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We derive models of the effects of periodic, discrete dosing or constant dosing of antibiotics
on a bacterial population whose growth is checked by nutrient-limitation and possibly by host
defenses. Mathematically rigorous results providing sufficient conditions for treatment
success, i.e. the elimination of the bacteria, as well as for treatment failure, are obtained. Our
models can exhibit bi-stability where the infection-free state and an infection-state are locally
stable when antibiotic dosing is marginal. In this case, treatment success may occur only for
sub-threshold level infections.
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1. Introduction

The pharmacology of antibiotics (or any drug) can be divided into pharmacokinetics and

pharmacodynamics. Pharmacokinetics describes the movement of antibiotic into, through

and out of the body whereas pharmacodynamics describes the relationship between the

concentration of antibiotic, its effect on target bacteria (growth or decay) and factors

influencing this relationship [7]. The elimination of drug either by metabolism or excretion is

very important since it determines the dosing frequency [1]. One of the important objectives

of pharmacokinetics is to decide the optimal dosing frequency of an antibiotic for successful

treatment. On the other hand pharmacodynamics describes in detail the relationship between

drug concentration and its effects on the bacterial population in order to achieve the

maximum removal of bacteria from the host.

Mathematical modeling of the effects of drug treatment has long been used side-by-side

with experimental studies [1,3–5,25,27,38]. However, most mathematical models of the

effects of antimicrobial agents on bacterial populations assume that bacteria grow at an

exponential rate in the absence of the antimicrobial agent. In that case, one need only

determine the pharmacodynamic function for the agent, that is, a mathematical expression

for the decline in growth rate resulting from a given concentration of the antimicrobial agent.

Once this has been achieved, then the minimum inhibitory concentration (MIC) for the agent

is determined as that concentration of the agent at which the growth rate, c ¼ cðAÞ vanishes,

where A denotes the antibiotic concentration. One can then explore the response of bacteria

to various dosing strategies. The expected outcome of this approach is that a dosing strategy
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that is insufficient to control the population results in its exponential growth while an

adequate dosing drives the population to extinction.

It is often found that fast growing bacteria are more susceptible to antibiotic treatment as

compared to slow growing ones [3,6,22,26,28,36,37]. A slow growth rate due to the restricted

availability of nutrients could be a major contributor toward insensitivity of bacteria to

antibiotic. Therefore it is plausible that in some cases the pharmacodynamic function should

depend on both the antimicrobial agent and limiting nutrient levels, i.e. c ¼ cðS;AÞ where S
denotes limiting resource level. It has been noted that bacteria multiply more slowly in an

experimental animal than in vitro [4,6], suggesting nutrient limitation in vivo. Corpet et al.

[4] introduce pharmacodynamic functions which depend on limiting both nutrient and

antimicrobial agent. Cogan [3] does as well in his considerations of persister cells. Cozens

et al. [6] note that the restricted availability of iron and other nutrients appears to be typical of

infection states. Roberts and Stewart [28] construct a mathematical model to explore the

possibility that the observed antibiotic tolerance of biofilms is due in part to nutrient

limitation reducing bacterial growth and hence killing rates. Even if resource supply rates are

relatively constant, one expects significant depletion in local resource levels as a bacterial

infection progresses and we expect these changes to play a role in treatment by antimicrobial

agents.

We derive simple models of the effects of periodically-administered discrete dosing or

constant antimicrobial dosing strategies on a bacterial population whose growth is checked

by nutrient-limitation and possibly by host defenses if not by the antimicrobial agent itself.

Distinguishing features of our model are the inclusion of nutrient limitation of microbial

growth and accounting for the removal of antimicrobial agent by association with bacteria.

Earlier models such as Austin et al. [1] mention nutrient limitation but employ a logistic

bacterial growth rate rather than explicitly treating nutrient limitation. Like the model of

Austin et al. ours follows the pre-treatment infection dynamics as well as the post-treatment

course of bacterial levels.

Most models of antibiotic treatment, e.g. Ref. [1], assume that the pathogen has no effect

on antimicrobial concentration; its concentration at the site of infection is simply an input to

the model. In our model, the antibiotic concentration at the site of infection is a dynamic

variable with the periodic dosing as input. Standard pharmacokinetics are used but we

include a bacteria-dependent drug removal rate, attributable to the association of the drug

with bacterial cells, which may be important in some cases.

Mathematically rigorous results are obtained for our models that provide sufficient

conditions for treatment success - the elimination of the bacteria - as well as for treatment

failure. In the case that antibiotic concentration is assumed to be oscillatory, the MIC, which

may depend on resource levels, is no longer the critical parameter. Rather the key parameter

is an “invasion eigenvalue” which determines whether bacteria can invade an environment in

which antibiotic levels have attained their asymptotic periodic pharmacokinetic regime

A*ðtÞ: typically, a repeating cycle of exponential decay and recovery following a discrete

dose. (See figure 1.) We refer to this regime as the APPR for simplicity. The “invasion

eigenvalue”, in fact a Floquet exponent, is the average growth rate over a dose-cycle T:

l ¼
1

T

ðT
0

cðS0;A*ðtÞÞ dt

where S0 is the resource level in the absence of bacteria and A*ðtÞ ¼ A*ðt þ TÞ is the APPR.

Although it is often remarked that the amount of time during which A*ðtÞ exceeds the MIC is
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critical, l is a much more subtle parameter. The generally nonlinear dependence of c on A,

means that l can differ substantially from the growth rate evaluated at the average dose level

l – cðS0; ½A*�mÞ; ½A*�m ¼
1

T

ðT
0

A*ðtÞ dt

In vivo, bacteria usually become established before intervention in the form of antibiotic

treatment is administered, rather than the other way around where a small inoculum of

bacteria is introduced to a pre-established APPR. Therefore, one may be sceptical that the

invasion eigenvalue l has relevance for treatment. However, in order to eliminate bacteria

one must drive down the bacterial population to near extinction where the premise of the

invasion eigenvalue approach is satisfied because the state vector approximates the APPR.

This suggests and we prove, that when l . 0, then bacteria persist and treatment fails

because the bacteria-free state is unstable. This is expected since, on average over a dosing

cycle, bacteria introduced into the APPR grow when rare. However, l , 0 implies only local

stability of the bacteria-free state. This means that an indeterminately small bacterial

population introduced into the APPR is eliminated but one cannot conclude that a larger

inoculum is necessarily eliminated. While there are important cases when l , 0 implies

treatment success regardless of initial conditions, in general it does not. In particular, the

bacteria-free state can be locally attracting, guaranteeing successful treatment for very small

initial bacterial populations and yet a larger initial population may lead to a stable endemic

infection state. We find such bistable dynamics in our model when the antimicrobial dosing

is marginal. This dynamic feature is possible when the removal rate of antibiotic depends

significantly on bacterial density. In this case, provided sufficient nutrient is present and

antibiotic dosing is marginal, high bacterial density can significantly reduce antibiotic

concentration thereby reducing its effect. The potential for bistability in antibiotic treatment

appears not to have been observed in previous mathematical modeling. It suggests the

obvious-early treatment of infection by antibiotics, before bacterial populations have reached

high levels, is optimal. The larger message is that antibiotic dosing levels may need to take

account of nutrient availability.

Because of the failure of the inequality l , 0 to guarantee treatment success, we are

motivated to find stronger threshold inequalities of the form l* , 0 where l , l* which do

guarantee treatment success. We are successful in identifying thresholds l* able to be
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Figure 1. The left figure depicts periodic discrete dosing of an antibiotic. The resulting pharmacokinetics A *ðtÞ and
the MIC level of A at which l ¼ 0 appears on the right.
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expressed entirely in terms of the mean dosing strength, the pharmacodynamic function and

removal rates of antibiotic, resource and bacteria.

The choice of pharmacodynamic function c is largely an educated guess even in the case

when it can be expected to depend only on antimicrobial agent concentration (c ¼ cðAÞ) [1].

The so-called Emax model, based on drug–receptor interaction, is rather standard [24,15].

In general, a pharmacodynamic function will depend on the particular antimicrobial agent as

well as the organism. There appears to be no well-developed pharmacodynamic theory which

includes both nutrient and antibiotic. Undoubtedly, there are many possibilities depending on

whether or not the two act independently or not. Cogan [3] introduces a pharmacodynamic

function depending on the product of a function of nutrient and a function of antibiotic.

Corpet et al. [4] modify the classical Monod growth rate by assuming either the maximum

growth rate or the half-saturation constant is influenced by antibiotic concentration. As these

functions are based on educated hunches, our modeling study can only be qualitative in

nature exploring possible behavior given only qualitative information about the

pharmacodynamic function.

It is well-known that bacterial populations are heterogeneous in their susceptibility to

antimicrobial agents [3,15,25]. Furthermore, many human pathogens have acquired

resistance to the antibiotic of choice which has had an important impact on public health.

We also formulate a model where the bacterial population is heterogeneous in its response to

the antimicrobial agent either due to mutation or the presence or absence of a transmissible

plasmid encoding resistance to the antimicrobial agent. Successful treatment requires

eradication of both resistant and susceptible populations. This model has potentially two

types of disease states: one with only the susceptible population present and one with both

susceptible and resistant populations. We are able to give sufficient conditions for successful

treatment and sufficient conditions for treatment failure, i.e. the persistence of a bacterial

population. In this case, there are two distinct values of l: ls for susceptible and lr for the

resistant population. It is important to understand the conditions favoring the establishment

of the mixed population of resistant and susceptible types.

Our work appears to be the first to attempt to obtain mathematically rigorous, explicit

sufficient conditions for treatment success and for treatment failure in simple, but hopefully

not too simple, mathematical models of periodic drug dosing in vitro and in vivo.

Our models combine both the pharmacokinetics of the antibiotic and the pharmaco-

dynamics of its effect on a bacterial population in order to study antibiotic treatment.

The mathematical theory of persistence plays a major role here as it is used to characterize

treatment failure.

In the next section, we formulate and analyze models of antibiotic treatment of a bacterial

population which is homogeneous in its response to the antimicrobial agent. In the following

section, models containing a susceptible and resistant population are developed. Proofs of

our results are relegated to an appendix.

2. Model of antibiotic treatment

We first assume an in vitro environment that can be modeled as a chemostat with the added

feature that an antibiotic is also input from the external source. Later, we will introduce a

more general model suitable for in vivo environments. Let S denote the concentration of

nutrient sustaining microbial growth, u denote the density of bacteria, and A denote the

concentration of an antibiotic. If we view the antibiotic as bactericidal that is as killing
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bacteria, then the equations take the form

S0 ¼ DðS0 2 SÞ2 g21f ðSÞu

A0 ¼ DðA0ðtÞ2 AÞ2 upðAÞ

u0 ¼ ½f ðSÞ2 D2 gðS;AÞ�u ð1Þ

We assume fresh nutrient at constant concentration S0 is input and A0ðtÞ is the

concentration of the antibiotic at time t in the input. Parameter g is the yield constant and f ðSÞ

is the growth rate of bacteria at nutrient concentration S. Typically, we take f to be Monod

type but our results hold more generally. We require only that the growth (or uptake) function

f ðSÞ be monotone increasing in S:

f ð0Þ ¼ 0; f 0ðSÞ $ 0

D is the dilution rate.

