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Since the seminal work of Caspar and Klug on the structure of the protein containers that
encapsulate and hence protect the viral genome, it has been recognized that icosahedral
symmetry is crucial for the structural organization of viruses. In particular, icosahedral
symmetry has been invoked in order to predict the surface structures of viral capsids in terms
of tessellations or tilings that schematically encode the locations of the protein subunits in the
capsids. Whilst this approach is capable of predicting the relative locations of the proteins in
the capsids, a prediction on the relative sizes of different virus particles in a family cannot be
made. Moreover, information on the full 3D structure of viral particles, including the tertiary
structures of the capsid proteins and the organization of the viral genome within the capsid are
inaccessible with their approach. We develop here a mathematical framework based on affine
extensions of the icosahedral group that allows us to address these issues. In particular, we
show that the relative radii of viruses in the family of Polyomaviridae and the material
boundaries in simple RNA viruses can be determined with our approach. The results
complement Caspar and Klug’s theory of quasi-equivalence and provide details on virus
structure that have not been accessible with previous methods, implying that icosahedral
symmetry is more important for virus architecture than previously appreciated.
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1. Introduction

An important constituent of a virus is its protein container called the viral capsid, that packages

the genomic RNA or DNA. Crick and Watson observed in 1956 that the size of the packaged

genomic material is too small to encode for more than a limited number of different capsid

proteins. Based on this observation they argued that viruses must be formed from identical

capsid proteins that are organized according to symmetry [2]. Subsequent experiments

confirmed this conjecture, showing that most viruses exhibit icosahedral symmetry. Since the

number of identical proteins in identical locations in a capsid exhibiting symmetry equals the

order of the corresponding symmetry group, and since the icosahedral group is the finite group in

3D of largest order (order 60), this predominance of icosahedral symmetry in virus architecture

is a logical consequence of sequence economy in the viral genome. Icosahedral symmetry alone,

however, cannot explain the surface structures of viral capsids with more than 60 capsid

proteins. Therefore, Caspar and Klug introduced the concept of quasi-equivalence, which states

that capsid proteins must be organized such that their local environments are ‘almost

equivalent’. From a mathematical point of view, they realized this concept by classifying viral

capsids in terms of triangulations with overall icosahedral symmetry and their approach predicts

that viral capsids are organized in terms of 12 clusters of 5 proteins (pentamers) and 10 (T 2 1)
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clusters of 6 proteins (hexamers), where T called the T-number, takes on any value

h 2 þ hk þ k 2 with h, k [ N [1].

Caspar–Klug theory has become a fundamental concept in virology with a plethora of

applications, including the reconstruction of capsid shapes from experimental data and their

classification. However, experiments concerning the cancer-causing Papovaviridae have shown

that there are viruses that do not follow the organization predicted by this theory [16,19].

In particular, these viruses are formed from pentamers throughout – for example 72 pentamers

in the case of human papilloma virus – and their surface structures can hence not be described

via triangulations. It has been shown in Refs. [14,28,29] that Caspar–Klug Theory can be

generalized to incorporate these cases by considering not only lattice structures, but also quasi-

lattices as known from the study of quasi-crystals [22], i.e. alloys with atomic arrangements

exhibiting long-range order, but no periodicity [23]. A common feature of Caspar–Klug theory

and its generalizations is the fact that they use icosahedral symmetry as the maximal symmetry

content in the theory and therefore, describe viral capsids schematically in terms of surface

lattices or tessellations, rather than as objects extended in space. As a consequence, the

predictive power of these theories is limited to specifying the locations and types of the protein

clusters in the capsids, their relative orientations and as in the case of the tiling approach, the

locations of the bonds between the capsid proteins. Information on the tertiary structures of the

capsid proteins, the thickness of the capsid and the organization of the genomic material, or on

the relative sizes of different particles in a family is inaccessible.

In this paper, we show that there is more symmetry present in the organization of viruses than

presently appreciated. It is known – for example from the study of nested carbon cage structures

called carbon onions [27] – that the symmetry of an extended structure exhibiting a certain

compact symmetry (such as icosahedral symmetry) at different radial levels can be described by

an affine extension of this symmetry group. Analogous to this, we aim here at describing the full

3D structures of viruses, i.e. the organization of material at different radial levels collectively, as

well as different particles in the same family of viruses collectively in terms of affine extensions

of the icosahedral group. Such an approach is further motivated by work of Janner [6–8], which

shows that lattice-like structures obtainable from a higher-dimensional lattice with icosahedral

symmetry via projection are relevant for the description of proteins [5–8] or protein assemblies

such as viral capsids [9,10]. This is a very important result, but cannot predict which subsets of

lattice points are relevant for virus architecture. We present here a method based on affine

extensions of non-crystallographic Coxeter groups, most notably of the reflection group H3, that

contains the rotational symmetries of the icosahedron as a subgroup and specifies finite subsets

of such quasi-lattices relevant for virus structure prediction. This construction principle is

similar to the construction of lattices from symmetry groups (space groups), but leads to lattice-

like, rather than lattice, structures due to the non-crystallographic nature of the underlying

symmetry group.

