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The goal of the paper is to compute efficiently solutions for model equations that have the
potential to describe the growth of human tumor cells and their responses to radiotherapy or
chemotherapy. The mathematical model involves four unknown functions of two independent
variables: the time variable t and dimensionless relative DNA content x. The unknown
functions can be thought of as the number density of cells and are solutions of a system of
four partial differential equations. We construct solutions of the system, which allow us to
observe the number density of cells for different t and x values. We present results of our
experiments which simulate population kinetics of human cancer cells in vitro. Our results
show a correspondence between predicted and experimental data.
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1. Introduction

The cancer cell division cycle can be divided into four distinct phases, namely the G1-phase,

DNA synthesis or S-phase, G2-phase and mitosis or M-phase; see figure 1 of Ref. [1], which

expresses the accumulation of cells in each of the phases and the movement of cells between

them. For earlier studies on cell cycle dynamics, see Refs. [2–6]. Many mathematical models

describing the behavior of cell populations have been developed in Refs. [1,7–18]. The goal

of this paper is the analysis of human cell cycle dynamics, using the model of Ref. [1] and

observing the G1, S, G2, M-phases.

The transitions between the G1, S, G2, M-phases are controlled by stochastic processes.

The mathematical model, which is developed in Ref. [1], describes these phases and the

transition rates between them. The model equations of Ref. [1] are:

›G1ðx;tÞ
›t

¼ 4bMð2x; tÞ2 ðk1 þ mG1
ÞG1ðx; tÞ;

›Sðx;tÞ
›t

¼ D ›2Sðx;tÞ
›x 2 2 mSSðx; tÞ2 g ›Sðx;tÞ

›x
þ k1G1ðx; tÞ2 Iðx; t; TSÞ;

›G2ðx;tÞ
›t

¼ Iðx; t; TSÞ2 ðk2 þ mG2
ÞG2ðx; tÞ;

›Mðx;tÞ
›t

¼ k2G2ðx; tÞ2 bMðx; tÞ2 mMMðx; tÞ:

8>>>>>><
>>>>>>:

ð1Þ
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Here, t $ 0 is time (measured in hours) and x is the dimensionless relative DNA content. The

dependent variables, G1ðx; tÞ, Sðx; tÞ, G2ðx; tÞ and Mðx; tÞ can each be thought of as the

number density of cells. For the dispersion term Dð›2Sðx; tÞ=›x2Þ, we refer the reader to Ref.
[1], section 1. The term Iðx; t; TSÞ is given by

Iðx; t; TSÞ ¼
Ð1
0
k1G1ðy; t2 TSÞg ðTS; x; yÞ dy; t $ TS;

Iðx; t; TSÞ ¼ 0; t , TS;

(
ð2Þ

where g ðTS; x; yÞ is a given weight function and TS is a constant representing the time in the

S-phase, see Ref. [1].

The parameters mG1
, mS, mG2

and mM are the death rates in G1, S, G2 and M-phases,

respectively. The parameters k1 and k2 are the transition probabilities of cells from G1 to S-

phase and from G2 to M-phase, respectively; b is the division rate; D is the dispersion

coefficient; and g is the average growth rate of DNA in the S-phase. In this paper, we consider

constant parameters, like in Ref. [1], but they all may be functions of either x or t, or both of

these variables.

The system (1) is incomplete and should be supplemented with initial and boundary

conditions. These side conditions, which are chosen according to experimental evidence,

take the form

G1ðx; 0Þ ¼
a0ffiffiffiffiffiffiffiffiffiffi
2pu20

q exp 2
ðx2 1Þ2

2u2
0

� �
; 0 , x , 1;

Sðx; 0Þ ¼ 0; G2ðx; 0Þ ¼ 0; Mðx; 0Þ; 0 , x , 1;

ð3Þ

D
›Sð0; tÞ

›x
2 gSð0; tÞ ¼ 0; t . 0: ð4Þ

Here, a0 is the total number of cells in G1-phase at time t ¼ 0 and the average DNA content

is 1.