Typically, antibiotics are administered in either a constant dose A0ðtÞ ; A0 ¼ constant or

periodically A0ðtÞ ¼ A0ðt þ TÞ $ 0 with dosing period T. While our model allows a general

non-negative periodic dosing function A0ðtÞ, in practice it is typically a sequence of discrete

doses which might be approximated by:

A0ðtÞ ¼
X
i

ddðt2 iTÞ

Parameter d measures the dose and d is the Dirac impulse function.

Function g ¼ gðS;AÞ is the so-called pharmacodynamic function which describes the kill

rate or alternatively, the reduction in the growth rate, induced by the antibiotic agent per unit

of bacteria. In general, the killing rate depends on the bacteria and the antibiotic used as well

as the nutrient levels. Borrowing from Emax theory [1], one choice is

gðS;AÞ ¼ f ðSÞ
AH

aH þ AH

where H . 0 is the Hill exponent, a the half-saturation concentration and f the specific

growth rate. In this case, the net growth rate is

f ðSÞ2 gðS;AÞ ¼ f ðSÞ
aH

aH þ AH

Cogan takes

gðS;AÞ ¼ k
Sþ a

aþ S
A

where a ¼ 0 for antibiotic that kills in proportion to growth rate (if f ðSÞ ¼ mS=aþ S) and

a . 0 for antibiotic which is partially effective in killing non-growing bacteria. The simplest

term commonly used is independent of nutrient levels, namely

gðS;AÞ ¼ kA

which is usually interpreted as kill rate.
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Commonly used functions appearing in the literature are described in the following table

(table 1).

We make only qualitative assumptions regarding the pharmacodynamic function gðS;AÞ. It
should vanish in the absence of drug and increase with antibiotic concentration:

gðS; 0Þ ¼ 0;
›g

›A
$ 0

Furthermore, adding nutrient should not decrease the net bacterial growth rate:

S! f ðSÞ2 gðS;AÞ is nondecreasing for 0 # S # S0

Finally, equation (1) includes a removal rate of antibiotic due to its association with

bacteria, modeled by the term 2pðAÞu. p might be taken to be Michaelis–Menten or more

generally of Hill type, or simply pðAÞ ¼ cA. As mentioned in the introduction, most

pharmacodynamic models do not include such a term. In some cases, it may be reasonable to

neglect this term entirely, taking p ¼ 0, if drug removal rate is relatively independent of u.

This case is mathematically attractive since it decouples the pharmacokinetics from the rest

of the model. We assume that p vanishes with A and is nondecreasing in A:

pð0Þ ¼ 0; p0ðAÞ $ 0

The chemostat-based model requires considerable modification if we wish to view it as an

in vivo model of the application of antibiotic to a tissue in an organism hosting an infectious

bacteria. In this setting, the circulating blood may deliver the antibiotic to the infection site

and the nutrient may be supplied by the infected tissue or by the blood circulation. For the in

vivo interpretation, the assumption of an identical removal rate D for all components is

unreasonable. More generally, we consider

S0 ¼ dSS
0 2 dSS2 g21f ðSÞu

A0 ¼ dAA0ðtÞ2 dAA2 upðAÞ

u0 ¼ ½f ðSÞ2 du 2 gðS;AÞ�u

v0 ¼ gðS;AÞu2 dvv ð2Þ

where F ¼ dSS
0 is a flux of nutrient into the infected region, possibly supplied by

surrounding tissues or the blood, and dS the removal rate of nutrient which might also include

uptake by host cells. dAA0ðtÞ is now interpreted as flux of antibiotic into the infected region

and dA its removal rate, perhaps due to metabolism in the liver and excretion by the kidney.

Table 1. Pharmacodynamic functions.

Pharmacodynamic function Reference Description

g(A) ¼ Ka [14] Linear in A
g(A) ¼ m log (A) þ I [10] Log form

gðS;AÞ ¼ k S
aþS

A [3] Linear in A

gðAÞ ¼ k A H

L HþA H [25,27] Emax model

gðAÞ ¼ k A n

ðLþAÞn
[2] Binomial form

gðAÞ ¼ k A
L0þL1AþL2A 2þ:::þLnA n [2] Cooperativity form
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As for equation (1), an additional antibiotic removal rate 2upðAÞ due to association of drug

with bacterial cells is included. In some cases, this term may be neglected if it is small in

relation to removal by metabolism and excretion. The removal rate du for viable bacteria u

may include effects of specific or non-specific immune response [1]. We have included an

equation for v; the density of nonviable cells as the antibiotic may be bacteriostatic rather

than bacteriocidal. However, as this equation is decoupled from the others, we ignore it

hereafter.

Prior to antimicrobial treatment A0ðtÞ ¼ 0 and AðtÞ ¼ 0 so the model reduces to slight

modification of the classical chemostat model of microbial growth on a single substrate [30].

S0 ¼ dSðS
0 2 SÞ2 g21f ðSÞu

u0 ¼ ½f ðSÞ2 du�u ð3Þ

Assuming that f ðS0Þ . du (otherwise, there is no need for treatment), the untreated infection

steady state is given by

S ¼ �S; u ¼ �u ¼ gðS0 2 �SÞ; f ð�SÞ ¼ du

This can be viewed as the pre-treatment state since this state is most likely approximated just

prior to treatment.

If the effect of the antibiotic is to inhibit growth and uptake of nutrient then the following

equations may be more natural for in vitro environments:

S 0 ¼ DðS0 2 SÞ2 g21f ðS;AÞu

A0 ¼ DðA0ðtÞ2 AÞ2 upðAÞ

u 0 ¼ f ðS;AÞ2 D
� �

u: ð4Þ

where we always assume that the pharmacodynamic function f ðS;AÞ $ 0 is monotonically

increasing in S and monotonically decreasing in A. The function f ðS;AÞ could be chosen from

among the following (table 2) where aðAÞ and bðAÞ are in the units of concentration and time,

respectively. m denotes the maximum growth rate and a is the Michaelis–Menton (or half-

saturation) constant:

The following equations are more appropriate for an in vivo environment:

S 0 ¼ dSS
0 2 dSS2 g21f ðS;AÞu

A0 ¼ dAA0ðtÞ2 dAA2 upðAÞ

u 0 ¼ f ðS;AÞ2 du
� �

u: ð5Þ

In our models (2) and (5), we assume the simplest possible pharmacokinetics, introducing

only a single drug compartment A, representing the drug at the site of infection. As drug is

Table 2. Pharmacodynamic functions.

Pharmacodynamics Reference Description

f ðS;AÞ ¼ m S
aþS

exp ð2xAÞ [14,20] Reduce maximum growth rate

f ðS;AÞ ¼ m S
ðaþaðAÞÞþS

[4] Reduce ability of bacteria to use substrate

f ðS;AÞ ¼ ðm2 bðAÞÞ S
aþS

[4] Reduce maximum growth rate
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usually administered orally or intravenously and then must pass through a number of organs

and tissues before reaching the site of infection, more realistic models typically include

additional compartments for drug levels in these tissues. Such extensions of our models

could be included.

Let T denote the length of the dosing period. If g is a continuous T-periodic function then

½g�m will denote the mean value of g:

½g�m ¼
1

T

ðT
0

gðsÞ ds

Hereafter, all periodic functions are to be understood to be T-periodic unless otherwise noted.

It is natural to expect the existence of periodic responses to periodic antibiotic dosing; the

constant dosing case is included as a special case. We expect two different types. Naturally,

there is the “sterile state” or “infection-free state”

E0ðtÞ ¼ ðS0;A*ðtÞ; 0Þ

with no bacteria present and nutrient levels matching feed level. A*ðtÞ is the unique periodic

solution of

A0 ¼ dAA0ðtÞ2 dAA

A*ðtÞ may be called the asymptotic pharmacokinetics since every solution of this simple

differential equation is asymptotic to it as t becomes large. It has the following properties

½A*�m ¼ ½A0�m; min
t

A0 # min
t

A* # max
t

A* # max
t

A0

The infection-free state may be viewed as the desired target state in the sense that successful

treatment must drive the system state to it.

In addition, there may or may not be one or more “disease states” or “infection states” of

the form

EuðtÞ ¼ ð�SðtÞ; �AðtÞ; �uðtÞÞ

where �uðtÞ . 0 and where all components are positive periodic functions. Such states

correspond to treatment failure. Our results will focus on the existence, uniqueness and

stability of these solutions.

The local stability of the sterile state can be determined by the Floquet exponents of the

variational equation about E0ðtÞ. It turns out that two of these are negative; the third, the

“invasion exponent”, is given by

l ¼ f ðS0Þ2 du 2 ½gðS0;A*ðtÞÞ�m

for system (2) and

l ¼ ½ f ðS0;A*ðtÞÞ�m 2 du

for system (5). In either case, l depends on the net, time-averaged bacterial growth rate in the

asymptotic pharmacokinetic state where S ¼ S0 and A ¼ A*ðtÞ, involving the growth

dynamics, the pharmacodynamic function and the bacterial removal rate.
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The following theorem states our main result for both equations (2) and (5). It includes the

autonomous case, A0 ¼ constant and the in vitro equations (1) and (4) as special cases.

Theorem 2.1. For systems (2) and (5), the sterile state E0ðtÞ is locally asymptotically stable

if l , 0 and unstable if l . 0. Moreover:

1. If l , 0, E0ðtÞ is globally attracting in the following cases:

(i) for equation (5) when p ¼ 0 and for equation (4) if no EuðtÞ exists.

(ii) for equation (2) when p ¼ 0.

2. If l . 0, then bacteria persist. More precisely there exists 1 . 0, independent of initial

data ðSð0Þ;Að0Þ; uð0ÞÞ provided uð0Þ . 0 and there exists t0 . 0, depending on initial

data, such that

uðtÞ . 1; t . t0:

3. Furthermore, at least one infection state EuðtÞ exists. Assuming l . 0, the following also

hold:

(iii) for equation (4), every solution with uð0Þ . 0 converges to one of the periodic

states EuðtÞ; if EuðtÞ is unique, in particular when p ¼ 0, it attracts all solutions

with uð0Þ . 0.

(iv) If A0 is constant and p ¼ 0 holds, then Eu is unique and globally asymptotically

stable for equation (2) and for equation (5).

In summary, Theorem 2.1 establishes that the invasion exponent l, whose sign

characterizes the local stability of the sterile state, can provide useful information concerning

the global dynamics of the models in certain cases. Treatment failure is guaranteed when

l . 0 in all cases since bacteria can grow when rare. Furthermore, there exists a least one

(periodic) infection state EuðtÞ; in general, it may be non-unique and we do not know its

stability properties. An important exception is the case of constant dosing and p ¼ 0 where it

is globally attracting.

