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Following the poor clinical results of antiangiogenic drugs, particularly when applied in
isolation, tumour biologists and clinicians are now turning to combinations of therapies in
order to obtain better results. One of these involves vessel normalisation strategies. In this
paper, we investigate the effects on tumour growth of combinations of antiangiogenic and
standard cytotoxic drugs, taking into account vessel normalisation. An existing multiscale
framework is extended to include new elements such as tumour-induced vessel dematuration.
Detailed simulations of our multiscale framework allow us to suggest one possible
mechanism for the observed vessel normalisation-induced improvement in the efficacy of
cytotoxic drugs: vessel dematuration produces extensive regions occupied by quiescent
(oxygen-starved) cells which the cytotoxic drug fails to kill. Vessel normalisation reduces the
size of these regions, thereby allowing the chemotherapeutic agent to act on a greater number
of cells.
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1. Introduction

Cancer cells depend on sufficient nutrient supply for survival and, therefore, growth of a

(solid) tumour requires access to blood vessels. Cancer cells can also acquire an invasive

phenotype enabling them to enter the circulation and eventually establish metastases. Thus,

the onset of angiogenesis (the process by which new vessels are generated from existing

ones) appears to mark the transition of a solid tumour from a mostly harmless, localised

lesion into a potentially fatal, systemic disease. In this context, antiangiogenic drugs were

anticipated to provide a breakthrough in anticancer therapy. In spite of the high expectations

raised by early successes in animal experiments, these drugs have fared poorly in clinical

trials. When administered alone, antiangiogenic drugs achieve modest objective responses

but their impact on life expectancy and long-term survival has been disappointingly poor (see

[14] and references therein).
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In spite of this failure of antiangiogenic drugs as a stand-alone therapy, the results of

combinations of antiangiogenic drugs with conventional chemotherapy offer a more

optimistic perspective. For example, a drug called bevacizumab, an antibody against a potent

angiogenic substance secreted (among others) by cancer cells called vascular endothelial

growth factor (VEGF), in combination with cytotoxic drugs yielded a significant increase in

survival in colorectal cancer patients [18]. These results support the predictions of Teicher

[29], who anticipates that the combination of antigiogenic drugs with conventional

chemotherapy would yield optimal effects, as this combination targets two tumour

compartments (cancer cells and endothelial cells). According to Teicher [29], antiangiogenic

drugs should always increase the effects of cytotoxic drugs.

These observations can be considered somehow paradoxical, as, in principle,

antiangiogenic therapy removes (or prevents formation of) tumour blood vessels, thereby

disabling the access route the cytotoxic drugs use to reach the tumour [14]. Thus, it could be

expected that less drug would reach the tumour reducing its overall cell killing effect.

Essentially, the same could be expected for radiotherapy. Antiangiogenic therapy would

remove blood vessels which, in turn, would produce extensive areas of hypoxia (low oxygen

levels) within the tumour. Furthermore, hypoxia is known to antagonise radiation therapy. In

fact, there exist studies showing that antiangiogenic therapy may compromise the outcomes

of both chemo- and radio-therapy [14].

The mechanisms by which antiangiogenic therapy improve cytotoxic drug efficiency are

not completely understood. However, work by Jain et al. [14,30,32] provides strong evidence

to support the involvement of antiangiogenic therapy-induced vessel normalization which

may be explained as follows. Tumour vasculature is known to exhibit a number of

abnormalities in comparison to its normal counterpart. Normal vasculature has a well-

defined anatomical structure essential for its functionality. Tumour vessels are usually

immature and lack this structure. Consequently, they are leaky and not quiescent, unlike

normal vessels. Additionally, immature tumour vessels are prone to collapse under the

pressure of the growing tumour population. These structural abnormalities yield, in turn,

abherrant blood flow and oxygen delivery with spatial and temporal heterogeneities. These

features combine to produce an abnormal micro-environment in which increased hypoxia

(low levels of oxygen), which renders cells resistant to chemo- and radio-therapy, and

abherrant tumour blood flow, pose severe barriers to drug delivery and efficacy [12].

In this context, it seems that fixing (i.e. normalising) the tumour vasculature could help to

re-establish normal delivery of drugs and oxygen thus allowing more cancer cells to receive

effective concentrations of both. This is the rationale behind normalisation strategies.

Angiogenesis, in both pathological and physiological situations, is controlled by an increase

in angiogenic promoters (e.g. VEGF) over their inhibitor counterparts. In normal conditions,

this imbalance will eventually be counterbalanced. In a pathological setting, the imbalance

persists. Therefore, restoring the balance using antiangiogenic substances may result in a

more normal-looking vasculature. However, excessive doses of antiangiogenic drugs may

hinder the effect of conventional therapy. It has been observed in several studies that

antiangiogenic therapies antagonise chemo- or radio-therapy by reducing oxygenation and

drug delivery. This indicates that there is a delicate balance between normalisation and

(excessive) vessel regression, implying that extreme care is needed in the selection of dose

and schedule [14].

Recent modelling work addressing the effect of vessel dematuration on tumour growth was

recently presented in Ref. [4]. A cellular automaton model was developed to analyse the

effect of the growing tumour on the vasculature which was incorporated with simple models
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of angiogenesis, vessel co-option and vessel collapse (as a consequence of vessel

dematuration). Bartha and Rieger [4] concluded that vascular density might not be an

appropriate indicator of tumour prognosis, as is generally believed. Instead, their model

suggests that tumour progression, at least in its early stages, is strongly determined by the

vascular density of the original host tissue.

In Ref. [25] Ribba et al. incorporated a model of vessel dematuration upon co-option by

the growing tumour into a model designed to assess typical clinical protocols of doxorubicin

treatment of Non-Hodgkin lymphomas. The dematuration model used in Ref. [25] was

extremely simple: whenever a vessel was co-opted by the tumour its radius would be

assigned a value drawn from a randomly generated Gaussian distribution. The rationale for

this model was that when a vessel is co-opted a process is triggered whereby the normal

mechanisms dictating vessel behaviour cease to act. In this context, assigning a random value

to the radii of co-opted vessels might be a reasonable first approximation. However, this

model did not incorporate any of the mechanisms of vessel dematuration upon engulfment.

In addition, a thorough investigation of the effects of vessel dematuration was not carried out.

Although Teicher [29] appears to have reached the right conclusion, her “linear”

reasoning, which is typical of attempts by biologists to establish a non-quantitative

theoretical framework [9], neglects many of the complex interactions between the different

elements involved in the process of tumour growth. Our aim in this paper is to place Teicher’s

theoretical ideas in a quantitative framework which allows us first to check their validity and

then to explore possible mechanisms involved in the improvement of the efficacy of

cytotoxic drugs administered together with antiangiogenic drugs. This will be done by

adapting the multiscale model of vascular tumour growth developed by us [1,3,5] to allow for

vessel dematuration upon co-option by a growing tumour.

This paper is organised as follows. Section 2 provides an overview of the multiscale

framework used in this paper. Section 3 summarises results presented previously in Ref. [16]

which help us to understand the new results reported in this paper. In section 4 we compare

the responses of tumours with normal and cancerous vasculatures to treatment with cytotoxic

drug. In section 5 we summarise the biological background to tumour-induced vessel

dematuration and explain how we incorporate this phenomenon within our multiscale

framework. In section 6, we present simulation results that illustrate how a tumour’s

evolution depends on whether the underlying vasculature is normal or pathological and

whether vessel dematuration occurs. In section 7, we investigate the effect of treating a

tumour with a combination of chemotherapy and an anti-VEGF receptor antibody which

antagonises VEGF and the effect that it has on the outcome of chemotherapy. Finally, in

section 8 we discuss our results, model limitations and future research directions.

