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In this paper, we carry out an examination of four mechanisms that can potentially lead
to changing morphologies in a growing tumor: variations in nutrient consumption rates,
cellular adhesion, excessive consumption of nutrients by tumor cells and immune cell
interactions with the tumor. We present numerical simulations using a hybrid PDE-cellular
automata (CA) model demonstrating the effects of each mechanism before discussing
hypotheses about the contribution of each mechanism to morphology change.
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1. Introduction

Over the past three to four decades, tumor growth and the dynamics of the immune system

have been a significant focus for both experimentalists and mathematical modelers.

Mathematical modeling in this area stems from the early chemical diffusion and differential

equation models of Burton [11] and Greenspan [31] and has grown into an extensive field of

literature with studies presented using partial and ordinary differential equations (PDEs and

ODEs) (see for example [12,13,41,46,54]), cellular automata (CA) (see for example

[2,7,26,36,43,49]) and many statistically based studies. An excellent review of mathematical

models of tumor growth and some of the closely related literature was recently given by

Araujo and McElwain [5].

The mathematical modeling of the immune system in its various roles is also a rich field of

study. For example, Perelson provides a substantial review of the immune system before

demonstrating the process of modeling the immune system from the point of view of a

physicist [52]. Ordinary differential equations are widely used to model the kinetics of the

immune response as illustrated in the work of Merrill [45], Callewaert et al. [14], and

Perelson and Macken [51]. CA methods have also arisen in immune system modeling such as

in the “IMMSIM” model of Seiden and Celada [59].

Bellomo and Maini [8] note that a significant issue in the modeling of biological systems is

the multiscale nature of many such systems. They discuss three distinct but linked levels: the

sub-cellular level which covers gene expression, receptor binding and cellular signaling; the
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cellular level where, for example, cellular interactions regulated by sub-cellular signals are

considered; and the macroscopic level. The cellular level of biological systems is often

modeled using nonlinear integro-differential equations or by discrete, agent-based models

[50,53,57]. In relation to the cellular level of tumor growth, when cell proliferation is not

suppressed by the immune system, tumor cells may condense to form a solid mass, leading

researchers to develop an interest in descriptions of tumor growth at the macroscopic scale,

[9]. At this macroscopic level we can study interactions between the host and macroscopic

boundaries, such as tumor boundaries, or the behavior of aggregate cell populations which

might lead to tissue heterogeneity. Such systems can be investigated using moving boundary,

nonlinear partial differential equation systems, via level-set methods, or using mean-field

models, [16,17,19]. Greller et al. [32] provide a generalized conceptual foundation for the

modeling of tumor growth and heterogeneity produced therein.

The model developed here couples the growth of a tumor mass with the response of the

immune system. We use partial differential equations to provide a macroscopic description of

relevant nutrients, combined with a discrete strategy which considers the behavior of

individual cells and their interactions, at the cellular level. Thus, the model can be considered

a hybrid of the macroscopic approach and an agent-based approach. Greller et al. [32] offer

astute reasons for taking care when taking the continuum limit of a microscopic process. In

this case, the validity of a continuum model of the molecular concentrations has been justified

historically by the use of the continuous diffusion equation to model the diffusion of small

molecules through tissue, e.g. [23,24,65]. Furthermore, the timescale of molecular diffusion is

short relative to that of tumor cell growth, justifying the modeling of the small molecule

population as an aggregate. Tumor–immune cell interactions on the other hand, are modeled

at the cellular level: since we are interested here in explaining tumor morphologies and

specific immune cell recruitment, the explicit modeling of the movements and interactions of

individual cells is important. Therefore, rules of evolution based on the state and location of

individual cells are derived and implemented, (see section 2).

A number of previous mathematical models have also coupled tumor growth with

immune system dynamics. The majority of the coupled models are fully deterministic and

are comprised of a series of ODEs or PDEs describing the dynamics of, for example, tumor

cells, host cells and immune cells [6,19,21,28,37,39,40,44,46–48,62]. Bellouquid and

Delitala [9] model the dynamics of general populations of interacting cells using kinetic

theory and non-equilibrium statistical mechanics before offering specific examples.