The goal of this paper is to compute quickly the dependent variables G1ðx; tÞ, Sðx; tÞ,
G2ðx; tÞ and Mðx; tÞ at arbitrary values of x and t. When discretizing system (1) with respect to

the variable x, one arrives at a large system of differential equations. Then, the large system

needs to be integrated in time t. When using explicit time integrators for equation (1), we

have to deal with stability restrictions, which depress the time step-size Dt. The explicit

methods are straightforward in implementation, but they need depression of the time step-

size to avoid instabilities. However, small step-sizes Dt mean very intensive computations.

Unfortunately, since the G1, S, G2 and M-phases need to be controlled over long time

intervals, integrating model (1) in small step-sizes Dt leads to serious problems with the

computational time. Therefore, model (1) needs unconditionally stable implicit time

integrators so that no restrictions are imposed on the time step-size Dt. Using such methods

allows the choice of Dt only according to accuracy needs and without fulfilling any stability

conditions.

Although, using unconditionally stable implicit time integrators has the advantage of using

arbitrary time steps Dt, they need additional computations because of their implicitness,

which produces additional systems of algebraic equations. Moreover, these additional

algebraic systems need to be solved step by step at each time grid over the whole interval of
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time integration. This increases the computational time especially for long time intervals.

Therefore, we propose a different approach.

In this paper, we use implicit time integrators for equation (1) and take the advantage of

their good stability properties. However, since implicit methods require the extra cost of

solving algebraic systems per each time step, our goal is to change semi-discrete systems for

equation (1) into simple triangular systems of differential equations. Since triangular systems

of differential equations can be solved by implicit integrators in a straightforward way before

their actual implementation, our method does not need any algebraic system to be solved in

any time step.

To have simple triangular systems of differential equations for (1), we construct iterations

(section 2), which differ from classical iterations as their successive iterates are functions of

time instead of sets of discrete unknowns. The convergence of the iterations is studied in

section 3. The triangular form of the newly-constructed differential systems for equation (1)

allows the use of the advantages of the implicit integrators without dealing with their

disadvantages. This saves the computational time for equation (1), which gives easy access to

the solution curves for the G1, S, G2, M-phases.

In section 4, we compute the dependent variables G1ðx; tÞ, Sðx; tÞ, G2ðx; tÞ and Mðx; tÞ using

our iterative technique and compare them with the experimental data, which are presented in

Ref. [1]. The data correspond to the population kinetics of human cancer cells in vitro. Our

computed approximations for G1ðx; tÞ, Sðx; tÞ, G2ðx; tÞ and Mðx; tÞ resolve the experimental

data. A good correspondence between the predicted and the experimental data is confirmed

by our solutions.

2. Solving the model problem

To compute Sðx; tÞ, the DNA synthesis or S-phase, we first discretize the second equation of

(1) in the variable x. We apply the k-scheme of Ref. [19] for the advection part and the

central finite difference operator for the diffusive part of the second equation in system (1).

This results in the following system of differential equations:

dG1ðtÞ
dt

¼ 4bM2ðtÞ2 ðk1 þ mG1
ÞG1ðtÞ;

dSðtÞ
dt

¼ ASðtÞ2 mSSðtÞ þ RðtÞ;

dG2ðtÞ
dt

¼ Iðt; TSÞ2 ðk2 þ mG2
ÞG2ðtÞ

dMðtÞ
dt

¼ k2G2ðtÞ2 ðbþ mMÞMðtÞ

8>>>>>><
>>>>>>:

ð5Þ

with the unknown vectors:

SðtÞ ¼

S1ðtÞ

. . .

SiðtÞ

. . .

SnðtÞ

2
666666664

3
777777775
; GlðtÞ ¼

GðlÞ
1 ðtÞ

. . .

GðlÞ
i ðtÞ

. . .

GðlÞ
n ðtÞ

2
666666664

3
777777775
; MðtÞ ¼

M1ðtÞ

. . .

MiðtÞ

. . .