This paper is organized as follows: In Section 2.1, we review a standard approach for affine

extensions and show how it can be applied in virology for the prediction of the size spectrum of

different particles in the family of Polyomaviridae. In Section 3, we discuss the limitations of

this approach and encorporate it into a broader framework that leads to suitable group theoretical

objects for the prediction of 3D virus architecture.

2. Affinization of non-crystallographic Coxeter groups and assembly polymorphism

In this section, we first review a standard construction method for patches of quasi-lattices with

icosahedral symmetry following [17]. We then discuss the implications of these results for the
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modelling of Polyomaviridae assembly polymorphism and infer predictions on the sizes of

different particles occurring during in vitro assembly of the major capsid protein in that family.

2.1. A standard approach for the affinisation of a non-crystallographic Coxeter group

With applications to viruses in mind, we are looking for mathematical objects that describe an

extended structure with overall icosahedral symmetry and predict how icosahedral symmetry is

realized at different radial levels. We consider the non-crystallographic Coxeter group H3 [4],

because it contains the rotational symmetries of the icosahedral group as a subgroup and

determine ways of extending this finite group into an infinite one by addition of a non-compact

generator such as a translation. By acting with such an affine extended symmetry group on a seed

configuration, patches of quasi-lattices are obtained as demonstrated in Figure 1.

Only a few distinguished translations are suitable if these point sets are supposed to have

properties relating them to quasi-lattices (or icosahedral lattices in the sense of Janner [6],

because each quasi-lattice point can be obtained via projection from a crystallographic lattice in

six dimensions). One-way of obtaining such a suitable translation T is via the Kac-Moody

formalism (see Ref. [17] and references within for details). The affine extended group Haff
3

obtained in this way is given by the elements of H3 and T. An iterative application of the group

generators of the extended group to a start vector v generates point sets S(k), which correspond to
all group generators expressible in terms of at most k copies of T acting on v. These sets become

increasingly dense and extended in space with increasing k as shown for k ¼ 1, 2, 3 in Figure 2.

Figure 1. The construction method illustrated for a 2D example. The symmetry group is given by the
rotational symmetries of the pentagon. Together with the translation, the generators of the rotational
symmetry group generate copies of the original pentagon in space. The vertices of these pentagons form a
point set that has the properties of a quasi-lattice [17]. Available in colour online.
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2.2. Applications to Polyomaviridae

Viral tiling theory [28,29] shows that the surface structures of viruses can be encoded in terms of

tilings that encode the locations of the capsid proteins and the dominant bonds between them.

In this section, we search for tilings with vertices in the point set S(k) for suitable k that may

represent the three particles observed during Polyomavirus assembly. We choose k as the

minimal integer such that the surface structures of all viral particles in a family are collectively

encoded by vertices in that set; for Polyomaviridae, we obtain k ¼ 5. We have computed the set

S(5) explicitly: The points are organized on 181 nested shells of radii between r1 < 0.2361 and

r2 ¼ 5. In order to locate the subsets of S(5) that contain the vertices of the tilings corresponding
to viral particles in the family of Polyomaviridae, we have searched for vertices that correspond

to the observed locations of the capsomeres (i.e. the clusters of capsid proteins) in each case.

We have obtained the following results [14], which are illustrated in Figure 3:

. The small particle: These particles are represented by icosahedra with vertices on the

5-fold axes of icosahedral symmetry and are located at radius r < 1.176.

. The medium-size particle: These particles are represented by tilings with vertices at the

3-fold axes on radius rM < 1.732 and at the 4-fold axes on radius r ¼ 2. The locations of the

pentamers are at r < 1.940. The proteins are located in the corners of the tiles meeting at

the 24 five-coordinated vertices, hence, specifying locations and orientations of the 24

pentamers.

. The large particle: The tiling for the large particle contains vertices at the 3-fold axes at

rL < 2.803. The 12 pentamers on the 5-fold axes of icosahedral symmetry appear on radius

r < 3.078, whereas the remaining 60 pentamers off the symmetry axes of icosahedral

symmetry occur on radii r ¼ 3 and r < 2.786, with r ¼ 3 marking the pentavalent vertices

defining the pentamers and r < 2.976 the trivalent vertices needed to complete the tiling.