Only in special cases have we shown that the reverse inequality l , 0 guarantees

treatment success, in the sense of bacterial eradication, regardless of initial conditions. Both

such cases require that the removal rate of antibiotic be independent of bacterial density

( p ¼ 0).

We note that the system (4) is much more mathematically tractable due to a conservation

principle common to chemostat models [30]; the corresponding reduced system has special

monotonicity properties.

The left side of figure 1 depicts periodic dosing of an antibiotic, given every four hours,

with a mean value of 0.2. The right side describes the asymptotic pharmacokinetics A*ðtÞ

after initial transients die out. Parameters were chosen as in Ref. [27].

Our simulations use only equation (2) with

f ðSÞ ¼
mS

aþ S
; pðAÞ ¼

nA

L1 þ A
and gðS;AÞ ¼ k

S

aþ S

A

Lþ A
:

The left side of figure 2 shows successful treatment and the right figure depicts unsuccessful

treatment. All the parameters and functions are the same in both the figures except the

maximum killing rate and it is chosen in such a way that l , 0 in the left figure and l . 0 in

the right. Output has been scaled by S=a, u=ðagÞ, A=L. Time t is scaled by 1=dS, S
0 is scaled

by 1=ðaÞ, A0 is scaled by 1=L and dA, du, m and k are all scaled by 1=dS. Parameter values are
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chosen as in Refs. [3,17,28]. In particular: yield coefficient g ¼ 0:8; maximum specific

growth rates m ¼ 0:417, n ¼ 0:28; dilution rate dS ¼ 0:23; half saturation constants a ¼ 0:1,

L ¼ 0:1 and L1 ¼ 0:1; maximum disinfection rate k ¼ 0:96 (left) and k ¼ 0:13 (right);

concentration of the substrate in the feed S0 ¼ 0:2; and Hill exponent H ¼ 1 (figure 3).

Figure 4 illustrates that l , 0 only guarantees successful treatment of small bacterial

populations except in certain special cases. The bacterial population versus time is plotted for

a small and for a large initial inoculum of bacteria (uð0Þ ¼ 0:25 and uð0Þ ¼ 0:45) at the start

of a treatment; all other parameters and initial data are the same. The solution corresponding

to the small bacterial inoculum shows successful treatment while the solution corresponding

to a large initial bacterial level exhibits treatment failure. Both E0ðtÞ and EuðtÞ are

simultaneously locally stable. All parameters are the same as used in the previous figure

except k ¼ 0:96 and S0 is increased to S0 ¼ 0:5. The phenomena of bistability may have

important implications for antibiotic treatment and appears not to have been observed in
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Figure 3. An illustration of pre-treatment infection for 0 , t , 60 h followed by treatment starting at t ¼ 60 h
resulting in bacterial eradication. Same dosing as figure 1.
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Figure 2. The left figure shows treatment success when l ¼ 20:2804 , 0. The right depicts treatment failure
when l ¼ 0:1555 . 0. Same dosing as figure 1.
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earlier modeling work. It suggests that early treatment, before bacterial populations become

large, is best.

Figures 5 and 6 consider the constant dosing case for equation (2). Figure 5 (left) plots the

scaled value of u at steady state Eu versus the constant dosing concentration of antibiotic A0.

Parameter values are the same used in previous figures except for S0 and k, which are S ¼ 0:5
and k ¼ 0:45. The bifurcating branch Eu is stable from ðu;A0Þ ¼ ð3:8; 0Þ to LP and is

unstable from LP to ð0; 0:44Þ. This figure shows that although the concentration of antibiotic

exceeds the MIC, treatment is unsuccessful. If we increase the initial concentration of

antibiotic more than 0.67 then the bacteria population will be cleared from the host. The

number of infection steady states as a function of input parameters S0 and A0 is shown in the

right side of figure 5. The MIC curve l ¼ 0 is also plotted, showing that there is only one
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Figure 4. Initial-condition-dependent outcomes are possible when l , 0: successful and unsuccessful treatment
result from the same system but different initial data. Same dosing as figure 1.
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disease state when concentration of antibiotic is less than the MIC value, and zero or two

disease states when concentration is more than MIC.

Figure 6 shows the surface u ¼ uðS0;A0Þ, giving the bacterial density at the infection state

Eu. A fold in this surface illuminates the information contained in the right side of figure 5.

Theorem 2.1 does not provide an adequate set of sufficient conditions for treatment

success in the general case p – 0. Our next result applies much more generally, providing a

threshold condition for treatment success in terms of parameters and functions appearing in

the model. It is a special case of a more general result proved in the appendix.

Theorem 2.2. Let

B0 ¼
gdSS

0

min{dS; du}

and suppose that

pðAÞ # cA; 0 # A # max
t

A0ðtÞ ð6Þ

If, in addition, A! gðS0;AÞ is concave on 0 # A # max
t

A0ðtÞ (e.g. ð›
2g=›A2Þ # 0) and

f ðS0Þ2 du 2 g S0;
dA

dA þ B0c
½A0�m

� �
, 0 ð7Þ

then uðtÞ! 0 as t!1 for every solution of equation (2).

The concavity assumption on g is not necessary but it simplifies the statement of the result.

It is satisfied for many of the functions commonly used including the Emax model with

exponent one. Analogous results can be proved for equation (5). Assumption (6) is a mild one

as c can be taken to be sup{pðAÞ=A : 0 , A # max
t

A0ðtÞ} so long as p is differentiable

at A ¼ 0. Note that the expression on the left in equation (7), which exceeds l, depends only

on the supplied antibiotic level.
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Figure 6. The dependence of the infection steady state (Eu) value of u on parameters ðS 0;A0Þ for constant dosing,
illuminating figure 5. The surface intersects the u ¼ 0 plane along the l ¼ 0 curve.
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3. Treatment of susceptible and resistant bacteria

Bacteria may acquire resistance to an antibiotic via spontaneous mutation or the acquisition

of new genetic material by transduction, transformation or conjugation. Transduction is the

process by which bacterial DNA is moved from one bacterium to another by a virus.

Transformation is a process where pieces of DNA in the exterior environment are taken up by

the bacteria. Conjugation is the transfer of genetic material between bacteria through cell-to-

cell contact and it is thought to play a significant role in the proliferation of antibiotic

resistant pathogens [29,34]. We consider a bacterial population consisting of two types of

cells: a plasmid-free cell which is susceptible to an antibiotic and a plasmid-bearing cell

which is partially or totally resistant to the antibiotic due to a resistance gene encoded by the

plasmid. Hereafter, we refer to the cell types as resistant and susceptible. We assume that the

resistant, plasmid-bearing cell may transfer a copy of the plasmid to a susceptible, plasmid-

free cell via conjugation. Furthermore, a plasmid-bearing cell may mis-segregate plasmid at

cell division with probability q resulting in one daughter cell receiving no plasmid and hence

becoming susceptible. Our model takes the form:

S0 ¼ dSðS
0 2 SÞ2 g21½f ðSÞuþ fþðSÞuþ�

A0 ¼ dAðA0ðtÞ2 AÞ2 pðAÞ½uþ uþ�

u0 ¼ ½f ðSÞ2 du 2 gðS;AÞ�uþ q fþðSÞuþ 2 muuþ

uþ ¼ ½fþðSÞð1 2 qÞ2 du 2 gþðS;AÞ�uþ þ muuþ ð8Þ

For simplicity, we assume both cells types have the same growth yield and removal rate and

remove antibiotic similarly. We expect that resistant cells grow no faster than susceptible

ones and of course, are at least partially resistant to antibiotic:

fþðSÞ # f ðSÞ and gþðS;AÞ , gðS;AÞ

Such a cost of plasmid carriage is well documented in the literature, see Lenski [21] although

it may decline over many generations due to the effects of natural selection as observed by

Dahlberg and Chao [8].

Horizontal transmission of the plasmid between the two sub-populations is assumed to

occur at a rate proportional to the product of their densities: muuþ.

Our model equation (8) is based on the plasmid model of Stephanopoulus and Lapidus

[33]. See also Hsu et al. [11–14] for a similar modeling of segregative loss in their model of

competition between plasmid-bearing and plasmid-free organisms in selective media and

Refs. [17,18] for plasmid transfer in biofilms.

Removing the antibiotic from the model results in the “pre-treatment model”

S0 ¼ dSðS
0 2 SÞ2 g21½f ðSÞuþ fþðSÞuþ�

u0 ¼ ½f ðSÞ2 duÞ�uþ q fþðSÞuþ 2 muuþ

uþ ¼ ½fþðSÞð1 2 qÞ2 du�uþ þ muuþ: ð9Þ

which is studied in detail in Ref. [18] in the case dS ¼ du. If uþ ¼ 0, it reduces to equation (3)

and if f ðS0Þ . du it has the pretreatment steady state ð�S; �u; 0Þwith no resistant bacteria which

is locally stable for equation (9) if fþð�SÞð1 2 qÞ2 du þ m�u , 0 and unstable if the reverse

inequality holds. If fþð�SÞð1 2 qÞ2 du þ m�u . 0, then equation (9) has another pretreatment
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state ð~S; ~u; ~uþÞ consisting of both susceptible and resistant bacteria. Appropriate initial

conditions for the post-treatment system (8) are expected to be near the stable equilibrium of

the pre-treatment system (9).

If the antibiotic inhibits the growth and uptake of the nutrient then the following equations

may be more appropriate

S0 ¼ dSðS
0 2 SÞ2 g21½f ðS;AÞuþ fþðS;AÞuþ�

A0 ¼ dAðA0ðtÞ2 AÞ2 pðAÞ½uþ uþ�

u0 ¼ ½f ðS;AÞ2 du�uþ q fþðS;AÞuþ 2 muuþ

uþ ¼ ½fþðS;AÞð1 2 qÞ2 du�uþ þ muuþ:

ð10Þ

If the resistance is due to spontaneous mutation, then the above model (8) can be written as

S0 ¼ dSðS
0 2 SÞ2 g21½f ðSÞuþ fþðSÞuþ�

A0 ¼ dAðA0ðtÞ2 AÞ2 pðAÞ½uþ uþ�

u0 ¼ ½f ðSÞ2 du 2 gðS;AÞ�u2 qu

uþ ¼ ½fþðSÞ2 du 2 gþðS;AÞ�uþ þ qu:

ð11Þ

where q is the mutation rate from susceptible to resistant.

The periodic solutions of equations (8) and (10) include the “sterile state”

E0ðtÞ ¼ ðS0;A*ðtÞ; 0; 0Þ;

“infection states” with only susceptible cells of the form

EuðtÞ ¼ ð�SðtÞ; �AðtÞ; �uðtÞ; 0Þ

and infection states with susceptible and resistant organisms of the form

Eu * ðtÞ ¼ ðS*ðtÞ;A*ðtÞ; u*ðtÞ; u*
þðtÞÞ

where all components are positive periodic functions. Such infection states need not be

unique. Note that if uþð0Þ ¼ 0 then uþðtÞ ¼ 0 for all t and this case is discussed in the

previous section. Therefore we assume that uð0Þ . 0 and uþð0Þ . 0.