MnðtÞ

2
666666664

3
777777775
; M2ðtÞ ¼

M2ðtÞ

. . .

M2iðtÞ

. . .

M2nðtÞ

2
666666664

3
777777775
;
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for l¼ 1; 2, i¼ 1; . . .; n and t$0. Here, Si(t), G
ðlÞ
i ðtÞ; Mi(t) and M2i(t) are approximations to

S(xi, t), Gl(xi, t),M(xi, t),M(x2i, t), respectively. The approximations are computed at the grid

points xi ¼ ih, which are determined by h . 0, the parameter of the finite-difference

discretization in x. Moreover, A is the n by n matrix defined by

A ¼

p3 p4 0 0 0 . . . 0 0 0 0

p2 p3 p4 0 0 . . . 0 0 0 0

p1 p2 p3 p4 0 . . . 0 0 0 0

0 p1 p2 p3 p4 . . . 0 0 0 0

..

. ..
. ..

. ..
. ..

.
. . . ..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

.
. . . ..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

.
. . . ..

. ..
. ..

. ..
.

0 0 0 0 0 . . . p1 p2 p3 p4

0 0 0 0 0 . . . 0 p1 p2 p3

2
6666666666666666666664

3
7777777777777777777775

ð6Þ

with

p1 ¼
2gð12 kÞ

4h
; p2 ¼

gð52 3kÞ

4h
þ

D

h2
; p3 ¼

2gð32 3kÞ

4h
2

2D

h2
;

p4 ¼
2gð1þ kÞ

4h
þ

D

h2
:

ð7Þ

The term Iðt; TSÞ, for t . 0, is a column vector of n components Iiðt; TSÞ, i ¼ 1; . . .; n,
approximating the values of Iðxi; t; TSÞ defined by equation (2) at the grid points xi. To deal

with the infinite domain of the integration in equation (2), we investigate the kernel

g ðTS; x; yÞ. An important property of g ðTS; x; yÞ is that it has significant values for computing

the product G1ðx; t2 TSÞg ðTS; x; yÞ (within the machine precision) only over a short y-

interval whose width is 1. Therefore, we apply the composite trapezoidal rule over this

interval to compute the approximations Iiðt;TSÞ. These approximations are also used to

compute the term RðtÞ, for t . 0, which is a column vector of n components defined by the

inhomogeneous term k1G1ðx; tÞ2 Iðx; t; TSÞ from the second equation in (1) and the zero flux

boundary condition (4). System (5) is supplemented by initial conditions determined by

equation (3).

The functions SðtÞ, GlðtÞ, MðtÞ and M2ðtÞ give approximations to the solutions of the

problems (1)–(4), only at the grid points xi for the variable x. These approximations are more

accurate for smaller step sizes h. However, we also need to compute approximations for SðtÞ,

GlðtÞ,MðtÞ andM2ðtÞ at some grid points for the variable t. Therefore, the system (5) needs to

be integrated in t by using some time step Dt. Applying explicit methods to integrate equation

(5) requires stability conditions, which depress the size of Dt to avoid instabilities. Moreover,

the smaller h values we take (for improving x-discretization), the more restrictive stability

conditions we are forced to deal with.
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To avoid this problem, we introduce the sequence of successive iterates SkðtÞ, for k ¼

0; 1; . . . : The iterates are functions of t and converge to the solution SðtÞ, that is

lim
k!1

SkðtÞ ¼ SðtÞ: ð8Þ

Our goal is to construct an iteration process in such a way that it starts from an arbitrary

function S0ðtÞ, then converges fast, and the iterates SkðtÞ are computed by solving a new

simple triangular system of differential equations, which performs the same x-discretization

process as system (5) does. Since the newly constructed differential system has a triangular

form, applying unconditionally stable implicit methods (which do not need any depression of

Dt) is as simple as applying explicit methods.

