented by Q. The

thermal diffusivity of the fluid will be denoted by k and is

related to the thermal conductivity k through k ¼ kcr

where c is the specific heat at constant pressure and r is the

fluid density. The kinematic viscosity of the fluid will be

denoted by n and is related to the dynamic viscosity m by

m ¼ rn. The Prandtl number Pr is defined to be the ratio of

kinematic viscosity to thermal diffusivity i.e.n/k.

2.2 Plane wall cartesian models

Heat transfer from a plane wall to a liquid has been studied

extensively in the early literature, for example, [19–21,

34]. In summary, these boundary layer analyses treated

incompressible Newtonian fluids in semi-infinite domains.

They gave rise to scaling laws, which suggested that the

power required to maintain a fixed wall temperature

against a fixed ambient fluid temperature varied as the

square root of the mainstream velocity.

An imposed flow analysis by [22] took into account a

finite length L of heating element but, like the analyses

above, assumed that the radius of the artery was infinite, or

at any rate considerably greater than L, and imposed the

shear flow

ux ¼ 0; uy ¼ 0; uz ¼ Sy

where S is the shear rate. Here z is the direction of the flow.

The fluid exists in the region y . 0, with the heating

element at y ¼ 0 having an assumed infinite extent in x.

The solution of this system leads to a power per unit

perpendicular length of

31=3

2Gð4=3Þ
kðT1 2 T0Þ

SL2

k

� �1=3

:

where T1 and T0 are the wall and ambient fluid

temperatures, respectively and where G(n) is the gamma

function. In a boundary layer model such as those

mentioned above the wall shear rate can be shown to vary

with the mainstream velocity as U
3=2
0 . This confirms that

the power required to maintain the element at a constant

temperature would vary with the square root of the

mainstream velocity.

Pedley then went on to discuss a time varying shear rate

of the form Sð1 þ j sin tÞ. The solution for the required

power output was in the form of a sum of terms, the first of

which represented the “quasi-steady” part i.e. a sinusoidal

variation about the steady value. The regime in which the

quasi-steady solution dominates the sum is in the low

frequency and short L limit. With j ¼ 0.5 and a 1 cm long

heating element some rough estimates show that the next

term in the sum can be ignored if the angular frequency is

not bigger than 1021 s21 i.e. 1 beat per minute (bpm).

Alternatively, for a typical heart rate of 80 bpm, the quasi-

steady approximation is only valid for a heating element

of length shorter than 1023 cm. The question is then still

open as to what effect a typical heart rate will have on the

mean power requirement as compared to a steady flow.

Even if the quasi-steady solution is not an appropriate

approximation to the time varying solution it may still be

the case that the period-averaged values are close to the

steady values.

2.3 Slug flow heat transfer

The data obtained from the device that was supplied for

the initial curve fitting exercise did indeed follow a square

root dependence but not quite as described above (see

figure 2). A better fit was obtained if a constant term was

added i.e.

Q ¼ C1U
1=2
0 þ C2 ð1Þ

where C1 and C2 are constants. A model, which yields

such a result can be obtained very easily. Continuing the

Figure 2. Original experimental data supplied by AORTECH.
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theme of a plane wall geometry it is possible to obtain an

analytical solution using the extremely simple velocity

profile of slug flow

ux ¼ 0; uy ¼ 0; uz ¼ U0

where U0 is just a constant. A top boundary is also added

at y ¼ b to represent an artery wall. This relaxes the no-

slip fluid boundary condition in favour of a stress-free

condition. At first sight this would appear to be

inappropriate since it assumes the thermal boundary

layer is larger than the viscous boundary layer which is

being ignored. Since Pr . 1 for blood, this assumption

would normally make the model inappropriate; however,

there are reasons not to dismiss it out of hand. Firstly, it fits

the actual data from the device better than the models

previously discussed. Secondly, the previous models

assumed that b @ L when, in fact, b , O(L) whereas, this

simple model crucially does not. Finally, it must be

recalled that in reality the artery walls are not rigid. It is

not clear how the viscous or indeed thermal boundary

layers develop when the walls are moving.