Coupled tumor-immune system models, both cellular and sub-cellular level depictions, are

reviewed by Adam and Bellomo [1] and discussed again later in [55]. In more recent works,

immunotherapy has also been investigated using similar ODE models coupled with optimal

control theory [10,20,22].

Most of these tumor-immune system models are fully deterministic, and while some

models consider spatial tumor–immune interactions, these often focus on very simple spatial

domains [44,46,48]. Here we also model temporal evolutions but extend the spatial

consideration to a two-dimensional domain employing a hybrid CA–partial differential

equation modeling approach.

This deterministic-stochastic CA modeling approach has been successfully used in the past

to model tumor growth, chemotherapeutic treatment and the effects of vascularization on

tumor growth [2,26,27,49]. Here we use reaction-diffusion PDEs to describe chemical

species such as growth nutrients, and a CA strategy to track the tumor cells as well as immune

cell species. Together, these elements simulate the growth of the tumor and the interactions of

the immune cells with the tumor-growth.
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The flexibility of this CA modeling strategy and its computational implementation are

illustrated (and essential) here where we consider a number of different possible causes for

tumor morphology changes.

Similar discrete models, for example the PDE inspired models of Anderson and Chaplain

[4] and off-lattice approach of Drasdo and Loeffler [25], have been used in the study of tumor

growth and related processes. The model in this paper uses phenomenologically sourced,

probabilistic CA rules rather than behaviors taken directly from PDE approximations and is

more structured spatially than the off lattice models.

Using the hybrid CA–PDE model, we consider four mechanisms:

i) nutrient consumption variations,

ii) cell–cell adhesion,

iii) tumor “gluttony” with regard to nutrients, and

iv) immune cell interactions

leading to different morphological structures for two-dimensional tumors. This is

accomplished through the development of a model with cellular behaviors related to those

described in the experimental literature and by considering the ODE models of tumor-

immune system interactions developed in other works (such as [20,22,39]).

In section 2, we present the development of the mathematical model used in this study

including a description of the CA rules. In section 3, representative simulations are presented

in order to gauge the effects of the various mechanisms on the growth of tumors before a

discussion and interpretation of the results is presented in section 4.

2. Model overview

The model we implement is an extension of the CA hybrid model of Mallet and de Pillis [43].

The cell types and chemical species modeled are equivalent, with the exception that the

current model additionally tracks necrotic tumor cells. This work also includes several new

CA rules, other modified or enhanced rules and a number of new assumptions to allow for the

modeling of the different mechanisms responsible for tumor morphology changes.

The nutrient species and cell populations we track with this model are outlined in table 1.

As in [59], we assume the presence of two nutrient types, one necessary for mitosis, and one

necessary for survival. The sections that follow outline the model implemented in this

research.

Table 1. Nutrients and cell types in model.

Variable Description

N(x, y, t) Mitosis nutrient concentration
M(x, y, t) Survival nutrient concentration
H(x, y, t) Normal host cell number
T(x, y, t) Live tumor cell number
Tnec(x, y, t) Necrotic tumor cell number
NK(x, y, t) Total NK immune cell number
L(x, y, t) Total CTL immune cell number
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2.1 Nutrient diffusion

The following assumptions have been made in order to model the evolution of nutrients over

time and in space.

. Both nutrient species are governed by reaction-diffusion equations of the same form, and

diffusion rates for the two nutrients are equal.

. Normal tissue and immune cells consume both nutrients at the same rate a 2

(time21cell21).

. The consumption rate of both nutrients by tumor cells is a constant multiple of the normal

and immune cell consumption rates. These factors are denoted by lM and lN.

. Nutrients diffuse from a blood vessel on the boundary of the computational domain.

Nutrient concentrations at the outer blood vessel wall are assumed to be constant.

The diffusion of the nutrients through tissue is modeled by the following non-

dimensionalized reaction-diffusion equations, as given in [43]:

›N

›t
¼ 72N 2 a2ðH þ NK þ LÞN 2 lNa

2TN; ð1Þ

›M

›t
¼ 72M 2 a2ðH þ NK þ LÞM 2 lMa

2TM: ð2Þ

The derivation of the non-dimensionalized equations and the justifications for the

parameter choices and simplifications can be found in [43].