Our computational process for equations (1)–(4) is composed of two steps:

Step 1: we first compute approximations for the functions G2ðtÞ,MðtÞ, G1ðtÞ by integrating

the system

dG2ðtÞ
dt

¼ Iðt; TSÞ2 ðk2 þ mG2
ÞG2ðtÞ;

dMðtÞ
dt

¼ k2G2ðtÞ2 ðbþ mMÞMðtÞ;

dG1ðtÞ
dt

¼ 4bM2ðtÞ2 ðk1 þ mG1
ÞG1ðtÞ;

8>>><
>>>:

ð9Þ

sequentially from up to down. Application of implicit methods to equation (9) is

straightforward as the function Iðt; TSÞ has the retarded time argument t2 TS and it can be

computed by using the values of G1ðt2 TSÞ, which are known from either the initial

condition (3) or from the values computed for previous temporal grid points.

Step 2: we use the values of RðtÞ, obtained from Step 1, and compute the successive

iterates SkðtÞ from the scheme

dSkðtÞ

dt
¼ A1S

kðtÞ þ A2S
k21ðtÞ2 mSS

kðtÞ þ RðtÞ: ð10Þ

for k ¼ 1; 2; . . . : The iteration process (10) is started from an arbitrary starting function S0ðtÞ.

Here, A ¼ A1 þ A2 and

A1 ¼

p3 0 0 0 0 . . . 0 0 0 0

p2 p3 0 0 0 . . . 0 0 0 0

p1 p2 p3 0 0 . . . 0 0 0 0

0 p1 p2 p3 0 . . . 0 0 0 0

..

. ..
. ..

. ..
. ..

.
. . . ..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

.
. . . ..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

.
. . . ..

. ..
. ..

. ..
.

0 0 0 0 0 . . . p1 p2 p3 0

0 0 0 0 0 . . . 0 p1 p2 p3

2
6666666666666666666664

3
7777777777777777777775

;
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A2 ¼

0 p4 0 0 0 . . . 0 0 0 0

0 0 p4 0 0 . . . 0 0 0 0

0 0 0 p4 0 . . . 0 0 0 0

0 0 0 0 p4 . . . 0 0 0 0

..

. ..
. ..

. ..
. ..

.
. . . ..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

.
. . . ..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

.
. . . ..

. ..
. ..

. ..
.

0 0 0 0 0 . . . 0 0 0 p4

0 0 0 0 0 . . . 0 0 0 0

2
6666666666666666666664

3
7777777777777777777775

:

Since equation (10) is linear, equation (8) is satisfied. Moreover, since the matrix A1 is

triangular, we can solve system (10) sequentially from up to down by implicit methods and no

algebraic system needs to be solved in any time step. Note that application of implicit methods

to system (5) needs an algebraic system per each time step to be solved, which significantly

increases the computational cost due to the large number of temporal grid points especially for

long time intervals. There is no such cost if equation (5) is changed into equations (9) and (10)

and implicit methods are applied to equations (9) and (10) instead of to equation (5).

To find fast iterates SkðtÞ for equations (1)–(4), in the next section, we analyze how the

convergence equation (8) depends on the coefficients of the system (10).

3. Analysis of the sequence SkðtÞ

In this section, we analyze the influence of the coefficients from equation (10) on the rate of

convergence in equation (8). We show that the convergence of the sequence SkðtÞ is faster if

the previous iterates Sk21ðtÞ are multiplied by coefficients closer to zero than if Sk21ðtÞ are

multiplied by coefficients which are further from zero. We then use this analysis in section 4

to apply such coefficients p4, of the matrix A2, for which the iterates SkðtÞ converge in one

iteration.