Using the length of the heating element, L, as a typical

length scale in the z direction and the radius of the artery,

b, as a typical length scale in the y direction, the

temperature equation may be written as

›Q

›z
¼ l

›2Q

›y2
; l ¼

kL

U0b2

where the non-dimensional temperature Q is defined

through T ¼ T0 þ (T1 2 T0)Q.

The boundary conditions imposed are

Q ¼ 0 at z ¼ 0;

Q ¼ 1 at y ¼ 0;

Q ¼ 0 at y ¼ 1:

Laplace transforms can be used to derive the solution

Qð y; zÞ ¼ 1 2 yþ
2

p

X1
n¼1

ð21Þn

n

£ sinðð1 2 yÞnpÞ expð2n2p2lzÞ:

The power (in dimensional terms) lost in the positive y

direction per unit length in the x direction through the

surface y ¼ 0 is then

Q ¼ kðT1 2 T0Þ

�
L

b
1 þ

2

p2l

X1
n¼1

1

n2
ð1 2 expð2n2p2lÞÞ

" #
: ð2Þ

It is clearly desirable to try to find a closed form

description of the summation in equation (2). Estimates

for k, L and b of 1027 m2 s21, 1022 m and 1022 m,

respectively give l , Oð1025U21
0 Þ: Typical values for

CO are 1–7 l min21 which translates to values of U0

around 3–25 cm21 s i.e. l , 4 £ 1025 2 3.3 £ 1024.

Thus, we see that these estimates give values of l ! 1

and clearly as l ! 0 it can be shown that the sum is

sandwiched between the same limit, namely (lp3)1/2 and

so one would expect that behaviour of the sum for small

but finite l would be approximately (lp 3)1/2.

Returning to equation (2), we see that the power Q may

be accurately approximated by

Q , kðT1 2 T0Þ
L

b
1 þ

2b

ðpkLÞ1=2
U

1=2
0

� �
:

Of course, one must remember that the power quoted

above is still per unit length in the x direction. In other

words, there exists constants C1 and C2 such that

Q , C1U
1=2
0 þ C2

agreeing with the experimental evidence.

3. Pulmonary artery flow profiles

The main purpose of this work is to investigate the

relationship between CO and the required heating power

in the relevant cylindrical geometry to see if the square

root behaviour persists and whether the pulsatility of the

blood flow affects the mean power value significantly.

In particular, our model will be a cylindrical annulus

since the catheter will be present within the artery. To

simplify matters, we will assume that the catheter sits

concentrically within the artery where both are assumed to

be perfectly cylindrical and rigid. We also assume that

there is no movement of the catheter within the artery,

which of course is unlikely to be true. [23] have shown that

the position of a catheter in the pulmonary artery tends to

be roughly the same at the start and finish of a heart cycle

and also at the point of peak cross-sectional area of the

artery. In between times, however, they found that there

was random motion with the catheter sometimes coming

very close to the artery walls. Since the motion appears to

be periodic, it is hoped that this effect would average itself

out over the course of each heart cycle. Furthermore, the

randomness of the motion is likely to be averaged out over

several heart cycles.

We shall ignore thermal buoyancy effects since the non-

dimensional parameter comparing the buoyancy force to

the inertial force is small. If we take our timescale to be

f 21 where f is the frequency of the heart cycle then this

parameter, in the most general 3D sense, can be stated as

gb ðT1 2 T0Þ=ð fU0Þ

where g is the gravitational acceleration and b is the

volumetric coefficient of thermal expansion of blood

(typically around 4 £ 1024 K21). With typical values of

T1 2 T0 , 1 K, f , 1.5 s21 and U0 , 0.1 ms21, the ratio

of buoyancy to inertial terms is of the order 3 £ 1022 so

that the momentum and heat equations can be treated as

uncoupled. We can therefore establish our flow profiles at
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the outset and insert them into the heat equation at the time

of computation.

This then raises the question of what the correct profiles

should be. For example, is fully developed pipe flow

appropriate or not? Various techniques such as MRI and

traditional HFA have been used to investigate the flow

profiles in the pulmonary artery. [24] studied the porcine

pulmonary artery and reported a flat profile at early

systolic acceleration and at late systolic deceleration with

a non-axisymmetric peaked profile in between, that is,

with a peak skewed towards the artery wall. This type of

behaviour was also noted by [25] in 12 human volunteers.