2. Summary of the multiscale model

In this section, we describe briefly the elements and organisation of the multiscale model.

This framework has been described in detail in Ref. [3,5]. We refer the reader to these

previous papers for a thorough account of the model formulation.

Our model is based on the hybrid cellular automaton concept which has been used to

model several aspects of tumour development (see [1,6,21]). We extend this approach to

account not only for the presence of a diffusive substance (such as oxygen or glucose) as in

previous papers, but also to include intracellular and tissue-scale phenomena, and the

coupling between them. To this end, we have organised our model into three layers: vascular,
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cellular and intracellular, which correspond, respectively, to the tissue, cellular and

intracellular TLSs (figures 1 and 2).

In the tissue layer, we deal with the structural properties of the vascular network and blood

flow [1]. We consider a hexagonal vascular network (similar to the one observed in liver).

Each vessel is assumed to undergo structural adaptation (i.e. changes in radius) in response to

different stimuli until the network reaches a quasi-equilibrium state. We then compute the

blood flow rate, the pressure drop and the haematocrit (i.e. relative volume of red blood cells)

distribution in each vessel. The dynamics of the vascular layer and the cellular layer are

coupled by the transport of blood-borne oxygen into the tissue. This process is modelled by a

reaction–diffusion equation. The distribution of haematocrit in the vessels acts as the source

of oxygen, whereas the cell distribution defines the (spatially distributed) sink of oxygen.

molecular events
(ion channel gating)
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TissueProtein
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10–6 s 10–3 s 100 s 103 s
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Figure 1. Time and length scales involved in our model [11].
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Figure 2. Diagrammatic representation of the layer structure of our model.
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In the cellular layer, we focus on normal and cancer cells which are treated as individual

elements. These two populations compete for space and resources. Competition between the

two cell types is introduced by a simple rule, which couples the cellular to the intracellular

layer. Apoptosis (programmed cell death) is controlled by the expression of p53 (whose

dynamics are dealt with in the intracellular layer): when the level of p53 in a cell exceeds

some threshold the cell undergoes apoptosis. However, this threshold depends on the local

spatial distribution of cells, which links the spatial distribution (cellular layer) with the

apoptotic process (intracellular layer).

Processes included in the intracellular layer are cell division, apoptosis and VEGF

secretion. In this layer, we use ordinary differential equations (ODEs) to model the relevant

biochemistry. One issue we focus on is how the external conditions modulate the dynamics of

these intracellular phenomena and, in particular, how the level of extracellular oxygen affects

the division rate, the expression of p53 (which regulates apoptosis) and the production of

VEGF. Since the spatial distribution of oxygen depends on both the spatial distribution of

cells (cellular layer) and on the distribution of haematocrit (vascular layer), these processes at

the intracellular level are linked to the behaviour of the other two layers: cell proliferation

and apoptosis alter the spatial distribution of the cells (figure 2); the cellular and intracellular

layers modulate the process of vascular structural adaptation through another transport

process: diffusion of VEGF into the tissue and its absorption by the endothelial cells (ECs)

lining the vessels.

Since the main focus of this paper is on vessel normalisation, brief mathematical

descriptions of the cellular and intracellular layers are presented in the Appendix while a

detailed description of the vascular layer is given in section 3.

3. Structural adaptation in normal and cancerous vasculature

Pries et al. have constructed a model [23,24] in which normal vessels adapt their radii in

response to a number of different stimuli. In a vessel of radius RðtÞ we have:

dR

dt
¼ StotR ð1Þ

where Stot is the total stimulus, corresponding to the sum of the different stimuli which we

describe briefly now.

First there is the haemodynamic stimulus, Sh, through which the vessels adapt to blood

flow conditions. The main signals involved here appear to be wall shear stress (WSS), tw, and

pressure, P [26], with increased WSS typically increasing the vessel radius and increased

pressure decreasing it [24]. Accordingly, Pries et al. [24] postulate the following form for the

haemodynamic stimulus, Sh:

Sh ¼ logðtw þ trÞ2 kplogðteðPÞÞ ð2Þ

where tr is a constant introduced to avoid singular behaviour for low WSS, kp is a constant

and teðPÞ is a set-point level of WSS corresponding to the actual value of the intravascular

pressure [24].

The second stimulus is the so-called metabolic stimulus (Sm) which describes how vessels

adapt to the metabolic needs of the surrounding tissue. Pries et al. [23] considered the
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following functional form for Sm:

Sm ¼ kmlog 1 þ
_Qr

_QH

� �
ð3Þ

where km is a constant, _Qr is a reference blood flow and H is the haematocrit. In Ref. [3], a

modification of equation (3) was proposed to account for the effect that VEGF, V, has on the

vasculature (VEGF is produced by nutrient-deprived cells). In Ref. [3], the constant km was

replaced by a function of V:

kmðVÞ ¼ k0
m 1 þ

V

V0 þ V

� �
ð4Þ

where k0
m and V0 are constants.

The third stimulus is actually a pair of stimuli, the so-called conducted stimuli, and

consists of signals generated by the vessels that propagate either downstream or upstream.

They are assumed to be necessary to maintain a fully functional vascular system. These

signals are usually emitted under stress conditions, and therefore are closely related to the

metabolic stimulus described above. Although many underlying biological details of these

signalling mechanisms are unknown, the downstream stimulus is believed to be transmitted

by a chemical which is released into the blood (a good candidate seems to be ATP released

by red blood cells under hypoxic conditions) and thereby carried downstream by the flow.

The upstream transmission of information seems to be along the vessel walls, perhaps by the

spread of changes in membrane potential through gap junctions [24].

The intensity of the downstream stimulus, Sd, is assumed to depend on the current of the

signalling chemical along a particular vessel (vessel “1”, say). If the vessels upstream

(vessels “2” and “3”) of vessel 1 are irrigating hypoxic regions, they will receive signals

from the tissue in the form of secreted VEGF. If the concentration of VEGF in vessel 2 or

3 is positive, then it will produce a (constant) amount of signalling chemical, r 0. The

chemical will enter vessel 1 and its current along vessel 1 will be (due to mass

conservation):

J1 ¼ r1ðVÞ _Q1 þ r2ðVÞ _Q2 ð5Þ

where riðVÞ ¼ r0 if V – 0 in vessel i ¼ 1; 2 and riðVÞ ¼ 0 if V ¼ 0 in vessel i ¼ 1; 2.

Following [24], we write:

Sd ¼ log 1 þ
J1

_Qþ _Qref

� �
ð6Þ

where _Qref is a constant introduced to avoid singular behaviour.

The upstream stimulus, Su, is assumed to depend on a signal produced by vessels in

hypoxic regions (V . 0). The “amount” of signal produced is assumed to be proportional to

the length of the vessel, Ls. As in Ref. [24], we further assume that the upstream signal

dissipates as it propagates, modelling this process with exponential decay. At a given node

of the network, the current of upstream stimulus produced by each “outgoing” vessel
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(defined as one such that the corresponding current has a negative value) is given by:

J0
c ¼ Lse

2Ls=L ð7Þ

where L is a constant.

The total current, Jc, is the sum over all the outgoing vessels at a given node of the

corresponding values of J0
c. The upstream stimulus at each of the incoming vessels at the

corresponding node is given by Ref. [24]:

Su ¼ kmkc
Jc

Jc þ J0

ð8Þ

where J0 is a constant and km ¼ kmðVÞ as in equation (4).