As in the previous section, the local stability of the sterile state can be determined by

Floquet exponents of the variational equation associated with the periodic solution E0ðtÞ.

Two of these, 2dS, 2dA are negative; the third and the fourth are the invasion exponents for

susceptible and resistant organisms:

l ¼ f ðS0Þ2 du 2 ½gðS0;A*ðtÞÞ�m; lþ ¼ fþðS
0Þð1 2 qÞ2 du 2 ½gþðS

0;A*ðtÞÞ�m

for system (8) and

l ¼ ½f ðS0;A*ðtÞÞ�m 2 du; lþ ¼ ½fþðS
0;A*ðtÞÞ�mð1 2 qÞ2 du

for system (10).

The counterpart to Theorem 2.1 for treatment of susceptible and resistant populations is

the following result.
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Theorem 3.1. For systems (8) and (10), the sterile state E0ðtÞ is locally asymptotically stable

if both l , 0 and lþ , 0 and unstable if either l . 0 or lþ . 0. Moreover:

1. If l , 0, A0 is constant and p ¼ 0, then E0 is globally attracting for equation (8) when

fþðS
0Þ2 du 2 gþðS

0;A0Þ , 0 and for equation (10) when fþðS
0;A0Þ2 du , 0.

2. If l . 0 or lþ . 0, then treatment fails. In particular, there exists 1 . 0, independent of

initial data and t0 . 0 depending on initial data, such that

uðtÞ þ uþðtÞ . 1; t . t0 ð12Þ

3. At least one infection state EuðtÞ or Eu *ðtÞ exists. If resistant population survive then so

does susceptible, in the sense that if equation (11) holds with only uþ, then a similar

statement holds for u. Assuming l , 0, lþ . 0 and p ¼ 0, then both u and uþ are

uniformly persistent for equations (8) and (10) and at least one infection state Eu * exists.

4. If A0 is constant, l . 0 and p ¼ 0 then Eu ¼ ð�S; �A; �u; 0Þ exists, is unique and is locally

asymptotically stable for equation (8) if lþ ¼ fþð�SÞð12 qÞ2 du 2 gþð�S; �AÞ þ m�u , 0

and for equation (10) if lþ ¼ fþð�S; �AÞð12 qÞ2 du þ m�u , 0. Eu is unstable if lþ . 0;

in this case u and uþ uniformly persist and Eu * exists for equations (8) and (10).

Theorem 3.1 describes the extent to which we have been able to link the local stability

properties of the sterile state, as determined by the sign of the invasion exponents l and lþ, to

the global dynamics of the models. In the case of non-constant, periodic dosing, the disease-

free state is only locally stable when both l , 0 and lþ , 0. This means treatment success is

only guaranteed for indeterminately small infections. On the other hand, treatment failure is

guaranteed when either l . 0 or lþ . 0, in which case there exists at least one periodic

disease state EuðtÞ or Eu * ðtÞ. Special attention is focused on the case p ¼ 0 with l , 0 and

lþ . 0 where the resistant, but not the susceptible, strain can invade the sterile state. Of

course, treatment failure occurs, both resistant and susceptible organisms persist and there is

a periodic disease state Eu * with both resistant and susceptible populations.

More information is available for the constant dosing case. In particular, global stability of

the disease-free state holds under certain conditions when l , 0 and p ¼ 0. If l . 0 and

p ¼ 0, then Eu exists and is unique, and its stability is determined by whether or not uþ can

successfully invade it, as determined by the sign of lþ. If the latter is positive then both

resistant and susceptible bacteria persist and there is a corresponding steady state with both

present.

Our simulation in this section involves only equation (8) with f ðSÞ, pðAÞ, gðS;AÞ as defined
in the previous section and

fþðSÞ ¼
mþS

aþ S
; gþðS;AÞ ¼ kþ

S

aþ S

A

Lþ A
:

Figure 7 depicts a successful treatment when both l and lþ are negative. The output has been

scaled by S=a, A=L, u=ðagÞ and uþ=ðagÞ. Time t is scaled by 1=dS, n is measured in units of

ðagÞ=ðdSLÞ, m is measured in units of ag, dA, du, m, mþ, k and kþ are all scaled by 1=dS, S
0 is

scaled by 1=ðagÞ and A0 is scaled by 1=L. Parameter values are: yield coefficient g ¼ 0:8,

maximum specific growth rates m ¼ 0:417, mþ ¼ 0:416 and n ¼ 0:345, dilution rate

dS ¼ 0:23, half saturation constants a ¼ 0:1 and L ¼ 0:1, Hill exponent H ¼ 1, maximum

disinfection rate k ¼ 0:96 and kþ ¼ 0:87, concentration of the substrate in the feed S0 ¼ 0:2,

segregation loss q ¼ 0:01 and conjugation m ¼ 0:0000001.
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Figure 8 shows that the treatment could fail either by lþ . 0 and l , 0 or l . 0 and

lþ . 0. Initially the culture contains the mixture with a minority of resistant bacteria and a

majority of sensitive bacteria. In the first case (left figure), the susceptible population

declines for first 24 h and then increases. In the second case, the susceptible population grows

for first 24 h and then starts decreasing before reaching a periodic solution and the resistant

population grows. In both cases, the resistant population becomes dominant and overcomes

the susceptible population because the killing rate of resistant population is much smaller

than for the susceptible one. All the parameters are the same as used in the previous figure,

except k and kþ are now 0.96 and 0.25 for figure (a) and 0.29 and 0.125 for figure (b).

Figure 9 shows that l , 0 and lþ , 0 only guarantees successful treatment of small

bacterial populations except in certain special cases. Both resistant and susceptible

populations versus time are plotted for a small and for a large initial inoculum of bacteria

(uð0Þ ¼ 0:5, uþð0Þ ¼ 0:01 and uð0Þ ¼ 0:7, uþð0Þ ¼ 0:01). All other parameters and initial

data are the same as in previous figures. Solutions corresponding to small initial data show

successful treatment while solutions corresponding to a large initial bacterial populations

exhibit treatment failure. In the failure case, the susceptible population grows and takes over
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Figure 8. Simulation of the effect of unsuccessful treatment on the bacterial population. (Left) l ¼ 20:3654 is
negative and lþ ¼ 0:0558 is positive. In this case both populations persists and the treatment is ineffective. (Right)
Both l ¼ 0:0598, lþ ¼ 0:1316 are positive and the treatment is ineffective. Same dosing as figure 1.
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Figure 7. The left figure shows treatment success when l ¼ 20:2804 and lþ ¼ 20:2511. The right figure is an
illustration of pre-treatment infection for 0 , t , 60 h followed by treatment starting at t ¼ 60 h resulting in
bacterial eradication. The value of l and lþ are as in left figure during the treatment. Same dosing as figure 1.
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the resistant population. All parameters are the same as used in left figure 7 except S0 is

increased to S0 ¼ 0:5.
The following analog of Theorem 2.2 gives simple sufficient conditions guaranteeing

treatment success. It is a special case of a more general result proved in an appendix.

Theorem 3.2. Let B0 and c be as in Theorem 2.2. Suppose that fþ # f , gþ # g and in

addition, A! gþðS
0;AÞ is concave on ½0;max

t
A0ðtÞ� (e.g. ð›2gþ=›A

2Þ # 0). Finally, assume

that

l* ¼ f ðS0Þ2 du 2 gþ S0;
dA

dA þ B0c
½A0�m

� �
, 0 ð13Þ

Then uðtÞ þ uþðtÞ! 0 as t!1 for every solution of equation (8).

Observe that l* appearing in equation (12) depends on the (larger) specific growth rate of

susceptible bacteria and the (smaller) pharmacodynamic function of resistant bacteria.
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A. Appendices

Proofs of our results are provided in these appendices. The proof of Theorem (2.1) is given in

Appendix 1, Theorem (3.1) in Appendix 2 and Theorem (2.2) and Theorem(3.2) are proved

in Appendix 3.

A.1 Appendix 1

We prove results for equation (2); similar arguments apply to equation (4). Some of part (b)

of Theorem (2.1) holds for equation (4) only and so we prove that part only for equation (4).

Before proving the main result, we prove the following lemmas for equation (2). The first

is standard so we omit its proof.

Lemma 1. The nonnegative cone R3
þ is positively invariant for equation (2).

Proof. In V3, we have the following inequalities:

S0 ¼ dSS
0 $ 0 when S ¼ 0 A0 ¼ dAA0ðtÞ $ 0 when S ¼ 0 u0 ¼ 0 $ 0

when u ¼ 0:

So the nonnegative ðS;A; uÞ-cone V3 is positively invariant for the system (2).

Lemma 2. All nonnegative solutions of equation (2) are ultimately uniformly bounded in

forward time and thus they exist for all positive time. Moreover, the system (2) is dissipative

in R3
þ.

Proof. Multiplying the first equation of (2) by g and adding to third equation, using a new

variable z ¼ gSþ u, we arrive at the differential inequality:

z0 ¼ ðdSgS
0 2 dSgS2 duuÞ2 gðS;AÞu # dSgS

0 2 dðSþ uÞ

where d ¼ min{dS; du} # dSgS
0 2 dz:

This implies

zðtÞ # zð0Þ2 g
S0dS

d

� �
e2dt þ g

S0dS

d
:
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Thus for any initial condition in R3
þ

lim sup
t!1

zðtÞ # lim sup
t!1

zð0Þ2 g
S0dS

d

� �
e2dt þ g

S0dS

d

� �
# g

S0dS

d
ð14Þ

Now, from the second equation we have

A0 # dAðA0ðtÞ2 AÞ

which implies that A is ultimately bounded by M1 ¼ max
t
A0ðtÞ.

These inequalities prove that equation (2) is dissipative.

For a real-valued function p on ½0;1Þ, we define

p1 ¼ lim inf
t!1

pðtÞ; p1 ¼ lim sup
t!1

pðtÞ:

Lemma 3. There exist a constant h . 0, independent of initial data, such that S1 $ h

for all solutionsSðtÞ,whereh is a unique, nonzero, rootof the equation f ðhÞS0 þ dðh2 S0Þ ¼ 0:

Proof. The equation GðvÞ ¼ f ðvÞS0 þ dðv2 S0Þ is an increasing function of v satisfying

Gð0Þ , 0 and GðS0Þ . 0. So, the intermediate value theorem gives the unique value of

�h [ ð0; S0Þ such that Gð �hÞ ¼ 0. Now, suppose that S1 , h: Since u1 # gðS0dS=dÞ,
applying Corollary 2:4ðaÞ of Ref. [35] to the S equation of (2),

0 $ dSðS
0 2 S1Þ þ g21f ðS1Þ lim inf

t!1
½2uðtÞ�

$ dSðS
0 2 S1Þ2 g21f ðS1Þ lim sup

t!1

½uðtÞ�

$ dSðS
0 2 S1Þ2 f ðS1ÞS

0 dS

d
. dðS0 2 hÞ2 f ðhÞS0

and so f ðhÞS0 þ dh . dS0 which gives a contradiction due to the choice of h.