The latter also noted some localized backflow during

diastole. Despite the presence of non-axisymmetric peaks

in the profile, we have chosen for simplicity to assume an

axisymmetric profile. Although, an accurate velocity

profile would be desirable the purpose of this work is to

test the effect of the periodicity of the flow and not its

structure. However, we shall study both the flat slug flow

profile and the fully developed flow (with an axisymmetric

peak) as well as a combination of these to test sensitivity

of periodicity to the profile. The combination profile is

chosen to exhibit similar spatial and temporal behaviour to

the Sloth et al. and Sømod et al. profiles albeit with the

peak being axisymmetric rather than localized. In addition

to being axisymmetric, the numerical code is also limited

to non-reversing flows.

Although blood is a non-Newtonian fluid, it will be

modelled here as an incompressible Newtonian fluid for the

purposes of calculating the fully developed profiles.

According to [26] the transition from non-Newtonian

behaviour occurs as the shear rate increases above 20 s21

and becomes fully Newtonian past 100 s21. With

U0 ¼ 0.1–0.2 ms21 as typical peak velocities about

halfway from the catheter, a rough estimate of the shear

would be ,20–40 s21 placing us in the transition regime.

It should be noted though that the work of [27] suggests that

blood behaves as a Newtonian fluid when the Womersley

number (Wo) exceeds unity. We define theWo later but note

that the values we obtain are typically in the range 6–8. In

what follows we shall take the kinematic viscosity of blood

n to be 4 £ 1026 m2 s21 and the density r to be 1055 kg23.

3.1 Notation and non-dimensionalization

We shall denote a point in space in cylindrical polar

coordinate by (s, f, z). Let the z axis be the axis of the

cylindrical annulus which has inner radius s ¼ a and outer

radius s ¼ b. We shall non-dimensionalize the radial

coordinate s by the outer radius b so that the two radii are

now a/b and 1. In practice, we shall always take

a ¼ 0.0025 m and b ¼ 0.0125 m.

The z direction will be non-dimensionalized by L and

the velocity by U0. In the case of slug flow, U0 will be the

amplitude of the steady part of the profile whereas, in the

fully developed flow, U0 shall be the maximum velocity in

the steady part of the generalized Poiseuille profile

discussed next.

3.2 Poiseuille flow in a cylindrical annulus

Assume that the flow can be written as

u ðs;f; zÞ ¼ uðsÞ ez:

If we substitute this into the Navier–Stokes equations

along with a constant pressure gradient, DP, we are left to

solve the following problem,

1

s

d

ds
s

du

ds

� �
¼

b2DP

rnU0

¼ g;

say with

uða=bÞ ¼ 0; uð1Þ ¼ 0:

This yields

uðsÞ ¼ uPðsÞ ¼
g

4
s2 2 1 2

a2

b2
2 1

� �
ln s

ln ða=bÞ

� �
: ð3Þ

One might note that this solution is a special case of the

solution obtained by [28] which is for the general case of

parallel cylinders which are not concentric. It would be

interesting to extend the current work to use these types of

solution but we shall not discuss this any further here.

The maximum velocity is attained when

s ¼
ða2=b2Þ2 1

2 lnða=bÞ

� �

and so defining this as u ¼ 1 (i.e. U0 in dimensional terms)

determines g as

g21 ¼
1

4

ða2=b2Þ2 1

2 lnða=bÞ
1 2 ln

ða2=b2Þ2 1

2 lnða=bÞ

� �� �
2 1

� �
:

ð4Þ

In terms of dimensional CO (m3s21) we have

CO ¼ 2pb2U0

ðb
a

uðsÞs ds

which, upon substitution of equation (3), gives

CO ¼ 2pU0

g

16
ða2 2 b2Þ

a2

b2
þ 1 þ

ð1 2 ða2=b2Þ

ln ða=bÞ

� �
:

So, for a given CO, we can obtain the actual value of U0

by first converting from l min21 into m3s21 by multiplying

by (1/6) £ 1024 and eliminate g using equation (4).

3.3 Womersley flow in a cylindrical annulus

We now consider a periodic pressure gradient i.e.