Combining the above assumptions we deduce that the total stimulus, Stot, is given by

Stot ¼ Sh þ Sm þ Sd þ Su 2 ks ð9Þ

where Sh, Sm, Sd and Su are defined by equations (2)–(8) and ks is a constant corresponding to

the so-called shrinking stimulus, which, according to [23], corresponds to the tendency of

vessels to shrink in the absence of growth factors or other external stimuli.

The above stimuli together account for many functional and structural properties of

normal vascular networks [24]. Tumour vessels, in contrast, are far from normal. The well-

defined anatomical structure and orderly spatial distribution of normal vessels, that produce

an efficient and functional vascular system, are replaced by leaky vessels that lack most of

the anatomical features of their normal counterparts and exhibit a more random-looking

spatial distribution of vessels. This yields more unstructured and inefficient vascular

networks. In this context, it would be useful to know which, if any, of the adaptation

mechanisms mentioned above for normal vessels are likely to be active and which are absent

in cancer vessels.

This issue was studied by Maini et al. in Ref. [16]. The strategy there was to “deconstruct”

the normal vasculature, deactivating in turn each of the stimuli affecting adaptation in normal

vessels. Using our multiscale model, tumour growth was simulated for a range of structural

adaptation mechanisms and the results compared with qualitative structural features known

to be exhibited by solid tumours. Based on this study, we concluded that the conducted

stimuli are most likely to be absent in tumour vasculature [16]. In view of these results, a

vasculature for which Stot ¼ Sh þ Sm þ Sd þ Su 2 ks will hereafter be referred to as normal

whereas a vasculature for which Stot ¼ Sh þ Sm 2 ks will be referred to as cancerous.

3.1 Simulation results: normal and cancerous vasculatures

Before considering the effect of therapy, it is useful to present simulations showing how the

different structural adaptation mechanisms affect the growth properties of our model tumours

[16]. Figures 3–5 show results for tumours perfused by normal and cancerous vasculatures.

There are two interesting features to note. One concerns the size of the tumour supported by

the vascular networks: being more efficient, the normal vasculature gives rise to a larger

tumour than its cancerous counterpart. Taken in isolation this result would suggest that

normalising the tumour vasculature might not be an efficient therapeutic strategy.

However, figure 5(b) shows a second interesting result, namely the time evolution of the

number of quiescent cancer cells for the normal and cancerous vasculatures. We observe that,
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Figure 3. Snapshots of the dynamics of our multiscale model when the structural adaptation mechanism has
Stot ¼ Sh þ Sm 2 ks with km ¼ kmðVÞ defined by equation (4). This simulation corresponds to tumour growth with a
cancerous vasculature. No drugs are included in this simulation. Left panels show the spatial distribution of cells,
middle panels the distribution of oxygen and right panels the distribution of VEGF.
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Figure 4. Snapshots of the dynamics of our multiscale model when the structural adaptation mechanism has
Stot ¼ Sh þ Sm þ Sd þ Su 2 ks with km ¼ kmðVÞ defined by equation (4). This simulation corresponds to tumour
growth with a normal vasculature. No drugs are included in this simulation. Left panels show the spatial distribution
of cells, middle panels the distribution of oxygen and right panels the distribution of VEGF.

Multiscale modelling of tumour growth and therapy 93



most of the time, the quiescent population supported by the cancerous vasculature is larger

than that supported by the normal vasculature. This fact, which is also due to the higher

efficiency of the normal vasculature, might have important implications for the outcome of

combined therapy for the following reasons. In our model, cell quiescence is induced by

hypoxia†. Since most cytotoxic drugs target proliferating cells and hypoxia is know to delay

(and even halt) progression through the cell cycle, hypoxia reduces drug efficacy and,

thereby, contributes to drug resistance. For similar reasons, hypoxic regions are also resistant

to radiotherapy [14].

This result suggests how normalising tumour vessels might improve a tumour’s response

to chemo- or radio-therapy: by reducing the size of the resistant (quiescent) compartment.
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Figure 5. Time evolution of the number of (a) proliferating cancer cells and (b) quiescent cancer cells for the
simulations presented in figures 3 and 4. Solid and dashed lines correspond to normal and cancerous vasculature,
respectively.

†This means that, as far as our model is concerned, regions occupied by quiescent cells can be identified with
hypoxic regions.
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Although normalisation could increase the number of proliferating cancer cells, they are

susceptible to the cytotoxic drugs and therefore should be destroyed by the chemotherapy.

4. Simulation results: inclusion of a cytotoxic drug

As a first attempt to assess whether vessel normalisation might improve the performance of

chemotherapeutic agents, we ran simulations of our multiscale model with a blood-borne

cytotoxic drug as detailed in Section A.4. The cytotoxic drug is administered in the form of

two bolus injections at times t ¼ 150 and t ¼ 200. The corresponding results are shown in

figures 6 and 7.

Figures 6(a) and 7(a) show, respectively, the time evolution of the number of proliferating

cancer cells with and without chemotherapy and for normal and cancerous vasculatures. We

see that chemotherapy reduces the number of proliferating cells for both types of vasculature,

although, in agreement with our previous predictions [16], chemotherapy seems to be only

slightly more effective for the normal vasculature than for the cancerous one. Further, this

difference appears to be too small to justify the apparent success of combined

cytotoxic/antiangiogenic strategies.

5. Vessel dematuration

The simulations presented in figure 6 do not account for the process of tumour-induced vessel

dematuration and its dependence on tumour-produced VEGF. The inclusion of some of these

features into our model is the subject of the present section.

It is now widely recognised that tumours interact with the host vasculature. One way in

which they do this is via angiogenesis, a process which has been widely studied by the

theoretical community (see the excellent review by Mantzaris et al. [17] and references

[19,28] for more recent models of angiogenesis including blood flow). With the exception of

[4], one aspect of tumour–vasculature coupling that has received much less attention is

tumour-induced vessel dematuration. As tumours grow, “healthy” vessels of the host

organism are engulfed by the tumour mass and a process of dematuration, which includes

loss of wall vessel structure and increased leakiness, is triggered [13,33]. Experimental data

indicate that this process is due to overexpression of a protein called Angiopoietin 2

(hereafter referred to as Ang2) in the ECs of engulfed vessels. However, the effect of Ang2

on the fate of the engulfed vessels is contextual: if VEGF levels are high, Ang2 contributes to

increased sprouting, i.e. it promotes the onset of angiogenesis. If, by contrast, VEGF levels

are low, Ang2 destabilises the vessels [33].

In our simulations, therefore, we now distinguish three types of vessels according to the

mechanism that controls their structural adaptation. Normal vessels are those surrounded by

a majority of normal cells. They adapt according to the normal total stimulus (see section 3).

By contrast, a vessel surrounded by a majority of cancer cells is considered as co-opted or

engulfed and its behaviour depends on the local concentration of VEGF†.

Most of the biomolecular details of vessel dematuration are unknown and quantitative

information is scarce. Thus, in order to proceed further, we formulate a rather simple model

which retains what it is currently believed to occur. We introduce a vessel maturity variable,

†For a discussion of what is meant by the local VEGF concentration of a vessel, see [3].
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M, which characterises the final fate of the vessel in the presence of VEGF: M ¼ 0

corresponds to dematuration, M – 0 corresponds to a normal vessel or to an angiogenic

tumour vessel.