Theorem 3.1. Let r – 0 be a real number, M1, M2, N be n by n real matrices and y; z :
½2TS; T�! Rn be solutions to the initial value problems:

d
dt
yðtÞ ¼ ðM1 þM2ÞyðtÞ þ Nyðt2 TSÞ þ pðtÞ;

yðtÞ ¼ y0ðtÞ; 2TS # t # 0; and

(

d
dt
zðtÞ ¼ ðM1 þ rM2ÞzðtÞ þ rNzðt2 TSÞ þ qðtÞ;

zðtÞ ¼ z0ðtÞ; 2TS # t # 0;

(
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respectively. Here, p, q:½0; T�! Rn and y0; z0:½2TS; 0�! Rn. Let yk and zk, k ¼ 1; 2; . . ., be
the successive iterates defined by the schemes:

d
dt
y kðtÞ ¼ M1y

kðtÞ þM2y
k21ðtÞ þ Nyk21ðt2 TSÞ þ pðtÞ; 0 , t # T;

ykðtÞ ¼ y0ðtÞ; 2TS # t # 0; and

(

d
dt
z kðtÞ ¼ M1z

kðtÞ þ rM2z
k21ðtÞ þ rNzk21ðt2 TSÞ þ qðtÞ; 0 , t # T;

zkðtÞ ¼ z0ðtÞ; 2TS # t # 0;

(

respectively. Suppose that the schemes are started with some initial functions y 0 and z0,

respectively, whose initial errors are the same.

Then

zkðtÞ2 zðtÞ ¼ r k ykðtÞ2 yðtÞ
� �

;

for t [ ½0; T�.

Proof. Let eky ¼ yk 2 y and ekz ¼ zk 2 z over ½2TS; T�. Then

d
dt
ekyðtÞ ¼ M1e

k
yðtÞ þM2e

k21
y ðtÞ þ Nek21

y ðt2 TSÞ; 0 , t # T ;

ekyðtÞ ¼ 0; 2TS # t # 0;

8<
:

d
dt
ekz ðtÞ ¼ M1e

k
z ðtÞ þ rM2e

k21
z ðtÞ þ rNek21

z ðt2 TSÞ; 0 , t # T ;

ekz ðtÞ ¼ 0; 2TS # t # 0:

8<
:

Let M *ðt; sÞ ¼ expððt2 sÞM1Þ. From the above, we have

ekyðtÞ ¼

ðt
0

M *ðt; sÞ M2e
k21
y ðsÞ þ Nek21

y ðs2 TSÞ
h i

ds;

ekz ðtÞ ¼ r

ðt
0

M *ðt; sÞ M2e
k21
z ðsÞ þ Nek21

z ðs2 TSÞ
� �

ds:

ð11Þ

Since the starting errors are the same, e0
y ¼ e0

z , by equation (11), we have re1
y ¼ e1

z . From this

and from equation (11), by induction, we have r keky ¼ ekz , which finishes the proof. A

The next theorem compares iterative schemes represented by matrices for which all entries

differ by the coefficient r.

Theorem 3.2. Let M ¼ M1 þM2 and N be n by n real matrices, k·k be an arbitrary vector

norm in Rn and r – 1. Let y:½2TS; T�! Rn and z:½2TS=r; T�! Rn be the solutions to the

initial value problems:

d
dt
yðtÞ ¼ MyðtÞ þ Nyðt2 TSÞ þ pðtÞ;

yðtÞ ¼ y0ðtÞ; 2TS # t # 0;

( d
dt
zðtÞ ¼ rMzðtÞ þ rNzðt2 TS=rÞ þ qðtÞ;

zðtÞ ¼ z0ðtÞ; 2TS=r # t # 0;

8<
:
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respectively. Here, p; q : ½0; T�! Rn, y0 : ½2TS; 0�! Rn and z0 : ½2TS=r; 0�! Rn.

Suppose that y k and z k, k ¼ 1; 2; . . .; solve the corresponding schemes

d
dt
y kðtÞ ¼ M1y

kðtÞ þM2y
k21ðtÞ þ Nyk21ðt2 TSÞ þ pðtÞ; 0 # t # T;

ykðtÞ ¼ y0ðtÞ; 2TS # t # 0;

(

d
dt
z kðtÞ ¼ rM1z

kðtÞ þ rM2z
k21ðtÞ þ rNzk21ðt2 TS=rÞ þ qðtÞ; 0 # t # T ;

zkðtÞ ¼ z0ðtÞ; 2TS # t # 0;

(

with some starting functions y 0; z0 : ½0; T�! Rn such that

y0ðtÞ2 yðtÞ ¼ z0ðt=rÞ2 zðt=rÞ; 0 , t # T ;

y0ðtÞ ¼ y0ðtÞ; z0ðt=rÞ ¼ z0ðt=rÞ; 2TS # t # 0;

that is, both schemes start with the errors which are the same over the intervals ½2TS; T� and
½2TS=r; T=r�, respectively.