2.2 Cell dynamics

As mentioned in the introduction, while we model the diffusion of the nutrients with a system

of reaction-diffusion equations, we model the action of the cell populations using local rules

that are both probabilistic and deterministic. Cells will die, proliferate, or move depending on

both the local concentration of nutrients near the cell and the states of neighboring

cell populations. The parameters implemented for this portion of the model are outlined in

table 2.

2.2.1 Tumor cells. In this model, tumor cells are allowed to divide, move, or die, depending

upon nutrient levels, the presence of immune cells, and forces due to cell–cell adhesion.

Tumor cells die in one of two ways: either they are killed by cytotoxic lymphocytes, or they

die due to insufficient nutrient; in this model, as in [43], cells do not undergo apoptosis. Each

of these changes of state is governed by a probabilistic rule, which can be a function of

nutrient concentrations, M and N, as well as immune cell populations, NK and L.

Of the six probability functions summarized in this section, PL, PLD and PNK have the same

forms and functions as those in [43]. However, Pdel, Pdiv and Pimdth play the same roles but

have different forms. For completeness, therefore, we provide the formulas for all of the

probability functions. To give an idea of the shape of each probability function, sample plots

are provided in figure 1.

Tumor cell death due to insufficient nutrient. Tumor cell populations are updated at each

proliferation time-step by considering each grid element containing a tumor cell in turn,
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using a random ordering of elements at each cell-cycle. Within each grid element, all tumor

cells can potentially change states. First, each tumor cell dies with probability Pdel (see figure

1), a function of the local concentration of the “survival” nutrient, M:

Pdel ¼ exp 2HðM 2MminÞ
M 2Mmin

udel

� �2
" #

; ð3Þ

where H represents the Heaviside step function:

HðxÞ ¼
0 if x , 0;

1 if x $ 0:

(
ð4Þ

The use of the Heaviside function in Pdel forces death of the tumor cell if nutrient

concentration M is below the death threshold, Mmin. Dead cells become part of the necrotic

population, and are removed from the living tumor population.

Tumor cell division due to sufficient nutrient. Next, those tumor cells that do not

undergo necrosis are eligible to divide: each living tumor cell produces a daughter cell

with probability Pdiv (figure 1), a function of the local concentration of the “mitosis”

nutrient, N:

Pdiv ¼ 1 2 exp 2HðN 2 NminÞ
N 2 Nmin

udiv

� �2
" #

; ð5Þ

Table 2. Description of model parameters used in the hybrid model. Entries marked with a (*) are new additions to
the model, or significantly modified, while all other entries are also components of the model presented in [43].

Parameter Description

lN Multiplier for cancer cell consumption of mitosis nutrient N (cancer consumption rate of
N ¼ lN £ normal cell consumption rate of N)

lM Multiplier for cancer cell consumption of survival nutrient M (cancer consumption rate of
M ¼ lM £ normal cell consumption rate of M)

udiv Parameter inversely related to probability of tumor cell division: increasing udiv decreases
chance of division

Nmin (*) Tumor cell division threshold: if nutrient concentration is less than Nmin, probability
of tumor cell division is 0

udel Parameter affecting probability of cell death: increasing udel increases chance of tumor
cell death

Mmin (*) Tumor cell death threshold: if nutrient concentration is less than Mmin, probability of
tumor cell death is 1

I0 Background ratio of natural killer cells: (Initial # NK cells) /(Total # Grid Elements)
uL Parameter inversely related to CTL induction: increasing uL decreases chance

of induction of CTLs by tumor cells
uLD Parameter for CTL death probability curve: increasing uLD increases chance of CTL death
uN (*) Probability of CTL induction by NK cells: increasing uN increases chance of

induction of CTLs signaled by NK–tumor interactions
Copt (*) The optimal (energy minimizing) number of tumor cells in a grid site
Is (*) Overall immune strength against tumor cells: the smaller the parameter, the higher

the number of immune cells required in the neighborhood of a tumor
cell to kill that cell

CTLkill Number of times one CTL can attack tumor cells before deactivation
NKkill Number of times one NK cell can attack a tumor cell before deactivation
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where H is the Heaviside step function (see equation (4)). Cell division is only possible if the

concentration of nutrient is above the threshold Nmin, after which the higher the concentration

of nutrient N, the higher the likelihood of cell division.