Similar to equation (1), which describes the dynamics of vessel radius in response to

haemodynamical and external stimuli, we formulate an equation for the variable M:

dM

dt
¼ aðV 2 VcÞM 2 bM 3 ð10Þ

where a and b are positive constants. The steady state values of M are M1 ¼ 0 and

M2 ¼ ðaðV 2 VcÞ=bÞ
1=2. We note that M1 is unstable and M2 is stable for V . Vc. Hence, for

V . Vc mature/angiogenic vessels will be stable whereas immature/collapsing vessels will

be stable for V , Vc, where Vc is the critical concentration of VEGF at which an engulfed

vessel switches from one status to the other.

We assume further that the characteristic timescale for the dynamics of M is much shorter

than the structural adaptation timescale, and hence that M is in (quasi-)steady state. This

assumption allows us to reduce the number of unknown parameters in the model, as, under

this assumption, vessel fate is essentially controlled by a single parameter, Vc (equation (10)).

We will assume that mature and immature vessels, i.e. vessels with M ¼ M1 or M ¼ M2,

respectively, undergo structural adaptation according to different stimuli:

dR

dt
¼ dM;M1

ðSc 2 hÞRþ dM;M2
SnR; ð11Þ

where dx;y represents the Kronecker delta and Sn and Sc are the normal and cancerous

adaptation stimuli, respectively:

Sc ¼ Sh 2 ks ð12Þ

Sn ¼ Sh þ Sm 2 ks ð13Þ

The parameter h corresponds to the collapse experienced by cancerous vessels under the

pressure of the growing tumour. Such collapse is a consequence of the loss of structural

stability of the cancerous vessels.

Equation (11) incorporates the two vascular fates described above. The first term on the

right hand side corresponds to the low-VEGF behaviour of the engulfed vessels and is

intended to describe vessel collapse where the change in vessel radius is the product of two

opposing forces: haemodynamic forces exerted by the blood on the vessel wall (Sc) and

pressure exerted by the tumour cells (h).

The second term on the right hand side of equation (11) describes an abnormal vessel (see

section 3) in which the metabolic stimulus depends on the local VEGF concentration, thus

accounting in an effective manner for angiogenic effects.

Figure 6. Time evolution of the number of (a) proliferating cancer cells, (b) quiescent cancer cells and (c) total
number of cancer cells under normal vasculature. Solid lines correspond to growth of an untreated tumour, dashed
lines to tumour growth treated with a cytotoxic drug. hu ¼ 0:07. Chemotherapy is administered in the form of two
bolus injections at t ¼ 150 and t ¼ 200. The amount of vessel drug is taken to be proportional to 1 2 H (i.e. the fluid
fraction of blood contained in a given vessel). Anti-VEGF drug is not included in this simulation.

R
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The algorithm to determine vessel behaviour is as follows:

i) All vessels are initially labelled NORMAL.

ii) The numbers of cancer and normal cells within one lattice site distance from the vessel

are counted. If the former exceed the latter the vessel is termed CO-OPTED, otherwise

it remains NORMAL. Vessel co-option is reversible, i.e. if this condition ceases to hold,

a co-opted vessel is re-labelled NORMAL.

iii) Normal vessels undergo structural adaptation according to equation (1) with Stot ¼

Sh þ Sm þ Sd þ Su 2 ks (see section 3).

iv) Co-opted vessels undergo structural adaptation according to equations (11) and (12)

with MðVÞ determined by the associated stable steady state solution of equation (10).

6. Simulation results: normal vasculature vs. dematuration

Here, we discuss the differences between the behaviour observed in our model under a

normal(ised) vasculature and a vasculature generated according to equation (11) and the

effect that vessel dematuration has on the tumour’s response to cytotoxic drugs.

Figures 8 and 9 show simulations performed without chemotherapy with a vasculature

generated according to equation (11), i.e. taking into account the effects of vessel

dematuration as described in section 5. We observe that vessel co-option and dematuration

lead to the formation of extensive regions populated by quiescent cells (figure 8): these are

much larger than those observed in simulations with a normal vasculature (figure 9(b)). Since

quiescent cells are, in general, resistant to cytotoxic drugs (which target mostly proliferating

cells), this could be an important factor for chemotherapy efficacy.

Figure 9 shows oscillations in both the proliferating and quiescent subpopulations.

Mechanistically, these oscillations are produced by the interplay between vessel engulfment,

regression and angiogenic response. When vessels are engulfed they initially undergo

regression under the pressure of the tumour cells. This reduces the oxygen supply, leading to

hypoxia and cell quiescence. These cells then produce VEGF which causes a switch in vessel

behaviour from shrinking to angiogenic. In our model, this induces a local increase in vessel

diameter, which enables the cells to recommence their progress through the cell cycle. This

interplay between the tumour mass and the vasculature is depicted in figure 10 where the

dynamics of the vascular network under this rather complex adaptation mechanism is shown.

From these results we conclude that (i) vessel dematuration could be an important factor in

the complex dynamical behaviour of tumours, and (ii) the appearance of extensive regions of

hypoxia might hinder the action of cytotoxic drugs, which act preferentially on proliferating

cells.

To clarify further the role of hypoxic regions populated by quiescent cells, we ran

simulations with a cytotoxic drug administered via two bolus injections at times t ¼ 150 and

t ¼ 200 (figures 11 and 12). Figure 12(a),(b) show the time evolution of the total number of

Figure 7. Time evolution of the number of (a) proliferating cancer cells and (b) quiescent cancer cells and (c) total
number of cancer cells under cancerous vasculature. Solid lines correspond to growth of an untreated tumour, dashed
lines to tumour growth treated with a cytotoxic drug. hu ¼ 0:07. Chemotherapy is administered in the form of two
bolus injections at t ¼ 150 and t ¼ 200. The amount of vessel drug is taken to be proportional to 1 2 H (i.e. the fluid
fraction of blood contained in a given vessel). Anti-VEGF drug is not included in this simulation.

R
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Figure 8. Snapshots of the dynamics of our multiscale model under the structural adaptation mechanism given by
equation (11) with h ¼ 5k0

m and km given by equation (4). Cytotoxic drug and anti-VEGF drug are not included in
this simulation. Left panels show the spatial distribution of cells, middle panels the distribution of oxygen and right
panels the distribution of VEGF.
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cancer cells. We note that the efficacy of the drug deteriorates markedly when the vessels

undergo co-option and dematuration: in terms of both the total number of cells killed by the

drug and the time the cancer needs to recover after the injection, the cytotoxic drug is less

effective when the vessels are subject to co-option and dematuration.

Figure 9. Time evolution of the number of (a) proliferating cancer cells and (b) quiescent cancer cells for the
simulations shown in figure 8. Solid lines correspond to normal vasculature, dashed lines to a vasculature generated
according to equation (11). eta ¼ 5k0

m. Cytotoxic drug and anti-VEGF drug are not included in this simulation.

R

i=50 i=150

i=250 i=400

i=450 i=500

Figure 10. Snapshots of the dynamics of the vasculature when the structural adaptation mechanism is given by
equation (11) with km given by equation (4). These results correspond to the simulations shown in figure 8. Brown
corresponds to normal vessels, red to co-opted-regressing vessels and blue to co-opted-angiogenic vessels. Line
width is proportional to the haematocrit in each vessel. h ¼ 5k0

m. Cytotoxic drug and anti-VEGF drug are not
included in this simulation.
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Figure 11. Snapshots of the dynamics of our multiscale model when the structural adaptation mechanism is given
by equation (11) and km by equation (4) and a cytotoxic drug has been administered. hu ¼ 0:07. Amount of vessel
drug is taken to be proportional to 1 2 H (i.e. the fluid fraction of blood contained in a given vessel). h ¼ 5k0

m. Anti-
VEGF drug is not included in this simulation. Left panels show the spatial distribution of cells, middle panels the
distribution of oxygen and right panels the distribution of VEGF.
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A more detailed picture of how this occurs can be obtained from the time courses of the

proliferating and quiescent subpopulations (figure 12(c),(d), respectively). Figure 12(d)

shows that the numbers of proliferating and quiescent cells drop dramatically after drug

administration. However, whereas proliferating cells are killed by the therapy, the reduction

in quiescent cell numbers, which are immune to the action of the cytotoxic drug, is due to

quiescent cells starting to proliferate again (note the sudden increase in proliferating cell

numbers just after the injections).