›P

›z
¼ DPdW cosð2ptÞ

where we have non-dimensionalized time t with 1/f where

f is the frequency of oscillation corresponding to the heart
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rate. We have ignored the higher harmonics since the

Navier–Stokes equations are linear in u under our

assumptions and we are only interested in the first

harmonic for the velocity. The parameter dW simply

represents the relative amplitude to that of a Poiseuille

flow driven by DP. As before, we assume laminar flow so

that the Navier–Stokes equations reduce to

›u

›t
¼ G cos ð2pftÞ þ

1

Wo2

1

s

›

›s
s
›

›s

� �
u ð5Þ

where

G ¼ 2DPdW=ðrfU0Þ; Wo ¼ bð f =nÞ1=2

Wo is known as the Womersley number (see, e.g. [29],[30]).

As before the boundary conditions assume no slip. Since the

flow is assumed to be fully developed we shall seek an

equilibrated solution sharing the periodicity of the pressure

gradient, i.e.

uðs; tÞ ¼ uW ðs; tÞ

¼ U1ðsÞ cos ð2ptÞ þ U2ðsÞ sin ð2ptÞ: ð6Þ

Substituting this into equation (5) and equating similar

time dependencies gives two coupled second order ordinary

differential equations for U1 and U2 subject to the boundary

conditions

U1ða=bÞ ¼ U1ð1Þ ¼ 0; U2ða=bÞ ¼ U2ð1Þ ¼ 0:

After some complex algebra, one obtains a general

solution of the form

U1ðsÞ ¼ C1J0ðWoasÞ þ C2Y0ðWoasÞ

þC3I0ðWoasÞ þ C4K0ðWoasÞ

U2ðsÞ ¼ G=2p2 iC1J0ðWoasÞ2 iC2Y0ðWoasÞ

þ iC3I0ðWoasÞ þ iC4K0ðWoasÞ

where a ¼ p 1/2(1 þ i)(i ¼ (21)1/2) and J0 and Y0 are the

zero order Bessel functions of the first and second kind,

respectively and I0 and K0 are the equivalent modified

functions. In applying the boundary conditions we shall

denote

Ja ¼ J0ðWoaða=bÞÞ; Jb ¼ J0ðWoaÞ

with similar definitions for the other types of Bessel

functions. The no-slip boundary conditions supply the

constants

C1 ¼ 2iG
4p

Yb2Ya

JaYb2JbYa
; C2 ¼ 2iG

4p
Ja2Jb

JaYb2JbYa

C3 ¼ 2iG
4p

Ka2Kb

IaKb2IbKa
; C4 ¼ 2iG

4p
Ib2Ia

IaKb2IbKa
:

Plots of U1 and U2 along with the steady profile uP can

be found in figure 3 where each quantity is normalized to

one. The value of the Wo has been chosen to be 6.25 to

reflect a heart rate of 60 bpm.

For both the steady and periodic parts, we have assumed

that the form of flow we have imposed is stable. The

Reynolds number Re, defined as U0b/n, is 500 if we take

U0 ¼ 0.2, b ¼ 0.01 which, as we shall see, will be typical

values in what follows. [31] experimentally derived a

relationship between the critical Re and Wo for straight

pipes. This relationship is

Recrit ¼ 169ðWoÞ0:87ðStÞ20:27 ð7Þ

where the Strouhal number St is fb/Uosc and Uosc is the

peak velocity of the purely oscillatory component. Again

substituting typical values gives St , 1 (based on

Uosc , 0.2U0 for dW ¼ 6.0) and Wo as low as 5. This

results in a critical Re of 685 and suggests that the flow

will be non-turbulent.

3.4 Simulated velocity profiles

We shall use three different velocity profiles throughout

the calculations that follow. Firstly, we shall impose a

pulsatile flat (slug) profile of the form

uS ¼ 1 þ dS cosð2ptÞ ð8Þ

for various values of dS. Secondly, we shall use the fully

developed profile obtained from the superposition of

equations (3) and (6), the modified Poiseuille and

Figure 3. Flow profiles corresponding to uP (solid), U1 (dashed) and U2 (dotted) all normalized to one. The unsteady profiles are shown for W0 ¼ 6.25
corresponding to a heart rate of around 60 bpm.
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Womersley flows respectively, i.e.

uFD ¼ uP þ uW : ð9Þ

Recall that this is driven by

›P

›z
¼ DPð1 þ dW cosð2ptÞÞ:

For dW ¼ 1, the relative amplitude of uW to uP is very

small and of little interest. To make uW comparable to uP
without producing any localized backflow, a value of

dW ¼ 6 was chosen. Four equally spaced snapshots of this

profile can be seen in figure 4. Lastly, we shall use a

combination of the previous two profiles in an attempt to

create a more realistic profile matching those of [25]. The

steady part will be flat and the systolic peak will be modelled

by the function U2 from the modified Womersley solution

during the first half of the heart cycle. This takes the form

uM ¼
dM þ �U2 sin ð2ptÞ 0 # ðt2 nÞmod1, 0:5

dM 0:5 # ðt2 nÞmod1 , 1

(
;

n[Z

ð10Þ

where �U2 is just U2 normalized such that the maximum

amplitude is unity since we are no longer controlling the flow

through the pressure gradient parameter dW. It is noted that

this bears a striking resemblance to the time dependence of

the pulmonary artery velocities reported by [32] and so it

may not be too simplistic.

In each of the three cases above, the heat transfer results

obtained will be compared with those from an equivalent

steady model whose velocity is defined byð1

0

u ðs; tÞ dt:

The first two cases simply return the steady part of the

profile due to the sinusoidal nature of the unsteady part.

However, the mixed profile returns

dM þ �UðsÞ=p:

Note that this steady solution actually depends on theWo

through �U2: This means that two unsteady solutions,

corresponding to different heart rates, have to be compared

against two different equivalent steady solutions. All this

means is that even though there is no actual time

dependence, the steady solutions will have a heart rate

associated with them purely to determine the profile. In

addition, the non-sinusoidal nature of the unsteady part

means that it contributes to the cardiac output. For the

mixed profile we therefore have to relate the specified

dimensional CO to U0 by

CO ¼ 2pU0dMðb
2 2 a2Þ þ 2b2U0

ð1

a=b

�UðsÞs ds

where the integral can be evaluated analytically by noting

thatÐ
U2ðsÞs ds ¼ G

4p
s2 2 iC1

Woa
sJ1ðWoasÞ2 iC2

Woa
sY1ðWoasÞ

þ iC3

Woa
sI1ðWoasÞ2 iC4

Woa
sK1ðWoasÞ:

4. The temperature equation and its numerical

solution in a cylindrical annulus

The non-dimensional equation governing the temperature

of the blood near the catheter heating element for the given

blood flow rate u(s, t)ez is

s
›u

›t
þ uðs; tÞ

›u

›z
¼

l

s

›

›s
s
›u

›s

� �
: ð11Þ

Here, the non-dimensional temperature is given by

u ¼ ðT 2 T0Þ=ðT1 2 T0Þ

and

s ¼ fL=U0 and l ¼ KL=ðU0b
2Þ:

Equation (11) is to be solved on the domain

ða=bÞ # s # 1; 0 # z # 1; t $ 0;

subject to the initial condition

u ðs; z; 0Þ ¼ 0

and the boundary conditions

u ðs; 0; tÞ ¼ 0; u ðða=bÞ; z; tÞ ¼ hðzÞ; u ð1; z; tÞ ¼ 0;

Figure 4. Four equally spaced snapshots throughout one period of the fully developed flow profile defined by dM ¼ 6.
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where the function h(z) is defined as

hðzÞ ¼

z2½3 2 2z=z1�=z
2
1; 0 # z , z1

1; z1 # z , 1 2 z1

ðz2 1Þ2½3 þ 2ðz2 1Þ=z1�=z
2
1; 1 2 z1 # z # 1

8>><
>>:

and is designed to resolve the discontinuity at

(s,t) ¼ (a/b,0). The value of z1 was fixed at 1022

throughout.

This problem was then solved by finite differences

using the method due to [33]. The power required by the

heating element was evaluated using the trapezoidal rule.

The radial derivative of the temperature in the integrand

was approximated by second order differences.

Extensive grid refinement was used to determine mesh

spacings that would produce results correct to 0.1%.

This resulted in the choice Ds ¼ 1024, Dz ¼ 1023 and

Dt ¼ 1023 and these values were used throughout. In fact,

the code was originally written so that it would operate on

a stretched grid; however, given the relatively modest

CPU time required for the uniform grid, the benefits of

employing it were not significant.