If r $ 1 then

max
t[½0;�t�

kykðtÞ2 yðtÞk # max
t[½0;�t�

kzkðtÞ2 zðtÞk; ð12Þ

for k ¼ 0; 1; . . . and 0 # �t # T . The opposite inequality holds if r # 1.

Proof. Let eky ¼ yk 2 y and ekz ¼ zk 2 z over ½2TS; T�. Then

d
dt
ekyðtÞ ¼ M1e

k
yðtÞ þM2e

k21
y ðtÞ þ Nek21

y ðt2 TSÞ; 0 , t # T;

ekyðtÞ ¼ 0; 2TS # t # 0;

8<
:

d
dt
ekz ðtÞ ¼ rM1e

k
z ðtÞ þ rM2e

k21
z ðtÞ þ rNek21

z ðt2 TS=rÞ; 0 , t # T;

ekz ðtÞ ¼ 0; 2TS=r # t # 0:

8<
:

Let ekðsÞ ¼ ekz ðs=rÞ, for 2TS # s # T and k ¼ 0; 1; . . . : Then

d

ds
ekðsÞ ¼

1

r

d

dt
ekz

s

r

� 	
¼ M1e

k
z

s

r

� 	
þM2e

k21
z

s

r

� 	
þ Nek21

z

s2 TS

r

� �
¼ M1e

kðsÞ þM2e
k21ðsÞ þ Nek21ðs2 TSÞ;

for 0 , s # T and

ekðsÞ ¼ 0;

for 2TS # s # 0. Since e0
yðtÞ ¼ e0

z ðt=rÞ for 2TS # t # T, e0
yðtÞ ¼ e0ðtÞ for 2TS # t # T.

Therefore,

d
dt
e1ðtÞ ¼ M1e

1ðtÞ þM2e
0ðtÞ þ Ne0ðt2 TSÞ; 0 , t # T ;

e1ðtÞ ¼ 0; 2TS # t # 0;

(
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and e1
y and e 1 solve the same initial value problem on ½2TS; T�. By uniqueness, e1

yðtÞ ¼ e1ðtÞ

for 2TS # t # T. It can be shown by induction that ekyðtÞ ¼ ekðtÞ for 2TS # t # T and

k ¼ 0; 1; 2; . . . : We now take an arbitrary 0 # �t # T and have

max
t[½0;�t�

ekyðtÞ



 


 ¼ max

t[½0;�t�
ekðtÞ



 

 # max
s[½0;r�t�

kekðsÞk ¼ max
s[½0;r�t�

ekz ðs=rÞ


 

 ¼ max

t[½0;�t�
ekz ðtÞ



 

:
The proof of the opposite inequality is similar. A

Assuming that N is the zero matrix and the present iterates are multiplied by the main

diagonal entries of M, we can derive an exact formula for the error ykðtÞ2 yðtÞ. Note that

iterative schemes, which iterate only along the main diagonal entries, allow using parallel

computing environments, as all equations of the iterative schemes can be solved separately at

the same time. This saves the computational time especially when dealing with systems

which contain large numbers of equations.

Theorem 3.3. Let m [ R, M1 ¼ diag{m} and M ¼ M1 þM2 be n by n real matrices. Let

y : ½2TS; T�! Rn be the solution to the initial value problem:

d
dt
yðtÞ ¼ MyðtÞ þ pðtÞ;

yðtÞ ¼ y0ðtÞ; 2TS # t # 0:

(

Here, p:½0; T�! Rn and y0:½2TS; 0�! Rn. Let yk be the successive iterates defined by the

scheme:

d
dt
y kðtÞ ¼ M1y

kðtÞ þM2y
k21ðtÞ þ pðtÞ; 0 , t # T ;

ykðtÞ ¼ y0ðtÞ; 2TS # t # 0; k ¼ 1; 2; . . .