It is important to point out that the results presented in the section 5 for the “cancerous

vasculature” differ from those involving vessel dematuration. This difference is due to the

fact that vessel dematuration acts locally within the network whereas in the cancerous

vasculature the upstream and downstream stimuli are inactivated over the entire network.

7. Vessel normalisation

Following the observation that a combination of antiangiogenic therapy with either chemo-

or radio-therapy is effective, Jain et al. have investigated what mechanisms might be

responsible for such synergistic behaviour. In a number of papers [14,30,32], they proposed
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Figure 12. Time evolution of the total number of cancer cells ((a) and (b) close-up), number of proliferating cells
(c) and number of quiescent cancer cells (d). Solid and dashed lines correspond to simulations for a normal
vasculature and a vasculature generated according to equation (11), respectively. Cytotoxic drug is administered in
the form of two bolus injections at time t ¼ 150 and t ¼ 200. hu ¼ 0:07. h ¼ 5k0

m. Anti-VEGF drug is not included
in this simulation.
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that antiangiogenic therapy, either in the form of an antibody against VEGF or a VEGF

receptor blockade, leads to vascular normalisation, i.e. the tumour vasculature, normally

disorganised and inefficient, partially recovers and acquires the structure of normal vascular

beds. Winkler et al. [32] have conducted experiments in brain tumours in which VEGF

receptor 2 (VEGFR2) blockade, by means of a specific antibody against VEGFR2, creates a

so-called normalisation window, i.e. a period of time during which the vasculature acquires a

more normal structure. This partial normalisation improves tumour oxygenation and

increases the efficacy of radiation therapy.

Tong et al. [30] have found evidence that vascular normalisation following VEGFR2

blockade improves the delivery of chemotherapy to the tumour mass by decreasing the

interstitial fluid pressure.

7.1 Anti-VEGFR therapy

In order to see whether our model can reproduce the results of Winkler et al. [32] and what

insight our model can provide regarding the mechanisms involved, we introduce into our

multiscale model a new element, a diffusible anti-VEGFR drug, i.e. a specific antibody

against VEGFR that inhibits the effect of VEGF by competitively binding its receptor. To

keep the model as simple as possible, we assume that only ECs have VEGFR. This

assumption is accurate in normal tissue, but there is some evidence that cancer cells might

also respond to VEGF [14].

The mathematical description of the anti-VEGFR drug is similar to that used for VEGF

(Section A.1) and the cytotoxic drug (Section A.4), i.e. a diffusion equation is used to

describe its extracellular concentration R. We will assume that the anti-VEGFR is delivered

to the tumour via the vasculature. The equation for R takes the form:

0 ¼ DR7
2R2 hRðRvess 2 RÞ2 h0RR2 lRR: ð14Þ

where DR denotes the assumed constant diffusion coefficient of the anti-VEGFR antibody, hR
the rate at which it is transported across the vessel wall and h0R is the rate at which VEGF

binds to ECs on the surface of the vessel walls. The calculation of the anti-VEGFR

concentration within the vascular network, Rvess, is strongly related to the computation of the

haematocrit, H (see section 2.1). In particular, we assume that the drug is soluble in plasma

and, therefore, advected with the liquid fraction of blood, i.e. 1 2 H. Accordingly, we

assume that the concentration of drug within each vessel is given by Radmð1 2 HÞ where Radm

is the administered dose. This is analogous to how we model the chemotherapeutic drug.

The presence of the anti-VEGFR antibody alters the form of the metabolic stimulus for

vascular adaptation, in particular the form of equation (4), which assumes a Michaelis–

Menten kinetics for VEGF binding to the VEGFR on the surface of the ECs. Anti-VEGFR is

a competitive inhibitor of VEGF as it competes for binding to the VEGFR. Consequently, the

expression for kmðVÞ in equation (4) should be changed to [15]:

kmðVÞ ¼ k0
m 1 þ

rAV

V0 þ V þ rAR

� �
ð15Þ

where rA ¼ KV=KR is the ratio between the affinities of VEGF (KV ) and anti-VEGFR (KR)

for the VEGFR. The metabolic stimulus equation (3) is modified similarly. It is noteworthy

that rA is a key parameter whose influence on the system will be analysed.
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7.2 Simulation results: continuous infusion of anti-VEGFR with no cytotoxic drug

The results in figure 13 show that continuous infusion of anti-VEGFR can reduce the size and

growth rate of the tumour. It is not surprising that the larger the value of rA (corresponding to

an increased ability of the anti-VEGFR to bind the VEGFR), the stronger is the effect of the

drug on the tumour. However, the anti-VEGFR antibody does not seem able to completely

eradicate the tumour and therefore as soon as the treatment is removed the tumour will

regrow.

7.3 Simulation results: bolus injection of anti-VEGFR

Figures 14 and 15 show results where a single dose of anti-VEGFR antibody is administered

between t ¼ 300 and t ¼ 375 with no cytotoxic drug. We note that a bolus injection of anti-

VEGFR does not have a significant effect on the size of the tumour (figure 14), although the

results are slightly better for higher values of rA. Furthermore, our model seems to be only

partially successful in reproducing the normalisation window induced by anti-VEGFR in

experiments [32]. To assess this, we compare the size of the quiescent (hypoxic)

subpopulation upon anti-VEGFR administration with that for untreated dynamics. Figures

14(a),(b), corresponding to rA ¼ 1, reveal that the anti-VEGFR therapy has almost no effect

on the size of the quiescent subpopulation. The results corresponding to rA ¼ 10 are slightly

better: we observe a (modest) reduction in the size of the quiescent subpopulation following

treatment with anti-VEGFR (approximately between t ¼ 400 and t ¼ 440, see figure 14(d))

(figure 16).
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Figure 14. Time evolution of the total number of cancer cells. Black, solid lines correspond to simulations without
anti-VEGFR, Red, dashed lines to simulations with anti-VEGFR rA ¼ 1 and blue, dash-dotted lines to simulations
with anti-VEGFR rA ¼ 10. Parameter values h ¼ 5k0

m, hR ¼ 0:07 and DR ¼ DV . Cytotoxic drug is not included in
these simulations.

Figure 13. Time evolution of the number of (a) proliferating cancer cells, (b) quiescent cancer cells and (c) cancer
cells. Black, solid lines correspond to simulations without anti-VEGFR, Red, dashed lines to simulations with anti-
VEGFR rA ¼ 1 and blue, dash-dotted lines to simulations with anti-VEGFR rA ¼ 10. Parameter values: h ¼ 5k0

m,
hR ¼ 0:07 and DR ¼ DV . Cytotoxic drug is not included in these simulations.
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To assess the effect of the combination of anti-VEGFR and cytotoxic drug, we performed

simulations in which a bolus injection of cytotoxic drug was delivered between t ¼ 410 and

t ¼ 415 (Protocol 1)† and between t ¼ 410 and t ¼ 411 (Protocol 2) to a tumour in the

presence (and absence) of anti-VEGFR therapy (the anti-VEGFR drug was administered

using the protocol described above). We find that the combined therapy is more efficient than

chemotherapy alone, both in terms of the percentage of cells killed, K, and the recovery

period, as measured by the time the tumour needs to recover to a 50% of its size prior to

treatment (in units of treatment duration) T1=2. The results are summarised in table 1.