5. Results

5.1 Parameter variations

Before presenting the results themselves we shall briefly

outline the values used in the simulations. Recall that there

are three parameters to vary, one for each of the models

chosen. Firstly, dS represents the amplitude of the

oscillatory component of the slug flow velocity profile.

Then there is dW which is the amplitude of the oscillatory

component of the pressure driving the fully developed

flow. Finally, there is dM, which represents the amplitude

of the steady component of the mixed velocity profile.

For the slug flow model dS takes the values 0.5, 0.8 and

0.95 at a heart rate of 80 bpm initially. Heart rates of 60

and 100 bpm are then subsequently tested for all three

values. The fully developed model uses only dW ¼ 6 and

is investigated at heart rates of 60, 80 and 100 bpm. The

mixed profile is run with dM ¼ 0.2 again at heart rates of

60, 80 and 100 bpm; values of 0.1 and 0.3 are then

investigated at 80 bpm.

5.2 Pulsatile slug flow profile

We use the profile given by equation (8) and set dS ¼ 0.5

initially. Starting with CO of 2 l min21 and a heart rate of

80 bpm (Wo ¼ 7.217) the temperature equation (11) was

stepped forward in time from an initial condition where Q

was zero everywhere. Onset of periodicity was checked at

each timestep by comparing u(t) and u(t 2 1) values at

three spatial locations to check that each agreed to

better than 1024%. The locations chosen were along the

line s ¼ (a/b) þ (1 2 (a/b))/100 at z ¼ Dz, 0.5 and 1 2 Dz.

After just over two heart cycles, the solution had equilibrated

to the same periodicity as the flow. CO was incremented in

steps of 0.4 and the results can be seen as the solid line of

figure 5 where the power required to be input to the heating

element is plotted against the square root of the cardiac output

as measured in l min21. Results for a purely steady slug flow

are superimposed as circles. It is immediately apparent that

both trends are linear and so we have confirmed that the

dependence of power on the square root of CO holds in the

more realistic cylindrical geometry. The dataset correspond-

ing to the unsteady flow has a slightly lower gradient than the

steady dataset with close agreement at the lower end.

Changing the heart rate to either 60 bpm (Wo ¼ 6.25) or

100 bpm (Wo ¼ 8.069) has no noticeable effect on this result.

If the above sequence of runs are repeated with dS ¼ 0.8

and 0.95 we obtain the behaviour shown by the dashed and

dotted lines in figure 5. Again the change of heart rate

makes no difference although the separation of the steady

and unsteady trends is a little more pronounced at these

higher values of dS. For instance, at a CO of 7.6 l min21

with dS ¼ 0.95, the steady state model overestimates the

power loss by approximately 7%.

To ensure that the numerical method was indeed giving

correct results, a convergence check was performed with a

CO value of 7.6 l min21 and with dS ¼ 0.8. The number of

Figure 5. Comparison of power input vs. square root of cardiac output for a periodic slug flow profile with various values of dS. The heart rate is 80 bpm
throughout.
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grid points in the s-direction was doubled producing a

change of less than 0.1% in the power. A similar size of

change was noted when the number of grid points in the

z-direction was doubled. This confirms that the increasing

separation of the two models with increasing CO is a real

effect.

5.3 Fully developed flow profile

For the fully developed flow profile, the change of heart rate

may have more impact since the shape of the profile changes

with the Wo. As previously discussed, we chose dW ¼ 6.0

and considered heart rates of 60, 80 and 100 bpm.

The results of stepping through a sequence of CO values

are shown in figure 6. The first point to notice is the

significant difference in the amount of power required by

the heating element. Compared to the slug flow, there is,

on average, only a third of the power required. This is due

to the lower velocities present near the element since this

profile satisfies a no-slip boundary condition. The second

point to notice is that the relationship between the power

drawn by the element and the square root of the cardiac

output is not exactly linear. There is a noticeable curve to

both the steady and unsteady datasets, which is more

apparent for lower cardiac outputs. Both of these points

show that calibration would be highly dependent on the

velocity profile. This is not all that surprising since the

hot-film approach measures velocities rather than volu-

metric flow rates and this drawback of the technique has

been noted many times before, see for example [1,16].