Tumor cell death due to immune cells. After cell division, living tumor cells are distributed

among the elements in a 3 £ 3 neighborhood of the grid element according to an energy

minimizing adhesion rule, described below. As in [43], Pimdth, the probability that a tumor

cell will be lysed by either the NK cells or the CTLs, is given by
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Figure 1. Plots of probability curves: Top: Pdel Pdiv. Center: Pimdth, PL. Bottom: PLD, PNK.
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Pimdth ¼ 1 2 exp½2ðIcntIsÞ
2�: ð6Þ

Here Icnt is the total number of immune cells, both NK cells and CTLs, in the neighborhood

of the relevant tumor cell: Icnt ¼
P

nbhdðNK þ LÞ. We consider this local neighborhood to

include the eight grid elements surrounding the grid site of interest, but further experimental

information could result in modifications of the definition of this neighborhood.

The rules for immune cell kill of tumor cells are further described in section 2, in which the

evolution of the immune cell populations is discussed.

Modeling cell–cell adhesion and invasion. This model attempts to capture the behavior of

proliferating tumor cells as they become crowded and invade neighboring grid elements. It is

important to consider the effects of cellular adhesion between cells and the extra-cellular

matrix (ECM) since the secretion or suppression of adhesion molecules is a possible

mechanism for the onset of metastasis [3,29,33]. Mathematical models incorporating

adhesion include [12,42,56], while [17,60] explore the relationship between cell–cell

adhesion, tumor morphology, hypoxia and disease prognosis.

Turner [63,64], provides a method for estimating the diffusion coefficient for biological

cells modeled as adhesive, deformable spheres by considering the “potential energy of

interaction” between individual cells. Turner shows that the diffusion coefficient is

proportional to the second derivative of the grid element’s potential energy function,

E(T),which can be derived in terms of the biological parameters of individual cells, such as

elasticity and adhesiveness, (see figure 2). In this model we adapt Turner’s method to the CA

framework by redistributing living tumor cells after each proliferation step according to the

following rule. The energy function is parametrized by its minimizing value, denoted by
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Figure 2. Potential energy function, E(T).
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Copt. If a newly updated grid element contains more than Copt cells, excess cells are

distributed in the element’s 3 £ 3 neighborhood by moving cells to any element with fewer

than Copt cells, in order of decreasing cell density. This way, elements with cell populations

closest to Copt are filled up to Copt first. If, after this initial redistribution, the center grid

element still contains more than Copt cells, living cells are evenly distributed, one by one, in a

random order, to neighboring grid elements. The center grid element is not allowed to

contain more than Copt cells. This provides a mechanism for inducing metastasis; for

example, by setting Copt to zero, living tumor cells are forced to metastasize.

2.2.2 Immune cells. NK cells are part of the innate immune response, and in this model are

present at all times. They are allowed to roam freely and randomly through the computational

grid, taking action when they do encounter a tumor cell. As in [43], in order to maintain the

background immune system level, we impose a rule to generate new immune cells.

NK cell production. The homeostatic level of natural killer (NK) cells is determined by a

fixed parameter of the system, denoted by

I0 ¼
Initial # NK cells

Total # Grid elements
:

At each cell-cycle, new NK cells are generated in any grid element without an NK cell in it

with probability PNK (see figure 1).

The probability that a new NK cell will be produced is given by

PNK ¼ I0 2
Current # NK Cells

Total # Grid Elements
: ð7Þ

PNK is the difference of the a priori specified background ratio of NK cells to normal cells

and the current NK to normal cell ratio. The likelihood of generating a new NK cell goes

down as the total NK cell count goes up.

CTL induction. Unlike NK cells, CTLs are specific killers, and so they must be primed and

recruited to the region of the tumor through various signals. To reduce computational

requirements, we assume that NK cells and CTL cells do not occupy the same grid site at the

same time. This then implies that a tumor cell is either killed by NK cells or by CTLs, but not

by both simultaneously. This simplifying assumption is not a major hindrance to the

functioning of the overall immune response to the tumor, but it is one that we wish to modify

in future versions of this model.

The rules for the induction of CTLs in this model are as follows: if at least one tumor cell

and one NK cell share the same grid site, then, with probability uN we induce the recruitment

of CTLs to that location. Thus, the larger uN, the greater the chance of recruiting CTLs to a

location that presumably contains tumor cell detritus.