If the tumour is treated with a cytotoxic drug at t ¼ 450 (figure 17), i.e. outside the window

in which the size of the quiescent subpopulation is reduced with respect to the anti-VEGFR-

untreated case (figure 14(d)), we find that the anti-VEGFR drug has virtually no effect on the

response to chemotherapy. Thus, we conclude that our model exhibits normalisation-window

behaviour.
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Figure 15. Time evolution of the number of proliferating and quiescent cancer cells. Panels (a) and (b) correspond
to rA ¼ 1 whereas panels (c) and (d) correspond to rA ¼ 10. Black, solid lines correspond to simulations without
anti-VEGFR, red, dashed lines to simulations with anti-VEGFR rA ¼ 1 and blue, dash-dotted lines to simulations
with anti-VEGFR rA ¼ 10. Parameter values h ¼ 5k0

m, hR ¼ 0:07 and DR ¼ DV . Cytotoxic drug is not included in
these simulations.

†In fact, this combination is far from optimal as the damage it produces to the host normal tissue is massive.
However, in the present study, we ignore this fact as we do not intend to carry out a thorough analysis of therapeutical
protocols. Instead, this is a proof of concept exercise as to whether our model is able to capture the essential features
observed in experiments.
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We have run simulations with Vc ¼ 0:001 and Vc ¼ 0:01, i.e. 2 and 20 times bigger than in

the base-case scenario, where we take Vc ¼ 0:0005. In figure 18 we can see that when Vc ¼

0:001 the window during which the size of the quiescent subpopulation is reduced decreases

with respect to the case withVc ¼ 0:0005, and it is further reduced forVc ¼ 0:01. There is also a

consistent tendency to delay the appearance of the window when Vc is increased (figure 19).

Table 1. Summary of the results obtained using the different protocols described in Section 7.3.

Protocol 1 Protocol 1 with anti-VEGFR Protocol 2 Protocol 2 with anti-VEGFR

K 80% 90% 53% 67%
T1=2 13 16 5 10
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Figure 16. Time evolution of the total number of cancer cells. Black, solid lines correspond to simulations without
anti-VEGFR, blue, dash-dotted lines to simulations with anti-VEGFR rA ¼ 10. Anti-VEGFR is administered
between t ¼ 300 and t ¼ 375. Panels (a) and (b) correspond to Protocol 1 and 2, respectively (see text). h ¼ 5k0

m,
hR ¼ 0:07. DR has been taken to have the same value as DV .
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In view of these results, we conclude that our model is consistent with recent findings

regarding the combination of antiangiogenic therapy with cytotoxic drugs and radiotherapy,

although it predicts only minor improvement in cytotoxic drug efficacy. There are several

reasons for this under-estimation of the efficacy of combined therapy. One of them is very

likely to be the fact that angiogenesis is treated implicitly through the VEGF-dependent

structural adaptation. However, there are other possibilities, one being related to our model of

vessel co-option and dematuration. Upon co-option, vessel behaviour is determined by the

level of VEGF: low levels of VEGF lead to vessel collapse whereas high levels yield

angiogenic vessels. In our model, the transition from one type of behaviour to the other is

determined in terms of the level of VEGF compared to a threshold value, Vc. In the presence

of an anti-VEGFR drug, it is feasible that higher levels of VEGF are needed to trigger

angiogenic behaviour or, equivalently, the threshold Vc becomes larger in the presence of

anti-VEGFR. Detailed modelling of the dependence of Vc on VEGF concentration is beyond

the scope of the present work. Instead, we run simulations with increased values of Vc for the

duration of the anti-VEGFR treatment to assess the effect that this parameter has on the

behaviour of the system.

From figure 15 we observe that, although Vc has an effect on the number of cancer cells

killed by the anti-VEGFR drug alone, it does not seem to have much influence on the

outcome of the combined therapy in terms of its effect on tumour size.

8. Discussion

In this paper, we have presented a multiscale model for vascular tumour growth and tumour-

induced vessel dematuration. We have used the model to analyse the effect of combined anti-

angiogenic and cytotoxic therapies.

Upon co-option by a growing tumour mass, blood vessels undergo a process of

dematuration, which initially, in the absence of VEGF, induces vessel collapse. This, in turn,
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Figure 17. Time evolution of the total number of cancer cells. Black, solid lines correspond to simulations without
anti-VEGFR, blue, dash-dotted lines to simulations with anti-VEGFR rA ¼ 10. Cytotoxic drug administered at 450.
Anti-VEGFR is administered between t ¼ 300 and t ¼ 375. h ¼ 5k0

m, hR ¼ 0:07. DR has been taken to have the
same value as DV .
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creates large hypoxic regions which render the tumour more resistant to cytotoxic drugs.

Furthermore, when cells are killed by the cytotoxic drug, the available oxygen increases,

enabling quiescent cells to re-enter the cell-cycle and thereby allowing the tumour to

progress. Thus, the results presented in section 6 suggest a more complex scenario than that

proposed by Teicher [29], in which a combination of antiangiogenic and cytotoxic therapies

is more efficient than each one on its own because two cancer compartments are targeted.

Our model suggests a subtle interplay between the dynamics of tumour subpopulations,

oxygen supply and vascular dynamics.

In section 7, we introduced into our model an antiangiogenic drug, in particular an

antibody against the VEGF receptor, which inhibits the effect of VEGF by competitive
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Figure 18. Time evolution of the number of quiescent cancer cells. Black, solid lines correspond to simulations
without anti-VEGFR, blue, dash-dotted lines to simulations with anti-VEGFR with Vc ¼ 0:0005, green, dashed lines
correspond to simulations with anti-VEGFR with Vc ¼ 0:001, and brown, dotted lines correspond to simulations
with anti-VEGFR with Vc ¼ 0:01. rA ¼ 10. Anti-VEGFR is administered between t ¼ 300 and t ¼ 375. h ¼ 5k0

m,
hR ¼ 0:07. DR has been taken to have the same value as DV . No cytotoxic drug is present in these simulations.
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binding to the VEGFR. This type of therapy has been used in experiments in combination

with radio- and chemo-therapy [30,32]. Our model simulations are consistent with these

reproducing two basic experimental (and clinically-supported) features, namely, the

improved efficacy of cytotoxic drugs following treatment with anti-VEGFR drug, and the

emergence of a window of opportunity, i.e. period of time following treatment with anti-

VEGFR during which such improvement is possible. Administration of a cytotoxic drug

before or after this window does not improve its impact. The mechanism by which our model

produces better therapeutic outcomes when therapies are combined is related to a reduction

in the size of the quiescent subpopulation, caused by enhanced tumour oxygenation. This

mechanism is also consistent with experimental observations [32].

The mechanism by which our model produces the window of opportunity is due to the

interplay between vascular structural adaptation, oxygen supply and the dynamics of the

subpopulations of quiescent and proliferating cells. The presence of the anti-VEGFR drug

produces extensive hypoxic regions within the tumour, which leads, on the one hand, to

massive VEGF production and, on the other, to a certain amount of cell death by oxygen

starvation, the extent of which depends, among other factors, on the value of the critical

VEGF concentration for collapsing-to-angiogenic transition in an engulfed vessel (Vc). The

great amounts of VEGF produced stimulates reorganisation of the vasculature to bring

oxygen to the hypoxic regions. This effect, together with the reduction in oxygen demand

caused by cell death, leads to reoxygenation of hypoxic regions and a temporary reduction in

the size of the quiescent subpopulation. Eventually, other regions of the tumour become

hypoxic and blood flow undergoes another period of spatial reorganisation and the window of

opportunity closes.