Note that for f ðSÞ ¼ mðS=ðaþ SÞÞ, the value of h is,

h ¼
2ðdaþ mS0 2 dS0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdaþ mS0 2 dS0Þ2 þ 4d 2S0aÞ

p
2a

:

Lemma 4. There is a constant u . 0, independent of initial data, such that A1 $ u for all

solutions AðtÞ, where u is a unique, nonzero, root of the equation dSgS
0pðuÞ þ ddAu2

ddAa1 ¼ 0 where mint A0ðtÞ ¼ a1.

Proof. For any fixed a1, the equation FðwÞ ¼ ddAwþ dSgS
0pðwÞ2 ddAa1 is an increasing

function of w, satisfying Fð0Þ , 0 and Fða1Þ . 0. So by the intermediate value theorem,
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there exists a unique root �u [ ð0; a1Þ of FðwÞ. Now, suppose that A1ðtÞ , u: Since

u1 # gðS0dS=dÞ, applying Corollary 2:4ðaÞ of Ref. [35] to the A equation of (2),

0 $ dAða1 2 A1Þ þ pðA1Þ lim inf
t!1

½2uðtÞ�

$ dAða1 2 A1Þ2 pðA1Þ lim sup
t!1

½uðtÞ�

$ ddAða1 2 A1Þ2 gS0pðA1ÞdS

. ddAða1 2 uÞ2 gS0pðuÞdS:

This implies that ddAuþ gS0pðuÞdS . ddAa1 which gives a contradiction due to the choice

of u.

Proof of Theorem (2.1). (a) The local stability of E0ðtÞ can be determined by the Floquet

exponents of the variational equation. The variational equation corresponding to E0ðtÞ of

equation (2) is:

Z 0 ¼

2dS 0 2g21f ðS0Þ

0 2dA 2pðA*ðtÞÞ

0 0 f ðS0Þ2 du 2 g S0;A*ðtÞ
� �

0
BB@

1
CCAZ:

A computation yields the fundamental matrix FðtÞ

FðtÞ ¼

e2dSt 0 ·

0 e2dAt ·

0 0 e

Ð t
0

f ðS 0Þ2du2g S 0;A *ðsÞð Þð Þ ds

0
BB@

1
CCA:

Note that the entries denoting “·” play no role in the stability of E0ðtÞ. Evaluating FðtÞ at

t ¼ T, we obtain the multipliers e2dST , e2dAT and eTðf ðS
0Þ2du2½gðS 0;A *ðtÞÞ�mÞ. Then it follows

immediately that l1 ¼ 2dS, l2 ¼ 2dA and l ¼ f ðS0Þ2 du 2 ½gðS0;A*ðtÞÞ�m are the Floquet

exponents. Two of the exponents, l1, l2 are automatically negative and the third, l is

negative if f ðS0Þ2 du 2 ½gðS0;A*ðtÞÞ�m , 0. Thus E0ðtÞ is asymptotically stable if l , 0

and is unstable if l . 0.

In order to prove global stability, we first consider the case when SðtÞ $ S0 for all t [Rþ.

The S equation implies that

S0 # 0;

i.e. SðtÞ is non-increasing for all t $ 0. Since S is bounded from below, so it approaches to a

limit, denote limt!1 SðtÞ ¼ L $ S0, then limt!1 S0ðtÞ ¼ 0 because the limt!1SðtÞ exists.

Then limt!1 uðtÞ exists and limt!1 uðtÞ ¼ ðgdSðS
0 2 LÞ=f ðLÞÞ: The positivity of u implies

that L # S0. So the limt!1 SðtÞ ¼ S0 and limt!1 uðtÞ ¼ 0.

Now, consider SðtÞ # S0 for some t. By positive invariance of ½0; S0� under

S0 ¼ dSðS
0 2 SÞ, we have that SðtÞ # S0 for all large t. Since l , 0, we can choose 1 . 0

small enough such that l0 ¼ f ðS0Þ2 du 2 ½gðS0;A*ðtÞ þ 1Þ�m , 0. Then from the equation

A0 ¼ dAðA0ðtÞ2 AÞ, we conclude that there exists a t0 such that AðtÞ # A*ðtÞ þ 1 for t . t0
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and where 1 . 0 is chosen above. From the u equation of (2), we have

uððnþ 1ÞTÞ # uðnTÞ e

Ð ðnþ1ÞT

nT
f ðSðsÞÞ2du2g SðsÞ; A *ðsÞþ1ð Þð Þds ¼ uðnTÞln

where

ln ¼ e

Ð ðnþ1ÞT

nT
f ðSðsÞÞ2du2g SðsÞ; A *ðsÞþ1ð Þð Þds:

This implies that

ln # e

Ð ðnþ1ÞT

nT
f ðS 0Þ2du2g S 0; A *ðsÞþ1ð Þð Þ ds

¼ e f ðS 0Þ2du2 g S 0; A *ðtÞþ1ð Þ½ �mð ÞT ¼ el0T

and this implies that limn!1 uðnTÞ ¼ 0.

In order to show that limt!1 SðtÞ ¼ S0 we use Corollary 2.4(a) of Ref. [35]. From the

inequality S0 # dSðS
0 2 SÞ, we conclude that S1 # S0. Let 1 . 0 and make t large so that

u1 , rac 1dSgf ðS
0Þ (because limt!1 uðtÞ ¼ 0). Applying Corollary 2.4(a) of Ref. [35] to the

S equation in (2),

0 $ dSS
0 2 dSS1 þ g21 lim inf

t!1
½2uðtÞ� f ðS1Þ

$ dSS
0 2 dSS1 2 g21 lim sup

t!1

½uðtÞ� f ðS0Þ $ dSS
0 2 dSS1 2 1dS

and hence we have S0 $ S1 $ S1 $ S0 2 1, which is true for any 1 . 0. This implies that

for t large enough we have limt!1 SðtÞ ¼ S0. This implies that E0ðtÞ is globally

asymptotically stable for equation (2).

Part (b) We apply Theorem ð4:1Þ of Ref. [16]. Using the notation, we set

X ¼ ðS; u;AÞ [ R3
þ : gSþ uþ A # g

S0dS

d
þM1;

�

where M1 ¼ max
0#t#T

jA0ðtÞj and d ¼ min{dS; du}

�
;

X1 ¼ {ðS; u;AÞ [ X : u – 0} and X2 ¼ {ðS; u;AÞ [ X : u ¼ 0}:

Define a map P such as P Sð0Þ;Að0Þ; uð0Þ
� �

¼ SðTÞ;AðTÞ; uðTÞ
� �

. We want to show that there

exists 1 . 0 such that

lim inf
n!1

dðPnðXÞ;X2Þ . 1:

Given that

1. X is compact metric space.

2. P : X ! X is continuous map.

3. PðX1Þ , X1

4. M is the maximal compact invariant set in X2.

In our case M ¼ E0ð0Þ, since the omega limit set of solutions starting in X2 is E0ð0Þ where

E0ð0Þ ¼ ðS0;A*ð0Þ; 0Þ. We want to show that
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1. M is isolated in X

2. W sðMÞ , X2

In order to show that M is isolated in X we will apply the following Theorem 2.3 of Ref. [23].

Let V be the neighborhood given by this theorem. Assume that there exists an invariant set ~K

such that

M , ~K # V > X:

Since ~K is positively invariant, all solutions that begin in ~K stay in ~K and so in V for positive

time. Thus ~K , W sðE1Þ.

Since ~K is negatively invariant, all solutions that begin in ~K stay in ~K and so in V for

negative time. Thus ~K , W uðE1Þ.

W sðE1Þ>W uðE1Þ ¼ E1

thus ~K ¼ M ¼ E1. Therefore K is an isolated compact invariant set in X.

It is clear that in this case W sðMÞ ¼ X2.

For the existence of a positive periodic solution, we assume that X1 is a convex and

relatively open subset in X.The map P satisfies the following conditions

1. P : X ! X is point dissipative (since all the positive trajectories eventually lie in a

bounded set);

2. P is compact (since P is continuous in Rþ3); and

3. P is uniformly persistent with respect to ðX1;X2Þ.

The existence of a positive T periodic solution follows directly by Theorem 1:3:6 of Ref. [39].

For equation (4), it follows from Theorem 4.2 of Ref. [30], that every solution with

uð0Þ . 0 converges to one of these states.

If pðAÞ ¼ 0 and dS ¼ dA ¼ d, then the limiting system

u0 ¼ ð f ðS;A*Þ2 dÞu ¼ g1ðt; uÞ

S ¼
S0

d
2 g21u: ð15Þ

has concave nonlinearities. By Theorem 3.1 of Ref. [31] and Lemma 2.7 of Ref. [11], if

l . 0, every solution with uð0Þ . 0 converges to EuðtÞ.

If A0 is constant, p ¼ 0 and l . 0. Then, a unique Eu state can be obtained by setting the

right side of equation (2) equal to zero and then solving for a none-zero S, A and u. Then

FðSÞ ¼ f ðSÞ2 du 2 gðS;A0Þ, by intermediate value theorem, gives a unique �S [ ð0; S0Þ,

because Fð0Þ , 0 and FðS0Þ . 0 such that Fð�SÞ ¼ 0. Also, GðuÞ ¼ ðdSS
0 2 dS �SÞ2

ug21f ð�SÞ ¼ 0 gives a unique �u such that Gð�uÞ ¼ 0. Thus in this case, Eu is unique. If l , 0,

then there does not exist an �S such that Fð�SÞ ¼ 0. The local stability of Eu is proved in the

next theorem. For the global stability of Eu, we consider the limiting system

S 0 ¼ dSðS
0 2 SÞ2 g21f ðSÞu

u 0 ¼ f ðSÞ2 du 2 gðS;A*Þ
� �

u: ð16Þ
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We apply the Dulac criterion with the auxiliary function gðS; uÞ ¼ ð1=uÞ to equation (15) and

find that

›

›S
½gðS; uÞS0Þ� þ

›

›u
½gðS; uÞu0Þ� ¼ 2

dS

u
2 g21f 0ðSÞ , 0:

Hence the above system (15) does not have any periodic solution. This together with

Poincare–Bendixson theorem implies the global stability of equation (15). For the global

stability of equation (2), we use the Theorem (F.1) of Ref. [30]. Since all the hypotheses of

the Theorem (F.1) are satisfied, see Ref. [18], so we conclude that Eu is globally

asymptotically stable.

A.2 Appendix 2

It is easy to see that all the lemmas of Appendix 1 also hold for equations (8) and (10). The

upper bound of the solutions for equation (8) as given in Lemma (2) is

lim sup
t!1

ðgSðtÞ þ uðtÞ þ uþðtÞ þ AðtÞÞ # g
S0dS

d
þM1;

where M1 ¼ maxt jA0ðtÞj; d ¼ min{dS; du}:
All the results that are proved only for equation (8) can also be proved for equation (10) in

exactly the same way. So we proved them only for equation (8).