(

started with an arbitrary function y0.

Then smaller values of m make the error ekðtÞ ¼ ykðtÞ2 yðtÞ closer to zero and

ekþ1ðtÞ ¼ Mkþ1
2 e0ðj kÞ

1

k!

ðt
0

sk expðmsÞ ds

with some j k [ ½0; t�, for k ¼ 0; 1; . . . :

Proof. It can be proved that

ekþ1ðtÞ ¼

ðt
0

ðt2
0

. . .

ðtk
0

ðtkþ1

0

expðmðt2 tkþ2ÞÞM
kþ1
2 e0ðtkþ2Þ dtkþ2 dtkþ1. . .dt3 dt2:

By the mean value theorem, we have

ekþ1ðtÞ ¼ Mkþ1
2 e0ðj kÞ

ðt
0

ðt2
0

. . .

ðtk
0

ðtkþ1

0

expðmðt2 tkþ2ÞÞ dtkþ2 dtkþ1. . .dt3 dt2

¼ Mkþ1
2 e0ðj kÞ

1

k!

ðt
0

sk expðmsÞ ds:
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Therefore, the errors ekðtÞ approach zero with decreasing m, which finishes the proof of the

theorem. A

The equations in (9) and (10) create a family of h-dependent problems which change with

the changing parameter h. Theorems 3.1, 3.2 and 3.3 describe strategies for the selection of

such parameters h which result in fast convergence in equation (8). We use the strategies of

section 4 when computing solutions for problems (1)–(4).

4. Computing solutions to the model problem

To compute solutions for problems (1)–(4), we first compute G2, M andG1 from equation (9)

and then we compute the successive iterates Sk from equation (10). To integrate equations (9)

and (10) in time, we apply the backward differentiation formula of order 3 (BDF3) with

Dt ¼ 0:1. Although BDF methods are implicit, their application to equations (9) and (10) is

straightforward due to the fact that equations (9) and (10) are written in triangular forms,

which allows to integrate them sequentially from up to down and no algebraic system needs

to be solved in any time step.

For the iteration process (10), we aim to find such values of the entries of the matrix A2

which make the sequence SkðtÞ fastly convergent to SðtÞ. We use Theorem 3, from which we

conclude that smaller values of jp4j result in faster convergence in equation (8). We take

k ¼ 1=3 in equation (7) and as in Ref. [1], we take the interval ½0; 2:5� for the domain of the

variable x. We use nþ 2 equidistant grid points xi and investigate the values of the

coefficients pi defined by equation (7). Three values of n, their corresponding numbers of

iterations k and approximations to their corresponding values of h and pi, are listed in table 1.

The successive iterates SkðtÞ computed with the values, which are listed in table 1, are

presented in figures 1 and 2.

Figures 1 and 2 show a correspondence between predicted and experimental data. The

graphs of figure 1 correspond to the experimental data presented in Ref. [1, graph (b) of

figure 4]. The graphs of figure 2 correspond to the experimental data presented in Ref. [1,

graph (b) of figure 5]. In all of the graphs from figures 1 and 2, the solutions G1, S, G2 andM

are presented by solid, dashed, dash-dotted and dotted lines, respectively. The curves by the

dashed lines are obtained with k $ 8 in the (a) graphs, with k $ 4 in the (b) graphs, and with

k $ 1 in the (c) graphs of both figures. Further iterations (with k larger than 8, 4 and 1,

respectively) provide the same curves as the curves obtained with k ¼ 8, k ¼ 4 and k ¼ 1,

respectively.