In spite of good qualitative agreement between our simulations and experimental

observations, there are aspects of the model that need to be improved. The mechanism

described above explaining the appearance of a window of opportunity is feasible but it is

unlikely to be the only mechanism at work. For example, angiogenesis and vascular
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Figure 19. Time evolution of the total number of cancer cells. Blue, dash-dotted lines correspond to simulations
with anti-VEGFR with Vc ¼ 0:0005 and cytotoxic drug administered at t ¼ 410. Brown, dotted lines correspond to
simulations with anti-VEGFR with Vc ¼ 0:01 and cytotoxic drug administered at t ¼ 450. rA ¼ 10. Anti-VEGFR is
administered between t ¼ 300 and t ¼ 375. h ¼ 5k0

m, hR ¼ 0:07. DR has been taken to have the same value as DV .
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remodelling by vessel pruning are likely to be involved. Inclusion of these processes will be

necessary to gain a more thorough understanding of the phenomenon under study.

Another limitation of our multiscale model concerns its numerical implementation. In

particular, the diffusion of chemicals and structural adaptation are supposed to occur on a

much shorter timescale than cell division and all the processes involved in our multiscale

model are assumed to be slaved to the intracellular dynamics. Whilst this assumption is

supported by experimental data, in order to produce accurate predictions for quantities such

as the duration of the normalisation window and the waiting time between the end of the

antiangiogenic therapy and the beginning of the normalisation window, both of major

importance for clinical applications, we most likely need to account for the timescales of

VEGF clearance, vascular adaptation, angiogenesis and vessel pruning. This not only

requires a thorough re-implementation of the model, but is also related to fundamental

questions regarding numerical implementation of multiscale models such as how to achieve a

time stepping scheme that is both efficient numerically and that produces realistic results.

These model drawbacks will be the subject of future research.
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A Mathematical description of the cellular and intracellular layers of our multiscale

model

A.1 The diffusible chemicals (macroscale)

Coupling between the vascular, cellular and subcellular scales is effected by the diffusive

transport of oxygen and VEGF, under the assumption that oxygen is the single, growth-rate

limiting nutrient. We calculate their respective distributions within the tissue by solving

appropriate reaction–diffusion equations and imposing zero-flux boundary conditions. We

justify adopting the usual quasi-steady approximation in these equations on the grounds that

the timescales for oxygen and VEGF diffusion are much shorter than the tumour doubling

time which is the timescale of interest (minutes and weeks or months, respectively).

We denote by P the oxygen concentration and treat the cells as sinks and the vessels as

sources of oxygen so that the relevant diffusion equation can be written

0 ¼ DP7
2Pþ hPðPvess 2 PÞ2 lcellP: ðA1Þ
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In equation (A1), DP denotes the assumed constant oxygen diffusion coefficient, hP is the

rate at which oxygen is transported across the vessel wall (hP is only non-zero where vessels

are located), Pvess ¼ PvessðHÞ is the oxygen concentration associated with a haematocrit H

(this is determined from the vascular problem). Finally, lcell denotes the assumed constant

rate at which cells consume oxygen, with different values for normal and cancerous cells.

The local VEGF profile is calculated in a similar manner, except that cells now act as

sources of VEGF and vessels as sinks. If we further assume that VEGF is rapidly eliminated

from the vasculature (so that its concentration there is zero) and denote by lV its natural half-

life, then V satisfies

0 ¼ DV7
2V 2 hVV þ gcell 2 lVV : ðA2Þ

In equation (A2), DV denotes the assumed constant diffusion coefficient of VEGF and hV the

rate at which VEGF binds the EC surface at the vessel walls. Finally, gcell represents the rate

at which sites occupied by cells release their intracellular stores of VEGF to the extracellular

environment (this occurs only when the internal levels of VEGF exceed a threshold value).

As with lcell in equation (A1), gcell differs between normal and cancerous cells.

We note that equations (A1) and (A2) for P and V above differ from those used in Ref. [3].

There the vessels were treated as boundaries and exchange with the vasculature was

incorporated as an internal boundary condition rather than a distributed source term. With a

hexagonal network of vessels, this meant that oxygen and VEGF were confined to hexagonal

regions of the tissue.

A.2 The cellular level

The dynamics of the cell colony is modelled using a two-dimensional cellular automaton, with

N £ N automaton elements or cells [20]. Each element is characterised by a state vector,

whose components correspond to features of interest. These include: (i) occupation status

(whether an element is occupied by a normal cell, a cancer cell, an empty space or a vessel),

(ii) cell status (whether the cell is in a proliferative or quiescent state), (iii) the local oxygen

concentration, and (iv) the intracellular levels of VEGF, p53 and cell-cycle proteins (see

section 2.4). The state vector evolves according to prescribed local rules that update a given

element on the basis of its own state and those of its neighbours at the previous time step [1].

These rules were inspired by generic features of tumour growth, such as the ability of cancer

cells to elude the control mechanisms which maintain stasis in normal tissues. They can also

manipulate their local environment, providing themselves with better conditions for growth

and, eventually, for invasion of the host organism [8]. Additionally, we endow the cancer cells

with the ability to survive exposure to hypoxia for longer than their normal counterparts.

For each time step, elements of the cellular automaton are selected randomly and updated

in turn. If a particular element is occupied by a cell, we update its internal dynamics (cell

cycle proteins, VEGF and p53 levels). If a cell is ready to divide, the daughter cell is placed in

the adjacent cell with the largest oxygen concentration conditions. If there is no empty site,

the cell fails to divide and dies. The mechanism for cell death or apoptosis differs between

normal and cancer cells. In normal cells, if the intracellular level of p53 exceeds a threshold

value (which depends on the cellular composition of its nearest neighbours), then the cell

dies. By contrast, under low oxygen, cancer cells become quiescent, suspending most cell

functions, including proliferation. On entering this state, a clock is started. It is incremented

by unit steps for each time step that the cell remains quiescent. If the clock reaches a
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threshold value then the cell dies. However, if the oxygen level increases above the threshold

for cancer cell quiescence then the cell recommences cycling and its clock is reset to zero.

A.3 The subcellular level

We formulate systems of ODEs to describe the evolution of the chemicals that control the

subcellular processes of interest. These include progress through the cell cycle, VEGF and

p53 expression.

The cell cycle is regulated by complex interactions between a large number of proteins, the

key components being the families of cyclin-dependent kinases (CDKs) and the cyclins. The

activity of cyc-CDK complexes is low during G1 and becomes high after transition. In

addition, activities of the anaphase protein complex (APC) and the protein Cdh1 are such that

their levels are high in G1 but become low after the G1/S transition. For simplicity, we base

our work on the model of Tyson and Novak [31], which captures the essential features of the

cell cycle and can be written in the following form:

dx

dt
¼

ðk03 þ k003AÞð1 2 xÞ

J3 þ 1 2 x
2

k4myx

J4 þ x
; ðA3Þ

dy

dt
¼ k1 2 ðk02 þ k002xÞy; ðA4Þ

dm

dt
¼ mm 1 2

m

m*

� �
; ðA5Þ

where x ; ½Cdh1� is the concentration of active Cdh1/APC complexes, y ; ½Cyc� is the

concentration of cyclin-CDK complexes and m is the mass of the cell. The parameters ki
ði ¼ 1; 2; 3; 4Þ and Ji ði ¼ 3; 4Þ are positive constants and A represents a generic activator. In

equation (A5), m is the cell growth rate and m* is the mass of an adult cell.