Proof of Theorem 3.1. (a) The local stability of E0ðtÞ can be determined by the Floquet

exponents of the variational equation. The variational equation corresponding to E0ðtÞ of

equation (8) is:

Z 0 ¼

2dS 0 2g21f ðS0Þ 2g21f ðS0Þ

0 2dA 2g1ðA*ðtÞÞ 0

0 0 f ðS0Þ2 du 2 g S0;A*ðtÞ
� �

qfþðS
0Þ

0 0 0 z44

0
BBBBB@

1
CCCCCAZ

where z44 ¼ fþðS
0Þð12 qÞ2 du 2 gþðS

0;A*ðtÞÞ. Note that the entries denoting “·” play no

role in the stability of E0ðtÞ. A computation yields the fundamental matrix FðtÞ

FðtÞ ¼

e2dSt 0 · ·

0 e2dAt · 0

0 0 e

Ð t

0
f ðS 0Þ2du2gðS 0;A *ðsÞÞð Þds ·

0 0 0 e

Ð t
0

fþðS
0Þð12qÞ2du2gþ S 0;A *ðsÞð Þð Þds

0
BBBBB@

1
CCCCCA

Evaluating FðtÞ at t ¼ T, we obtain the multipliers e2dST , e2dAT , eTðf ðS
0Þ2du2½gðS 0;A *ðtÞÞ�mÞ and

eTðfþðS
0Þð12qÞ2du2½gþðS

0;A *ðtÞÞ�mÞ. Then it follows immediately that l1 ¼ 2dS, l2 ¼ 2dA, l ¼

f ðS0Þ2 du 2 ½gðS0;A*ðtÞÞ�m and lþ ¼ fþðS
0Þð12 qÞ2 du 2 ½gþðS

0;A*ðtÞÞ�m are Floquet

exponents. Two of the exponents, l1, l2 are automatically negative and l and lþ are
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negative if f ðS0Þ2 du 2 ½gðS0;A*ðtÞÞ�m , 0 and fþðS
0Þð12 qÞ2 du 2 ½gþðS

0;A*

ðtÞÞ�m , 0. Thus, E0ðtÞ is asymptotically stable if l, lþ both are negative, and is unstable

if either l . 0 or lþ . 0.

For the global stability of E0 in the constant case, since f ðS0Þ2 du 2 gðS0;A0Þ , 0 and

fþðS
0Þ2 du 2 gþðS

0;A0Þ , 0, we choose 1 . 0 small enough so that f ðS0 þ 1Þ2 du 2

gðS0 þ 1;A0 þ 1Þ , 0 and fþðS
0 þ 1Þ2 du 2 gþðS

0 þ 1;A0 þ 1Þ , 0. From the inequal-

ities S0 # dSðS
0 2 SÞ and A0 # dAðA0 2 AÞ, we conclude that for all large t . 0, SðtÞ #

S0 þ 1 and AðtÞ # A0 þ 1, where 1 . 0 is chosen above.

From the u and uþ equations of the system (8)

u0 þ uþ ¼ f ðSÞ2 du 2 gðS;AÞ
� �

uþ fþðSÞ2 du 2 gþðS;AÞ
� �

uþ

# f ðS0 þ 1Þ2 du 2 g S0 þ 1;A0 þ 1
� �� �

u

þ fþðS
0 þ 1Þ2 du 2 gþðS

0 þ 1;A0 þ 1Þ
� �

uþ:

Take m ¼ min{fþðS
0 þ 1Þ2 du 2 gþðS

0 þ 1;A0 þ 1Þ; f ðS0 þ 1Þ2 du 2 gðS0 þ 1;A0 þ

1Þ} , 0. Then

u0 þ uþ # mðuþ uþÞ

and this implies that lim supt!1 ðuðtÞ þ uþðtÞÞ # 0. From the positivity of u and uþ, we

conclude that limt!1 uðtÞ ¼ 0 and limt!1 uþðtÞ ¼ 0

Part (b) First we will consider the case when lþ . 0: We can choose 1 . 0 such that

fþðS
0 2 1Þð12 qÞ2 du 2 ½gþðS

0 þ 1;A*ðtÞ þ 1Þ�m ¼ B1 . 0. From the inequality

A0ðtÞ # dAðA0ðtÞ2 AÞ, there exists a t0 . 0 such that AðtÞ # A*ðtÞ þ 1; t . t0.

Pick a solution ðSðtÞ;AðtÞ; uðtÞ; uþðtÞÞ with uþð0Þ . 0: We suppose that u and uþ do not

uniformly weakly persist and derive a contradiction. We can assume that

u1 #
1gdS

4nf ðS0Þ
# 1

u1þ #
1gdS

4nfþðS0Þ
# 1 ð17Þ

where n ¼ max{1; g} and 1 . 0 is chosen above. From the inequality S0 # dSðS
0 2 SÞ, we

conclude that S1 # S0. We apply Corollary 2.4(a) of Ref. [35] to the S equation of (2)

0 $ dSS
0 2 dSS1 þ g21 lim inf

t!1
½2ðuðtÞf ðS1Þ þ uþðtÞfþðS1ÞÞ�

$ dSS
0 2 dSS1 2 g21 lim sup

t!1

½uðtÞf ðS0Þ þ uþðtÞfþðS
0Þ�

$ dSS
0 2 dSS1 2

1dS

4n
2

1dS

4n

$ S0 2 S1 2
1

4n
2

1

4n
$ 2S1 þ S0 2

1

2n

from this, we conclude that

S0 $ S1 $ S1 $ S0 2
1

2
:
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This implies that there exists a t1 . 0 such that SðtÞ [ ½S0 2 1; S0 þ 1� for t . t1. Pick a

solution ðSðtÞ;AðtÞ; uðtÞ; uþðtÞÞ. For a large t . max{t0; t1} (say t1), we have from the uþ
equation of (8):

uþ $ fþðS
0 2 1Þð1 2 qÞ2 du 2 gþðS

0 þ 1;A*ðtÞ þ 1Þ þ mu
� �

uþ

$ fþðS
0 2 1Þð1 2 qÞ2 du 2 gþðS

0 þ 1;A*ðtÞ þ 1Þ
� �

uþ ð18Þ

By integrating equation (17) from NT $ t1 to nT, with n . N, we have

uþðnTÞ $ uþðNTÞ e
B1ðn2NÞT ; for n . N

which gives a contradiction to equation (16) for a large enough t.

Now we will consider the case when l . 0. We can pick 1 . 0 (it could be different then

above) such that f ðS0 2 1Þ2 du 2 ½gðS0 þ 1;A*ðtÞ þ 1Þ�m 2 m1 ¼ B2 . 0: Also, from the

inequality A0 # dAðA0ðtÞ2 AÞ, we conclude that AðtÞ # A*ðtÞ þ d for some 0 , d # 1 and

for t . t2 large enough. Assume that u1 # ð1gdS=4nf ðS
0ÞÞ # 1 and u1þ #

ð1gdS=4nf ðS
0ÞÞ # 1 where n ¼ max{1; g}. As shown above, in this case there exists a

t1 . 0 such that SðtÞ [ ½S0 2 1; S0 þ 1� where 1 . 0 is chosen above. Pick a solution

ðSðtÞ;AðtÞ; uðtÞ; uþðtÞÞ with uð0Þ . 0: For t . t0 ¼ max{t1; t2}, we have from the u equation

of (10):

u0 ¼ f ðSÞ2 du 2 g S;AðtÞ
� �� 	

uþ q fþðSÞuþ 2 muuþ

$ f ðS0 2 1Þ2 du 2 gðS0 þ 1;A*ðtÞ þ 1Þ2 m1
� 	

u: ð19Þ

Integrate equation (18) from NT $ t0 to nT we have:

uðnTÞ $ uðNTÞ eB2ðn2NÞT ; for n . N

which gives a contradiction to u1 , 1 for large enough n. This shows that, if l . 0 or

lþ . 0 then, there exists a constant 1 . 0 independent of initial data such that

lim sup
t!1

uðtÞ þ uþðtÞ
� �

. 1

for all solutions.

Now, we will prove the uniformly strong persistence of either u or uþ. Using the notation,

we set

X ¼ ðS;A; u; uþÞ [ R4
þ : 0 # gSþ uþ uþA # g

S0dS

d
þM1; where M1 ¼ max

0#t#T
jA0ðtÞj;

�

d ¼ min{dS; du}

�
; X2 ¼ {ðS;A; u; uþÞ [ X : uþ uþ ¼ 0}

and X1 ¼ {ðS;A; u; uþÞ [ X : u – 0oruþ – 0}:
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Define a map P such that

P Sð0Þ;Að0Þ; uð0Þ; uþð0Þ
� �

¼ SðTÞ;AðTÞ; uðTÞ; uþðTÞ
� �

:

This map P satisfies the following

1. P : X ! X is continuous map;

2. PðX1Þ , X1

3. P has a global attractor.

(iii) holds for P because the map P is compact and point dissipative. By Theorem 1:3:3: of

Ref. [39], there exists an 1 . 0 independent of initial data such that

lim infn!1 ðuðnTÞ þ uþðnTÞÞ . 1. From this, we conclude that

lim inf
t!1

uðtÞ þ uþðtÞ
� �

. 1

for all solutions with uð0Þ . 0; uþð0Þ . 0.

Now, we will show that if uþ1 . 1 for some 1 . 0, then there exists some 11 . 0 such

that u1 . 11. Since A
1 # M1 ¼ max0#t#T A*ðtÞ, we apply Corollary 2.4(a) of Ref. [35] to

the u equation in (8)

0 $ lim inf
t!1

f SðtÞð Þ2 du 2 gðSðtÞ;AðtÞÞ
� �

u1 þ q fþ SðtÞð ÞuþðtÞ2 mu1uþðtÞ
� 	

$ lim inf
t!1

f SðtÞð Þ2 du 2 gðSðtÞ;AðtÞÞ
� �� 	

u1 þ lim inf
t!1

q fþðSðtÞÞuþðtÞ
� �

2 mu1 lim sup
t!1

uþðtÞ

$ f ðhÞ2 du 2 gðS0;M1Þ
� �

u1 þ q fþðhÞuþ1 2 mu1g
S0dS

d
:

Here we have used that lim inft!1 SðtÞ $ h, by the Lemma (3). Solving for u1, we obtain

u1 .
q fþðhÞ1

2f ðhÞ þ du þ gðS0;M1Þ þ mg S 0dS
d


 � ¼ 11;

which is positive by Lemma (3), independent of the initial data. This implies that if uþ
persists then so does u.

The existence of at least one non-zero, positive, periodic solution of form EuðtÞ or Eu * ðtÞ

follows by Theorem 1:3:6 of Ref. [39] as shown in the previous theorem.

Now suppose that l , 0, lþ . 0 and p ¼ 0. It is easy to see that if SðtÞ $ S0 for all t $ 0,

then in this case uþ uniformly persists.