For graphs (a) and (b) of figures 1 and 2, the curves which were obtained with k ¼ 1 are

different to the curves which were obtained with k $ 8 in (a) and with k $ 4 in (b). Graphs

(a) of figures 1 and 2 were prepared with n ¼ 950. For this choice, iterations with k ¼

1; 2; . . .; 7 give curves different to the curve obtained with k $ 8. Graphs (b) were prepared

with n ¼ 945. For this choice, iterations with k ¼ 1; 2; 3 give curves different to the curve

obtained with k $ 4. However, the same curves and regions are obtained with all k $ 1 for

Table 1. Selection of the number n.

n Iterations h p4 p3 p2 p1

940 1 2.6567 £ 1023 3 £ 1023 250 57 27
945 4 2.6427 £ 1023 8 £ 1022 250 57 27
950 8 2.6288 £ 1023 2 £ 1021 250 57 27
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Figure 1. Approximations to G1ðx; tÞ (solid), Sðx; tÞ, the DNA synthesis (dashed), G2ðx; tÞ (dash-dotted) and Mðx; tÞ
(dotted) as functions of x, at t ¼ 12 in 8 iterations with n ¼ 950 (a), 4 iterations with n ¼ 945 (b), and 1 iteration with
n ¼ 940 (c).
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Figure 2. Approximations to G1ðx; tÞ (solid), Sðx; tÞ, the DNA synthesis (dashed), G2ðx; tÞ (dash-dotted) and Mðx; tÞ
(dotted) as functions of x, at t ¼ 72 in 8 iterations with n ¼ 950 (a), 4 iterations with n ¼ 945 (b), and 1 iteration with
n ¼ 940 (c).
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graphs (c) of figures 1 and 2, which shows that the iterations used for graphs (c) are faster

than the iterations used for graphs (a) and (b).

Note that the numbers of iterations listed in the second column of table 1 increase and the

values of h listed in the third column decrease. These relations are explained byTheorem3.2 in

the following way. Since the matrix A defined by equation (6) can be thought of as h22 ~A, with
~A having nearly constant entries (when h is small), we can apply Theorem 3.2 with r ¼ h22

and N being the zero matrix. Using Theorem 3.2, we can conclude that smaller values of r

(larger h) result in faster iterations (smaller k). Table 1 confirms this conclusion.Moreover, the

same conclusion can be derived from equation (12) which shows that for fixed k, the errors of

the successive iterates are decreasing with decreasing r, that is, with increasing h.

5. Concluding remarks

We applied iterative techniques to the mathematical model of Ref. [1] and computed

densities of cells as functions of relative DNA content x and time t. The iterative techniques,

which we studied in this paper, saved the computational time because of three reasons.

Firstly, the iterative schemes allowed for straightforward integration in time of the finite

difference semi-discrete systems by implicit methods, which are not demanding with respect

to stability. Secondly, since we applied iterative schemes, no algebraic system needed to be

solved in any time step. Thirdly, we computed the numerical solution to the mathematical

model of Ref. [1] in only one iteration.

Because of the computational savings, the iterative schemes are useful for the optimisation

procedures applied in Refs. [1,20]. The procedures allow the discovery of the coefficients b,

D, g, mG1
, mG2

, mS, mM , k1 and k2 needed for the models of Refs. [1,20]. The solutions

presented in Ref. [1] and in this paper were computed with mG1
¼ mG2

¼ mS ¼ mM ¼ 0.

However, since the iterative techniques improve the computational time, introducing the

nonzero coefficients mG1
, mG2

, mS, mM together with the techniques for the optimization

procedures would result in additional savings in the computational time, which is needed for

finding the least square errors between the experimental DNA distributions used in Refs.

[1,20] and total DNA distributions predicted by the models. Savings in computational time

are also important when solving the models over long time intervals.

Future work will address the model of Ref. [20] with a new A-phase, in which DNA is

degraded with time. The model of Ref. [20] is composed of five partial differential equations

and is an extension of the model of Ref. [1]. The model shows the action of an anticancer

drug used for the treatment of cancer. We will also address the related models of Refs. [21–

23] for modeling cancer cell populations.
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