As we expected, changing the heart rate has a more

noticeable effect than for the slug flow, where there was no

change whatsoever. The effect increases with decreasing

heart rate in a non-linear fashion as shown by the separation

of the solid and dashed lines to that of the dashed and dotted

lines in figure 5. At a CO of 7.6 l min21 the difference

between steady and average unsteady power at 60 bpm is

just under 2% which is still clinically acceptable.

5.4 Mixed flow profile

We shall initially set dM ¼ 0.2 and look at a heart rate of

80 bpm. The results are shown in figure 7. In contrast to the

previous two velocity profiles, the degree of separation of

steady and unsteady trends is not as obviously dependent on

the size of the cardiac output. In fact, the unsteady model

underestimates the power by 54 mW at a CO of 2 l min21

and by 60 mW at a CO of 8 l min21 showing that there is a

slight increase in discrepancy with increasing CO.

Figure 6. Comparison of power input vs. square root of cardiac output for the fully developed flow profile. The steady case is denoted by circles and the
unsteady cases, defined by dM ¼ 6.0, are denoted by the various lines.

Figure 7. Comparison of power input vs. square root of cardiac output for the mixed flow profile. The cases considered are the unsteady solution,
defined by dM ¼ 0.2 and a heart rate of 80 bpm, the corresponding steady solution and finally the steady slug flow profile solution.
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One might be tempted to seek a better comparison with

a purely flat profile for the steady solution since this

represents the steady part of the pulsatile flow. The filled

circles in figure 7 indicate the steady slug flow results that

have already been presented. The agreement is not better

and again the discrepancy exhibits an increasing size

towards the upper end of the scale.

Changing the heart rate makes little difference to the

results as shown in figure 8. What is apparent here is that the

steady solution seems to be more affected than the pulsatile

one resulting in a bigger gap for higher heart rates. This

makes sense since in the limit of vanishing heart rate, the

function �U2 ! 0. This means that both the unsteady and

equivalent steady solution will converge to the slug flow

solution. The effect is, however, clearly small for the

realistic range of heart rates such as those simulated here.

Finally, we take a look at the effect of varying dM at a

fixed heart rate of 80 bpm in figure 9. The trends for each

value of dM shows different gradients although the

equivalent steady solution always essentially mirrors that

of the unsteady solution. Again this is not surprising since

in the limit dM ! 1, we are again moving towards the

slug flow solution which we know from figure 7 has a

steeper gradient than the mixed profile model.

More interesting is the variation in the discrepancy

between the steady and pulsatile models. As dM is

decreased the gap increases. Table 1 shows the value of U0

for three values of dM and three values of the cardiac

output. For dM ¼ 0.1 the values of V0 are too high and so

this is an unrealistic choice. The values of U0 for dM ¼ 0.2

are more realistic and those for dM ¼ 0.3 agree reasonably

well with the peak velocities reported in both [25,32]. By

the time dM has increased to 0.3, the discrepancy is not as

pronounced with the power being overestimated by

roughly 40 mW by the steady model. Alternatively, one

can say that, given a power reading, the steady model

underestimates the CO by ,0.4 l min21.

5.5 Response to changes in arterial diameter

Since the system is being solved numerically, it is

straightforward to test the effect of varying the diameter of

either the catheter or the artery in which it resides. There are

two approaches: either hold the CO constant when changing

the geometry or hold the peak steady velocity U0 constant.

Since, the catheter has a fixed diameter we choose to vary the

artery radius using both approaches outlined above.

The slug flow situation is by far the simplest. Here, the CO

varies directly with U0 with the constant of proportionality

being equal to the cross-sectional area of the annulus. For a

constant CO, the velocity therefore varies inversely with theffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 2 a2

p
: For the case of constant velocity, the power will

Figure 8. Comparison of power input vs. square root of cardiac output for two mixed flow profiles with differing heart rates. Both profiles are defined by
dM ¼ 0.2.

Figure 9. Comparison of power input vs. square root of cardiac output for two mixed flow profiles defined by differing values of dM. The heart rate is
80 bpm throughout.
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be independent of artery radius provided it is not near the

edge of the thermal boundary layer of course. This was

indeed confirmed by the numerics.