Consider SðtÞ # S0 for large t. Since lþ . 0, there exists some 10 . 0 such that either

u1 . 10 or u1þ . 10. Since l , 0, we can pick some d . 0 small enough so that

f ðS0Þ2 du 2 ½gðS0;A*ðtÞ2 dÞ�m , 0. From the fact that limt!1 AðtÞ ¼ A*ðtÞ, we have

A*ðtÞ2 d # AðtÞ # A*ðtÞ þ d where d . 0 is chosen above for t large enough. As f ðSÞ2

du 2 gðS;A*Þ is nondecreasing in S [ ½0; S0� for each fixed t [ ½0; T�, the u equation of (8)
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can be written as

u0ðtÞ # f ðS0Þ2 du 2 gðS0;AÞ
� 	

uþ q fþðS
0Þuþ 2 muuþ

u0ðtÞ # f ðS0Þ2 du 2 g S0;A*ðtÞ2 d
� �� 	

uþ q fþðS
0Þuþ:

This implies, by using the comparison theorem and the well known result from Ref. [9], that

there exists a constant e . 0 such that u1 # e lim supt!1 jq fþðS
0ÞuþðtÞj: Next, we suppose

that the uþ is not uniformly persistant and derive a contradiction. Choose some 0 , 1 , 10
such that u1þ , min{1; ð1=eq fþðS

0ÞÞ} where e is defined above. Then, from

u1 # e lim supt!1 ðq fþðS
0ÞuþðtÞÞ, we have u1 # 1 , 10, in contradiction to the fact that

u1 . 1. Thus u1þ . 1 for some 1 . 0.

Now we will prove that uþ1 . 1 for some 1 . 0. Using the notation, we set

X ¼ ðS;A; u; uþÞ [ R4
þ : 0 # gSþ uþ uþA # g

S0dS

d
þM1;

�

where M1 ¼ max
0#t#T

jA0ðtÞj; d ¼ min{dS; du}

�
;

X2 ¼ {ðS;A; u; uþÞ [ X : uþ ¼ 0} and X1 ¼ {ðS;A; u; uþÞ [ X : uþ – 0}:

By Theorem 1:3:3: of Ref. [39], there exists an 1 . 0 independent of initial data such that

lim infn!1 uþðnTÞ . 1 and we conclude that lim inft!1 uþðtÞ . 1 with 1 . 0 not depending

on the initial data.

The existence of one periodic solution Eu * ðtÞ follows from Theorem 1:3:6 of Ref. [39].

Part (c) The local stability of Eu ¼ ð�S; �A; �u; 0Þ is determined by the eigenvalues of the

matrix

C ¼

2dS 2 g21 �uf ð�SÞ 0 2g21f ð�SÞ 0

0 2dA 2 �up0ð �AÞ 2pð �AÞ 0

�u f 0ð�SÞ2 gSð�S; �AÞ
� �

2�ugAð�S; �AÞ 0 q fþð�SÞ2 m�u

0 0 0 c44

0
BBBBB@

1
CCCCCA

where c44 ¼ fþð�SÞð12 qÞ2 du 2 gþð�S; �AÞ2 m�u, c33 ¼ f ð�SÞ2 du 2 gð�S; �AÞ ¼ 0, gSð�S; �AÞ
and gAð�S; �AÞ are the derivatives of gðS;AÞ with respect to S and A at ð�S; �AÞ, respectively. Here

we have used that c33 ¼ 0 at Eu steady state. Note that in this case �A ¼ A0. The eigenvalues

of the matrix C are the eigenvalue

l ¼ fþð�SÞð1 2 qÞ2 du 2 gþð�S; �AÞ þ m�u
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and the eigenvalues of the matrix

C1 ¼

2dS 2 g21 �uf 0ð�SÞ 0 2g21f ð�SÞ

0 2dA 2 �up0ð �AÞ 2pð �AÞ

f 0ð�SÞ2 gSð�S; �AÞ
� �

�u 2�ugAð�S; �AÞ 0

0
BB@

1
CCA

We compute the coefficients of the characteristic polynomial P of the matrix of C1. Let

PðlÞ ¼ l3 þ a1l
2 þ a2lþ a3. Then

a1 ¼ 2TrðC1Þ ¼ dS þ g21 �uf ð�SÞ þ dA þ �up0ð �AÞ . 0;

and

a3 ¼ 2Det ðC1Þ

¼ 2ðdS þ g21 �uf ð�SÞÞpð �AÞ�ugAð�S; �AÞ þ ðdA þ �up0ð �AÞÞ f 0ð�SÞ2 gSð�S; �AÞ
� �

g21 �uf ð�SÞ

and

a2 ¼ dS þ g21 �uf ð�SÞ
� �

dA þ �up0ð �AÞ
� �

þ f 0ð�SÞ2 gSð�S; �AÞ
� �

g21 �uf ð�SÞ2 pð �AÞ�ugAð�S; �AÞ:

Now, if pðAÞ ¼ 0, then a3 ¼ dAð f
0ð�SÞ2 gSð�S; �AÞÞg

21 �uf ð�SÞ . 0 and

s ¼ a1a2 2 a3

¼ dS þ dA þ g21 �uf ð�SÞ
� �

dS þ g21 �uf ð�SÞ
� �

dA þ f 0ð�SÞ2 gSð�S; �AÞ
� �

g21 �uf ð�SÞ
� 	

2 dA f 0ð�SÞ2 gSð�S; �AÞ
� �

g21 �uf ð�SÞ
� 	

¼ dS þ g21 �uf ð�SÞ
� �

dS þ g21 �uf ð�SÞdA þ f 0ð�SÞ2 gSð�S; �AÞ
� �

g21 �uf ð�SÞ
� 	

þ dS þ g21 �uf ð�SÞ
� �

dA
� 	

¼ ðdS þ g21 �uf ð�SÞÞ dA dS þ g21 �uf ð�SÞ
� �

þ ðdAÞ
2 þ f 0ð�SÞ2 gSð�S; �AÞ

� �
�ug21f ð�SÞ

� 	
. 0:

By the Routh–Hurwitz criterion all three eigenvalues have negative real parts. Thus, E1 is

asymptotically stable if fþð�SÞð12 qÞ2 du 2 gþð�S; �AÞ þ m�u , 0 and is unstable if

fþð�SÞð12 qÞ2 du 2 gþð�S; �AÞ þ m�u . 0.

Now we will prove the persistence result for the autonomous case. We follow a similar

argument used in Theorem 5.3 of Ref. [32], applying Theorem 4.6 in Ref. [35]. Using the

notation of that result, we set

X ¼ ðS;A;u;uþÞ[ R4
þ : 0 # gSþAþ uþ uþ # g

S0dS

d
þA0; where d ¼ min{dS;du}

� �
;

X2 ¼ {ðS;A;u;uþÞ[ X : uþ ¼ 0} and X1 ¼ XnX2:
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We want to show that solutions which start in X1 are eventually bounded away from X2.

Using the notation xðtÞ ¼ ðSðtÞ;AðtÞ; uðtÞ; uþðtÞÞ for a solution of equation (8), define

Y2 ¼ {xð0Þ [ X2 : xðtÞ [ X2; t $ 0} ¼ {xð0Þ [ X : uþð0Þ ¼ 0}

andV2, the union of omega limit sets of solutions starting in X2, is, by Theorem (2.1), the set

{E0;Eu} where E0 U ðS0;A0; 0; 0Þ and Eu U ð�S; �A; �u; 0Þ. We will show that if M0 ¼ {E0}

and M1 ¼ {Eu}, then {M0;M1} is an isolated acyclic covering of V2 in Y2 and each Mi is a

weak repeller. All solutions starting in Y2 but not on the SA-plane converge to Eu while those

on the SA-plane converge to E0. Eu, being locally asymptotically stable relative to Y2, cannot

belong to the alpha limit set of any full orbit in X2 different from Eu itself. Similar arguments

apply to E0; the only solutions converging to it lie on the SA-plane and these are either

unbounded or leave X in backward time. Thus {M0;M1} is an acyclic covering of V2. If M1

were not a weak repeller for X1, there would exist an xð0Þ [ X1 such that xðtÞ! Eu as t!1.

Let VðtÞ ¼ ðuðtÞ; uþðtÞÞ
t and define the matrix PðS;A; uÞ by

f ðSÞ2 du 2 gðS;AÞ q fþðSÞ2 mu

0 fþðSÞð1 2 qÞ2 du 2 gþðS;AÞ þ mu

 !

Then C ¼ Pð�S; �A; �uÞ and we may write the equation satisfied by VðtÞ as

_V ¼ Pð�S; �A; �uÞV þ ½PðS;A; uÞ2 Pð�S; �A; �uÞ�V

If Pð�S; �A; �uÞtW ¼ qW where q ¼ sðPð�S; �A; �uÞÞ ¼ sðCÞ . 0 and W ¼ ðm; nÞt with m; n . 0 is

the Perron–Frobenius eigenvector, then on taking the scalar product of both sides of the

differential equation by W and using that SðtÞ! �S, AðtÞ! �A and uðtÞ! �u, we have

d

dt
ðmuþ nuþÞ $ q=2ðmuþ nuþÞ

for all large t. But this leads to the contradiction to xðtÞ! Eu, namely that muðtÞ þ nuþðtÞ!

1 as t!1. Thus M1 is a weak repeller. The argument above together with the fact that Eu is

locally asymptotically stable relative to the subspace uþ ¼ 0 implies that it is an isolated

compact invariant set in X. Similar arguments show that M0 is a weak repeller and an isolated

compact invariant set in X. Therefore, Theorem 4.6 in Ref. [35] implies our result: there

exists 1 . 0 such that lim inft!1 dðxðtÞ;X2Þ . 1 for all xð0Þ [ X1, where dðx;X2Þ is the

distance from x to X2.

A.3 Appendix 3

Let

B0 ¼
gdSS

0

min{dS; du}
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and let ðs;UÞ be the unique solution of

B0 ¼ uþ gS

0 ¼ dSðS
0 2 SÞ2 g21f ðSÞu

ð20Þ

with s;U . 0. ðs;UÞ relates to the pretreatment equilibrium ð�S; �uÞ as follows:

s , �S; �u , U , B0

If f ðSÞ ¼ ðmS=aþ SÞ then U is the positive root of

ðm2 dSÞU
2 þ g dSaþ 2dSxS

0 2 dSS
0 2 mxS0

� 	
U þ dSg

2S0ðaþ xS 0Þð1 2 xÞ

and x ¼ ðgdS=min{dS; du}Þ. Due to the ugliness of this expression, the reader may wish to

substitute B0 for U in the formulae to follow; the results continue to hold in this case.