Equations (A3)–(A5) can exhibit mono- and bi-stability, with the cell mass m as a

bifurcation parameter. For low values of m there is a single stable steady state with a high

value of x and a low value of y—this corresponds to G1. As m increases, the system becomes

bistable and a new stable steady state characterised by a high value of y and a low value of x

emerges. For a critical value of m the latter becomes the only stable steady state and the

system switches to this state, corresponding to the S phase. After the cell divides, m

decreases, and the system is re-set to the “G1 phase steady state”.

Guided by experimental results presented in Ref. [7] and the hypothesis that under hypoxia

expression of the regulatory protein p27 increases [10], we generalise equations (A3)–(A5)

and study the (non-dimensionalised) model (see [2] for full details):

dx

dt
¼

ð1 þ b3uÞð1 2 xÞ

J3 þ 1 2 x
2

b4mxy

J4 þ x
; ðA6Þ

dy

dt
¼ a4 2 ða1 þ a2xþ a3zÞy; ðA7Þ
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dm

dt
¼ hm 1 2

m

m*

� �
; ðA8Þ

dz

dt
¼ xðmÞ2 c2

P

Bþ P
z; ðA9Þ

du

dt
¼ d1 2 ðd2 þ d1yÞu; ðA10Þ

where now P is the oxygen tension (see equation (A1)), z is the p27 concentration and u is

the concentration of phosphorylated retinoblastoma (RB). In equations (A6)–(A10), we

assume that normal and cancer cells differ only in the rates at which they produce p27. For

normal cells, p27 expression is regulated by cell size and we fix xðmÞ ¼ cn1ð1 2 ðm=m*ÞÞ.

For cancerous cells, this size-regulation is assumed lost and xðmÞ ¼ ct1. To account for the

lower levels of p27 observed in cancer cells compared to normal cells [22] we further

assume that the maximum rate of p27 synthesis in normal cells exceeds that in cancer cells

(i.e. cn1 . ct1).

Equation (A6) renders explicit how our cell cycle model is coupled to the tissue level by

the oxygen concentration. As we now explain, the other intracellular processes of interest

(i.e. VEGF production and apoptosis) are also influenced by P. In normal and cancer cells

hypoxia stimulates the expression of VEGF and the protein p53. In normal cells p53

stimulates apoptosis and may inhibit VEGF production [27]. In cancer cells mutations in

p53 are common and the protein may upregulate VEGF production and/or prevent

apoptosis.

We denote by p and q, respectively, the concentrations of p53 and VEGF within a given

cell and assume that their evolution is modulated by P in the following manner:

dp

dt
¼ k7 2

k07P

C þ P
p; ðA11Þ

dq

dt
¼ jðp; qÞ2

k08P

Dþ P
q; ðA12Þ

where

jðp; qÞ ¼

k8 2 kn8
pq

Jnsþq
for normal cells

k8 þ kt8
pq

Jtsþq
for cancer cells

8<
:

and all parameters are positive. Thus VEGF expression increases under hypoxia, and p53

increases VEGF production in cancer cells and decreases it in normal cells. The intracellular

levels of p and q are assigned to the automaton state vector. For details on the experimental

evidence supporting the forms of equations (A11) and (A12) the reader is referred to our

previous work [3].
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Table A1. Parameter values corresponding to the new quantities introduced in the present work.

Parameter Value Units

DR 2.41 £ 1025 cm2/seg
lR 5 1/min
hR 0.07 1/min
Du 2.41 £ 1025 cm2/seg
lu 2 1/min
hu 0.07 1/min
J0 27.9 –
tr 0.103 dyn/cm2

kp 0.68 –

Table A2. Parameter values used for our cell cycle, VEGF secretion and apoptosis models.

Parameter Value (normal) Value (cancer) Units

k1 0.04 0.04 min21

k02 0.5 0.4 min21

k002 1 1 min21

k0002 0.25 0.25 min21

k03 1 1 min21

k003 10 10 min21

k04 35 35 min21

m 0.01 0.01 min21

m* 10 10 None
J3, J4 0.04 0.04 None
k5 0.1 0.002 min21

k05 0.01 0.01 min21

B 0.01 0.01 None
k6 0.01 0.01 min21

k06 0.1 0.1 min21

k7 0.002 0.002 min21

k07 0.01 0.01 min21

C 0.01 0.01 None
k8 0.002 0.002 min21

k08 0.01 0.01 min21

k008 0.002 0.002 min21

D 0.01 0.01 None
J5 0.04 0.04 None

Table A3. Parameter values used in our simulations.

Parameter Value Units

km 0.83 s21

Qref 40 nl/min
ks 1.79 s21

a 0.5 None
THR 2.5 None
DP 2.41 £ 1025 cm2 s21

KN 1.57 £ 1024 mlO2ml21 s21

KT 1.57 £ 1024 mlO2ml21 s21

hP 3.0 £ 1024 cm s21

qTHR1 (normal cells only) 1.5 None
qTHR2 (normal cells only) 2 None
pTHR1 (normal cells only) 0.08 None
pTHR2 (normal cells only) 0.8 None
zTHR1 (cancer cells only) 0.8 None
zTHR2 (cancer cells only) 0.8 None
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A.4 Chemotherapy

We now investigate how the dynamics of the normal and cancer cells change when a

chemotherapeutic drug is introduced [5]. The calculation of drug concentration uvess within

the vascular network is strongly related to the computation of the haematocrit, H (see Section

2.1). In particular, we assume that the drug is soluble in plasma and, therefore, dissolved

within the liquid fraction of blood, i.e. 1 2 H. In particular, we will assume that the

concentration of drug within each vessel is given by uadmð1 2 HÞ where uadm is the

administered dose. As with the oxygen, we view the vessels as distributed sources of drug

and assume that, once the drug leaves the vessels, it diffuses through the tissue and is taken

up by the normal and healthy cells.

Guided by equation (A1) and denoting by u the drug concentration in the tissue, at each

time step we solve the following diffusion equation, with no-flux boundary conditions, to

determine u:

0 ¼ Du7
2uþ huðuvess 2 uÞ2 ldrugu: ðA13Þ

In equation (A13), Du denotes the assumed constant diffusion coefficient of the drug, hu the

rate at which it is transported across the vessel wall and ldrug the assumed constant rate at

which cells absorb the drug (we assume that ldrug is the same for normal and cancerous cells).

Having determined uvess and u, it remains to specify the drug’s mode of action. Ultimately,

we hope to tailor our model to specific drugs according to the stage(s) of the cell cycle at

which they act. However, for simplicity, here we assume that the drug works in the following

manner. If the local drug concentration exceeds a threshold value then the cell is killed.

A.5 Numerical algorithm

When performing simulations the following algorithm is used at each time step:

i) update the vascular network using the structural adaptation rules;

ii) calculate the blood flow and haematocrit at all points within the vascular network;

iii) update the oxygen, VEGF and drug profiles by solving the relevant boundary value

problems; and

iv) update the elements of the cellular automaton, and the intracellular variables associated

with each non-empty element according to whether it is occupied by a normal or

cancerous cell.

B Parameter values

In this Appendix, we provide the values of the parameters needed to solve the PDEs for the

drugs (cytotoxic and anti-VEGFR drugs) as well as the values of the parameters

corresponding to the up- and down-stream stimuli of the vascular adaptation (table A1).

Other parameter values can be found in Ref. [3] and are reproduced here for completeness

(tables A2 and A3).
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