The fully developed flow is more interesting since the

profile is not constant across the thermal boundary layer. Fora

constant CO, the power drawn varies inversely with theffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 2 a2

p
as shown by the solid line in figure 10. This is not

obvious since it is not clear that the amplitude of the velocity

profile within the thermal boundary layer varies inversely asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 2 a2

p
:For a constantU0, the power is not independent of

b since the steady velocity profile will have a larger gradient

at the boundary for smaller artery radii. This means that

relatively more power will be drawn for smaller artery radii.

The mixed flow also shows the same behaviour as the

previous two profiles when constant CO is maintained

throughout the radii variation. This is shown by the dashed

line in figure 10. For a constant U0, the power is once

again independent of b and so the steady part of the profile

must be dominating the behaviour here.

5.6 Response time to changes in CO

So far we have timestepped the temperature field in the

presence of a pulsatile flow and allowed the solution to

equilibrate over time from some arbitrary initial condition.

There is nothing to prevent us from using the solution at

one cardiac output and using it to move to that at another.

Of course, we are completely ignoring the dynamics of

how the flow would evolve from one state to the other and

instead simply changing instantaneously between the two.

However, this should give us a rough idea of the timescale

on which changes in CO could be picked up, i.e. how long

it takes for the period averaged power to settle into a new

equilibrated value.

Using the mixed profile model atdM ¼ 0.2 and a heart rate

of 80 bpm the initial condition was set to be the equilibrated

solution at a CO of 2 l min21. The value of CO for the run

was then set to be 6 l min21 and the system stepped forward

in time. It took just under four and a half heartbeats to settle

into periodicity (using our prescribed tolerance which could

easily be relaxed). A similar time was noted for the reverse

change from 6 to 2 l min21. This is more than adequate for

the requirements of clinical practice.

6. Conclusions

We have shown that the results obtained using pulsatile

models of heat transfer in our simple cylindrical annular

model differ from those using equivalent steady models. The

difference was found to be largely independent of the heart

rate for realistic ranges of this parameter (60–100 bpm).

Using a flat velocity profile, the discrepancy between the

steady and the pulsatile models was found to increase with

increasing CO whereas this was not observed with the mixed

profile whose unsteady part is a peaked profile. In all cases,

the steady model overestimated the power needed by the

heating element when compared with the unsteady case.

This resulted in underestimates for the CO of order

0.4 l min21 in the case of the mixed profile (dM ¼ 0.3). For

the slug flow profile (dS ¼ 0.95) this ranged from about

0.4 l min21 at the lower end of the CO scale to upwards of

0.8 l min21 at the higher end. In practice, cardiac output can

exceed the upper limits studied here and so we expect the

discrepancy to be larger. Therefore, it seems reasonable

therefore that when modelling this type of situation one

should include the pulsatility of the flood flow.

Figure 10. Comparison of power input vs. 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb 2 2 a 2Þ

p
, (a) for a constant CO for fully developed flow (solid line), (b) for constant CO for mixed flow

(dashed line).

Table 1. Values of U0 in ms21 for various dM and CO.

CO (l/min) 2.0 4.0 6.0

dM ¼ 0.1 0.49 0.97 1.5
dM ¼ 0.2 0.29 0.58 0.86
dM ¼ 0.3 0.20 0.41 0.61
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The fully developed profile showed the least difference

between steady and unsteady models. This may be due to

the nature of the steady part of the pulsatile flow being

peaked and obeying no-slip boundary conditions. It is

interesting to note that this also resulted in a noticeable

deviation from the expected behaviour in terms of the

relationship between CO and the power drawn by the

heating element. This highlights the calibration problems

faced by this sort of technique in assuming that the

velocity profile will not change markedly over timescales

of the order of minutes. However, inter-patient variability

can be suitably reduced through initial in situ calibration

with thermodilution measurements.

Of course, we have made many simplifications in our

model. These include a rigid cylindrical annulus whose

cross-sectional area is well defined thus allowing us to

relate velocity measurements to cardiac outputs. This can

be a significant drawback in practice for CO measure-

ments based on HFA techniques. Again the in situ

calibration should help to ease these problems. We have

also not considered any backflow in our imposed velocity

profiles. This would be a realistic addition and is

interesting by virtue of the fact that a hot-film anemometer

cannot differentiate backflow from forward flow.
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