Similarly, if a tumor cell and CTLs share a location, more CTLs will be recruited to that

spot, with a probability, PL (see figure 1). This probability depends on the local tumor

density, and is given by

PL ¼
exp 2 uL

Tcnt

� �2
� �

; Tcnt . 0

0; otherwise

8><
>: ð8Þ
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Here, Tcnt is the number of tumor cells in the 3 £ 3 square centered at the relevant grid

element, and uL determines the shape of the probability curve.

Additionally, CTLs can be recruited to the immediate neighborhood surrounding the

shared tumor-CTL grid site. The surrounding grid elements are sampled for further CTL

induction. For each neighboring element that does not currently contain a CTL, a new CTL

cell is created with probability PL. This specific lymphocyte recruitment facilitates the

satellitosis where T cells have been observed surrounding tumor cells undergoing apoptosis

[61]. For completeness we note that for a neighboring tumor cell count of zero, PL is defined

to be zero also.

In both cases, we note that CTL recruitment is possible as a result of either NK cells or

CTL cells coming into contact with tumor cells, and does not require tumor cell lysis, as do

the rules in [43].

When a tumor cell dies, in addition to updating the living and necrotic tumor populations,

we distinguish between whether the tumor cell was killed by CTLs or NKs, and deactivate

the immune cell, that is, reduce the immune cell count in that grid site accordingly.

If there is no cancer cell at a particular grid site, but there are immune cells, then the

immune cells may move. Unlike in [43], we allow NK cells to move about “semi-blindly”,

that is, they move preferentially toward an immune-cell-free grid location, regardless of

whether there is a tumor cell in that location or not. On the other hand, CTL cells move

preferentially toward a tumor-occupied location.

CTL and NK cell death. As in [43], CTLs are assumed to die by one of two means. Firstly,

they become functionally useless (and therefore, not tracked by the program) when their cell

kill value CTLkill is reduced to zero. (As in [43], it is assumed that the cells of the specific

immune system are able to lyse tumor cells more than once [38].) Secondly, the CTLs will

die off or—equivalently as far as the implementation is concerned—move away from the

domain of interest if they no longer detect tumor cells in their neighborhood. This cell

removal occurs with probability PLD (see figure 1):

PLD ¼
1 2 exp 2 uLD

Tcnt

� �2
� �

; Tcnt . 0

0; otherwise

8><
>: ð9Þ

Here uLD is a parameter determining the steepness of the probability curve. The probability

of immune cell death is one when there are no tumor cells nearby.

NK cells, on the other hand, are removed in only one way: deactivation through NK–

tumor interactions. Currently, this occurs after an NK cell kills one tumor cell, since it is

assumed that, unlike CTLs, each NK cell has the ability to attack only one tumor cell and

then it is deactivated.

3. Simulations and results

In this section, we present simulations of various realizations of the model for different

parameter sets, in order to test the effect on morphology of changing consumption rates,

tumor gluttony, cell–cell adhesion and immune response. Two simulations with the same

parameters will give different outcomes because of the probabilistic nature of the model. The

simulations presented here are representative outcomes of typical simulation runs.
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3.1 Effects of nutrient consumption rates

Different rates of consumption of the mitotic nutrient have been considered previously by

Mallet and de Pillis [43] and by Ferreira et al. [26]. Increasing the uptake of the nutrient by

the tumor cells effectively increases their motility, since nutrient levels quickly become too

low to support cell life at sites with high tumor density. Figure 3 shows characteristic

growth patterns for different levels of nutrient consumption. On the left, the tumor

consumes mitotic nutrient at a slower rate and hence can grow in density without moving

far from the initial site of mutation. Note that this leads to the formation of a necrotic core

in the interior of the tumor where nutrient levels have fallen. On the right, the tumor cells

consume nutrient much faster than in the left hand simulation. To divide, the cells need to

move away from the initial site of the tumor, toward the regions of higher nutrient

concentration near the blood vessel, and a “fingered” growth develops. It is clear that

varying the rate of tumor-cell nutrient consumption can lead to quite different tumor

morphologies. It has been shown experimentally that a change in the tumor’s micro-

environment, in terms of pH or oxygenation, can affect a cell’s ability to metabolize

nutrient, [15]. Thus, manipulation of this micro-environment has been suggested as a

treatment strategy, [30].