Consider the T-periodic scalar equation

A0 ¼ dAðA0ðtÞ2 AÞ2 UpðAÞ

in which u has been set to the constant value u ¼ U. It has a unique T-periodic solution

A*ðtÞ ¼ A*ðt þ TÞ and it satisfies

0 , A*ðtÞ # A*ðtÞ

Also, observe that

p ¼ 0 ) A*ðtÞ ¼ A*ðtÞ:

Now define

l* ¼ l*ðS
0Þ ¼ f ðS0Þ2 du 2 ½gðS0;A*Þ�m

Observe that

l* $ l

and

p ¼ 0 ) l* ¼ l:

First of all we will prove that if l* , 0 then uðtÞ! 0 as t!1 for every solution of

equation (2).

The following generalizes Theorem 2.1 (a):

Theorem 1. If l* , 0, then uðtÞ! 0 as t!1 for every solution of equation (2).
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Proof. From the Lemma (2), we have

lim sup
t!1

u # B0

The Lemma (3) gives

lim inf
t!1

S $ h

It follows that

lim sup
t!1

u # lim sup
t!1

ðgSþ uÞ2 g lim inf
t!1

S # B0 2 ghðB0=gÞ ¼ B1

Applying the Lemma (3) again, we obtain a better (bigger) lower bound for the limit inferior

of S:

lim inf
t!1

S $ hðB1Þ

where h ¼ hðB1Þ is the unique root S ¼ h of 0 ¼ dSðS
0 2 SÞ2 g21f ðSÞB1. If

FðbÞ ¼ B2 ghðb=gÞ, then Fð0Þ ¼ B0 and F0ðbÞ , 0 because hðbÞ is an increasing function

of b. Moreover, B0 . U ¼ FðUÞ . FðB0Þ ¼ B1, from which we conclude that

lim sup
t!1

u # U:

Now suppose that l* , 0. This implies that there exists 1 . 0 such that

m ¼ f ðS0Þ2 du 2 ½gðS0;A* 2 1Þ�m , 0

Let ðS;A; uÞ be a solution of equation (2). Given d . 0, there exists t . 0 such that

uðtÞ # U þ d; t $ t

Then

A0 $ dAðA0ðtÞ2 AÞ2 ðU þ dÞpðAÞ; t $ t

so AðtÞ $ AdðtÞ; t $ t where AdðtÞ is the solution of

A0 ¼ dAðA0ðtÞ2 AÞ2 ðU þ dÞpðAÞ

satisfying AdðtÞ ¼ AðtÞ. But AdðtÞ! A*
dðtÞ where the latter is the unique T-periodic solution

of this differential equation. It is not difficult to verify that A*
dðtÞ! A*ðtÞ as d! 0 uniformly

on compact sets so by choosing d to be sufficiently small, there exists �t . t so that

AðtÞ $ AdðtÞ $ A*ðtÞ2 1; t $ �t

This implies that

f ðSðtÞÞ2 du 2 gðSðtÞ;AðtÞÞ # f ðS0Þ2 du 2 gðS0;A*ðtÞ2 1Þ; t $ �t

Since

u0 # u½f ðS0Þ2 du 2 gðS0;A*ðtÞ2 1Þ�; t $ �t
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we have that

uðt þ TÞ # uðtÞ exp ðmTÞ; t $ �t

implying that if l* , 0 then uðtÞ! 0 as t!1 for every solution of equation (2).

Proof of Theorem (2.2) and Theorem (3.2). Now, if

pðAÞ # cA; 0 # A # max
t
A0ðtÞ ð21Þ

then A*ðtÞ $ ~AðtÞ where ~AðtÞ is the unique T-periodic solution of the linear equation

A0 ¼ dAðA0ðtÞ2 AÞ2 B0cA:

Observe that

½ ~A�m ¼
dA

dA þ B0c
½A0�m

By monotonicity of g

l* # f ðS0Þ2 du 2 ½gðS0; ~AÞ�m

Consequently, if f ðS0Þ2 du 2 ½gðS0; ~AÞ�m , 0, then l* , 0. If g is concave in A, then g is

convex so by Jensen’s inequality, we have

f ðS0Þ2 du 2 g S0; ~A
� �� 	

m
# f ðS0Þ2 du 2 g S0; ~A

� 	
m

� �
¼ f ðS0Þ2 du 2 g S0;

dA

dA þ B0c
½A0�m

� �� 

:

We note that

~AðtÞ ¼ dA

ðT
0

Gðt; sÞA0ðsÞ ds

where Green’s function Gðt; sÞ is given by

Gðt; sÞ ¼

exp ð2mðt2sÞÞ exp ðmTÞ
exp ðmTÞ21

; 0 # s , t # T

exp ð2mðt2sÞÞ
exp ðmTÞ21

; 0 # t # s # T

8<
:

and m ¼ dA þ cU.

Theorem (3.2) can be proved as above by adding the equations for u and uþ, defining

v ¼ uþ uþ and noticing that f ðSÞ2 du 2 gðS;AÞ # f ðSÞ2 du 2 gþðS;AÞ and

fþðSÞ2 du 2 gþðS;AÞ # f ðSÞ2 du 2 gþðS;AÞ.
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B Bifurcation results

Theorem 1. There is a family of positive solutions bifurcating from trivial solution ðS0;A0; 0Þ
of the linearized system as parameter k is varied near kc ¼ ðð f ðS0Þ2 du=gðS

0;A0ÞÞÞ. To

leading order in the small parameter 1

ðSð1Þ;Að1Þ; uð1ÞÞ ¼ ðS0;A0; 0Þ þ 1zþ Oð12Þ kð1Þ ¼ kc þ 1k1 þ Oð12Þ ð22Þ

where z ¼ ðð2g21f ðS0Þ=dSÞ; ð2g1ðA0Þ=duÞ; 1Þ is the right eigenvector. Moreover,

sign ðuð1ÞÞ ¼ sign ð1Þ for small 1 and k1 is

k1 ¼
f 0ðS0Þ2 kcgSðS

0;A0Þ
� �

g21f ðS 0Þ
dS

þ kcgAðS
0;A0Þ

pðA0Þ
dA

gðS0;A0Þ
:

The largest real part of the eigenvalue for a bifurcating positive solution is given as:

gð1Þ ¼ k1gðS
0;A0Þ1þ Oð12Þ for small 1 ð23Þ

If k1 , 0, then gð1Þ , 0 for 1 . 0 and so the bifurcating solution is stable.

If k1 . 0, then gð1Þ . 0 for 1 . 0 and so the bifurcating solution is unstable.

Let us assume that dS ¼ dA.

Proposition 1. Parameter k1 , 0 so the positive solution ðSð1Þ;Að1Þ; uð1ÞÞ exists for k , kc
near kc and is asymptotically stable for 1 . 0 in the following cases:

1. For pðAÞ ¼ 0 and gðS;AÞ ¼ f ðSÞp1ðAÞ.

2. For pðAÞ ¼ CA and gðS;AÞ ¼ kA if f 0ðS0Þ . g ðð f ðS0Þ2 duÞ=f ðS
0ÞÞC.

3. For any pðAÞ and gðS;AÞ ¼ p1ðAÞ, if f 0ðS0Þ . g ðð f ðS0Þ2 duÞ=f ðS
0ÞÞ �

ðp1ðA0Þ=p1ðA0ÞÞpðA0Þ:
4. For gðS;AÞ ¼ f ðSÞp1ðAÞ,

f 0ðS0Þ .
ðf ðS0Þ2 duÞ

f ðS0Þ
f 0ðS0Þp1ðA0Þ þ g p1ðA0ÞpðA0Þ
� �

.

Proposition 2. Parameter k1 . 0 so the positive solution ðSð1Þ;Að1Þ; uð1ÞÞ exists for k . kc
near kc and is unstable for 1 . 0 in the following cases:

1. For pðAÞ ¼ CA and gðS;AÞ ¼ kA if f 0ðS0Þ , gððf ðS0Þ2 duÞ=f ðS
0ÞÞC.

2. For any pðAÞ and gðS;AÞ ¼ p1ðAÞ, if f 0ðS0Þ , gððf ðS0Þ2 duÞ=f ðS
0ÞÞ �

ðp1ðA0Þ=p1ðA0ÞÞpðA0Þ:
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3. For gðS;AÞ ¼ f ðSÞp1ðAÞ,

f 0ðS0Þ .
ðf ðS0Þ2 duÞ

f ðS0Þ
f 0ðS0Þp1ðA0Þ þ gp1ðA0ÞpðA0Þ
� �

.

Theorem 2. There is a family of positive T periodic solutions bifurcating from trivial periodic

solution ðS0;A*ðtÞ; 0Þ of the above plasmid-free system as parameter k is varied near

kc ¼ ðf ðS0Þ2 du=½gðS
0;A0ðtÞÞ�mÞ. To leading order in the small parameter 1

ðSðt; 1Þ;Aðt; 1Þ; uðt; 1ÞÞ ¼ ðS0;A*ðtÞ; 0Þ þ 1zðtÞ þ Oð12Þ kð1Þ ¼ kc þ 1k1 þ Oð12Þ ð24Þ

where zðtÞ is the T periodic solution of the variational equation about ð0; 0; 0Þ. Moreover,

sign uðt; 1Þ ¼ sign 1 for small 1 and k1 is

k1 ¼

Ð T
0

f 0ðS0Þ2 kcgSðS
0;A*ðsÞÞ

� �
z1ðsÞ2 kcgAðS

0;A*ðsÞÞz2ðsÞ
� 	

ds

½gðS0;A*ÞðtÞÞ�m
:

The largest real part of Floquet exponent for bifurcating periodic solution is given as:

gð1Þ ¼ k1½gðS
0;A*ÞðtÞÞ�m1þ Oð12Þ for small 1 ð25Þ

If k1 , 0, then gð1Þ , 0 for 1 . 0 and so the bifurcating solution is stable.

If k1 . 0, then gð1Þ . 0 for 1 . 0 and so the bifurcating solution is unstable.

Proposition 3. Parameter k1 , 0 so the positive T periodic solution ðSðt; 1Þ;Aðt; 1Þ; uðt; 1ÞÞ
exists for k , kc near kc and is asymptotically stable for 1 . 0 in the following cases:

1. For pðAÞ ¼ 0 and gðS;AÞ is a constant in S and A.

2. For pðAÞ ¼ 0, if f 0ðS0Þ . ðf ðS0Þ2 du=½gðS
0;A*ÞðtÞÞ�mÞ½gSðS

0;A*ðtÞ�m
3. For pðAÞ ¼ CA, if

f 0ðS0Þ .
ð f ðS0Þ2 duÞ½gSðS

0;A*ðtÞÞ�m

½gðS0;A*ÞðtÞÞ�
þ

g ð f ðS0Þ2 duÞ½gAðS
0;A*ðtÞÞ�mC½A*ðtÞ�m

½gðS0;A*ÞðtÞÞ�

.

Theorem 3. There is K $ kc such that for each k [ ½0;KÞ, there exists a nontrivial periodic
solution ðS;A; u; kÞ [ BðTÞ £ R of equation (2) satisfying 0 , S , S0; 0 , A , A*; 0 , u

for all t.

For the proof of these results see Ref. [19].
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