3.2 Effects of tumor cell nutrient “Gluttony”

Tumor morphology is also affected by the ratio between consumption of nutrients by

tumor cells and the consumption by host and immune cells. For the two nutrients

respectively, the ratio is provided immediately by the parameters lN and lM. Figure 4

shows the spatial growth of a tumor with cells which consume both mitotic and survival

nutrients at a much greater rate (100 times as fast) than do the normal host cells. The

tumor evolves into a branched structure with cells actively searching for new areas with

high nutrient levels, leaving behind them necrotic debris caused by tumor cell death due to

a lack of nutrients. This is in contrast to the round-growth situation shown in the left side

Figure 3. Tumor growth after 450 iterations with white tumor cells and black necrotic cells, for nutrient
consumption rates lN: 1.5 (left) and 45 (right). lM ¼ 1.5, Nmin ¼ 0.83, Copt ¼ 2, udiv ¼ udel ¼ 0.08, uL ¼ 7, uN ¼ 1,
uLD ¼ 0.14, I0 ¼ 0.003, Is ¼ 0.25, CTLkill ¼ 1, NKkill ¼ 1, Mmin ¼ 0.725.
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of figure 3 where tumor cells consume nutrients at nearly the same rate, (1.5 times as fast),

as host cells.

Figure 5 shows that interestingly, a gluttonous approach to nutrient consumption is not

always advantageous for the tumor. In fact, considering the first 20–30 iterations shown in

the figure, the excessive consumption of nutrients could lead to quick tumor destruction. As

the tumor tries to establish itself, the depletion of local nutrient levels reduces the possibility

of cell division. Even if the tumor is able to establish high enough cell numbers to evade
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Figure 5. Number of tumor cells over time for two different gluttony levels—lM ¼ lN ¼ 1.5 (default, dotted line)
and lM ¼ lN ¼ 100 (high gluttony, solid line).

Figure 4. Tumor growth after 1000 iterations showing results of high tumor “gluttony” implemented through
parameter values lN ¼ lM ¼ 100. Other parameters are as given in figure 3.
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destruction completely, figure 4 shows that the cells are constantly in search of new nutrient-

rich areas of tissue which leads to the much lower, almost steady population of cells

illustrated by figure 5.

3.3 Effects of weak versus strong adhesion

Using the CA-adaptation of Turner’s work, we also examined the effects of cell adhesion on

the growth of tumors. Figure 6 shows the growth rates of tumors with three different values of

the Copt parameter. This parameter determines when a location in the CA holds the optimum

number of tumor cells and when the cells at that location would start spilling over into other

locations. It is shown that the growth rate is significantly increased for lower values of Copt,

and indeed for higher values of the parameter it appears quite possible that the tumor could

be destroyed given other favorable circumstances, since the population nears extinction

several times. The simulation suggests a possible mechanism for the initiation of metastasis

via an alteration of cell adhesiveness. Experimental evidence for such a mechanism and its

role in tumor growth is given in [35] and the references therein.

Figure 7 shows the spatial growth patterns of tumors with increasing tumor cell adhesion

parameters. Lower values of Copt, such as the zero value discussed earlier, force tumor cells

to move to other locations quickly, and take advantage of favorable nutrient conditions to

divide and increase the overall population. For higher Copt values, the tumor cells adhere to

each other, up to the optimal density, and are therefore more likely to remain in the location

of the parent cell. However, the growth of the tumor population is hindered by the fact that

the higher concentrations of cells consume more nutrients, and a necrotic core develops

inside a (more or less) convex viable tumor rim.

3.4 Effects of weak versus strong immune response

Mallet and de Pillis [43] discussed the effects of the immune system on the growth rate of

tumors and to a lesser extent the growth patterns. Here we see results regarding the effects of
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Figure 6. Tumor growth rate (number of tumor cells over time) as a function of the adhesion parameter,
Copt ¼ 0,2,5. Other parameters are as given in figure 3.
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different background immune system levels and CTL induction strengths on tumor growth.

In figure 8, a stronger natural immune system (I0 ¼ 0.003) is capable of controlling tumor

growth and rebound. The simulation shown on the right of this figure shows that if the tumor

can be detected by the immune system, it might decrease in size, but then can return to a

second growth phase evading the immune system’s control.

Figure 9 shows similar results to those found in [43] where a stronger recruitment of CTL

cells (uL ¼ 3) induces a faster and more effective immune response to the tumor. The weaker

response shown for uL ¼ 15 initially controls the tumor but the immune system is soon

overwhelmed and the tumor growth resumes. Note that while the CTL population does grow,

it does not happen quickly enough to control the tumor growth.

Figure 10 is the spatial description at 40 and 80 iterations of the same simulation shown in

figure 9. This shows the effect of the immune system, and in particular, the induction of CTL

cells to the site of the growth, on the morphology of the tumor. The immune cells appear to

surround then lyse the tumor cells for the case of strong induction. This is consistent with the

observations of [18] and [34] who note that in spontaneous regression/complete resistance

(SR/CR) mice, cancer cells induce infiltration of effector cells that form rosettes around the

cancer cells, followed by cancer cell destruction. For the weaker immune cell induction case,

some tumor cells are lysed, but most escape the immune attack, and continue to spread and

divide as described in previous sections.

Figure 7. Tumor growth patterns for various levels of adhesion. Left: Copt ¼ 0 and 250 iterations; center: Copt ¼ 2
and 1500 iterations; right: Copt ¼ 5 and 1000 iterations. Other parameters are as given in figure 3. Necrotic cells are
shown in black and living cells are shown in white.

Figure 8. Tumor growth after 700 iterations for two different underlying immune strengths: I0 ¼ 0.003 (left) and
I0 ¼ 0.001 (right), with uL ¼ 7. Living cells are shown in white and necrotic cells in black.
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Figure 9. Comparison of the cell populations (tumor, CTL, NK) over time for two different values of the CTL
induction parameter, uL ¼ 3 and 15. I0 ¼ 0.003 (default) in both cases.

Figure 10. Spatial view of the simulations described in figure 9 at 40 and 80 iterations. Living tumor cells are
shown in black and immune cells are shown in white.
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4. Discussion

The morphological development of a growing tumor can be significant when investigating

factors such as staging, potential for metastasis, immune cell infiltration, and treatment

effectiveness. The CA-hybrid model of tumor growth we have presented in this work

provides a set of rules that allow us to investigate spatio-temporal tumor growth in the

context of nutrient consumption rates, cell–cell adhesion and both innate and specific

immune responses. We have shown that each of these factors has some effect on the

morphology of the growing tumor, as well as on the tumor’s ability to establish itself.

In future versions of this model, we plan to incorporate further rules to reflect more details

of the biology at various scales. For example, we are currently working on the incorporation

of rules that drive cell-cycle dynamics and tumor invasion of normal tissue as a function of

realistic oxygen and glucose consumption rates, ATP production and waste excretion.

Additionally, for investigation of chemotherapy and immunotherapy treatments, we are

including vascular structures, and the effects of vascular growth and collapse.

Computational constraints are currently a major reason for running all the simulations

presented in this paper in two dimensions, instead of three. The computation of the diffusion

of the two chemical species consumes the majority of the simulation time. We tracked the

diffusion of nutrients by solving the steady state diffusion equation, a reasonable approach

since diffusion of the relevant chemicals takes place on a much shorter time scale than the

cell-cycle. This is an approach taken by others as well [26,27]. The significant time-sink in

the computational solution of the steady-state diffusion equations is the sparse matrix solver.

We tested multiple sparse matrix solvers, and found that the most efficient of the easy to

implement solvers was BiCGStab. We note, however, that all the sparse matrix solvers

encounter problems with break-down, and when that happens, another solver must be

employed, generally a direct solver. This approach is not the most computationally efficient,

but was the one used in [43]. We, therefore, implemented an alternate approach for the

simulations presented in this paper. With this alternate approach, diffusion is calculated using

discrete local rules, and concentrations are updated more often when changes in cell

populations occur. Numerical tests showed that this last approach was much faster, and

produced comparable results. Details of the numerical procedure will appear in a forthcoming

paper. We are currently considering the exploration of a multi-grid approach in hopes that this

will allow the extension of the current model to three space dimensions.
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