Figure 2. The point sets S(k) for k ¼ 1, 2, 3. Available in colour online.

Figure 3. The tilings representing the three types of particles: (a) the small, (b) the medium-size and (c) the
large particle. (d) All three tilings shown in relative location as implied by their vertices in S(5).
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Note that the medium-size and large particle are not isometric, even though the deviations

are small and might not easily be detectable experimentally. Since the surface lattices have been

determined as subsets of the same set S(5), the sizes of the three different types of particles are
fixed in relation to each other as shown in Figure 3(d). There is hence only one free parameter

that relates the overall mathematical structure, i.e. the surface lattices of all particles collectively,

to the biological setting. This factor has been computed in Ref. [14] and has been shown to be in

excellent agreement with the experimental data in Ref. [11,21].

3. Generalizations: Affine extended symmetry systems

The affine extensions obtained in the previous section constitute only one way of associating

mathematically meaningful translations with the generators of the icosahedral group and so, it is

not surprising that they are not sufficient to describe all viruses. However, their properties are

representative of those of the mathematical structures needed for applications in virology.

In particular, the key property of these translations is the fact that there are coinciding elements in

the monomial set of the extended symmetry group when applied to a start configuration. This

propertymanifests itself in identities such as that the vertex denoted 2 can be obtained in twoways

in Figure 1, i.e. 2 ¼ TRv ¼ RTR 4v, withR a rotation about the origin of 2p/5. The generalization

hence depends on the choice of a vector v that serves as a ‘start vector’. From a geometric point of

view, the structure of the translation that complements the generators of the symmetry group in the

affine extension hence, depends on a representation of the symmetry group, which can be encoded

by a start configuration S that is obtained from the start vector via the action of the symmetry group

G, i.e. S ¼ Gv. Due to this dependence on the geometric realization of the symmetry group, we

introduce the concept of a symmetry system (G, S), given by a symmetry group G and a start

configuration S. Since the formalism employed in the previous section does not consider this, the

affine extensions obtained for symmetry systems represent mathematical objects that are more

general than those obtained via the standard formalism and they indeed incorporate the

translations obtained via the standard formalism as a special case.

For the icosahedral group there are three start configurations that are distinguished by set

economy. These are given by the icosahedron, the dodecahedron and the icosidodecahedron,

shown in Figure 4, and have vertices on the 5-, 3- or 2-fold axes of icosahedral symmetry,

respectively.

The translations along symmetry axes for the symmetry systems given by the icosahedral group

and any of these start configurations have been determined in Ref. [12]. It has been shown that there

are precisely 54 such translations. Table 1 summarizes these results and indicates the translations

associated with each start configuration. Translations are given in terms of t ¼ ð1=2Þð1 þ
ffiffiffi

5
p

Þ,

t0 ¼ ð1=2Þð12
ffiffiffi

5
p

Þ and the unit translation vectors ~Tj, j [ {2, 3, 5} along axes of 2-, 3- and 5-fold

symmetry. Each translation in the Table defines an affine extended symmetry group, and each such

symmetry group, when applied to an element in the start configuration, defines point sets analogous

Figure 4. The icosahedron (a), dodecahedron (b) and icosidodecahedron (c) corresponding to the three
distinguished start configurations.
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to Section 2.1 (compare with Figure 1). The new approach to affine extensions of the icosahedral

group based on symmetry systems has hence augmented the library of relevant point configurations

to 54. We display three elements of this library in Figure 5. These point sets have different

cardinalities, i.e. different numbers of distinct elements, and we list the cardinalities of all 54 point

sets in Table 1. Moreover, affine extensions can be constructed with twist-translations and a

classification of this case analogous to the above is presented in Ref. [13].

3.1. Applications to simple RNA viruses

As before we use these point sets in order to characterize virus architecture. In this section, the

aim is to predict the material boundaries in simple viruses. Therefore, we iterate the point sets

Table 1. The cardinalities of the lattice-like point sets generated from the 54 extended symmetry systems.

Icosahedron Dodecahedron Icosidodecahedron

Translation Cardinality Translation Cardinality Translation Cardinality

2t 0 ~T5 116 t 02~T5 200 2ð1=2Þt 0 ~T5 290
~T5 85 2t 0 ~T5 172 ð1=2Þ~T5 242
t~T5 116 ~T5 172 ð1=2Þt~T5 242

t~T5 200 ~T5 360
ð1 =2Þt 2~T5 290
t~T5 360

2t 0 ~T3 192 2ð1=2Þt 0 ~T3 360 2ð1=2Þt0 ~T3 510
~T3 164 2t 0 ~T3 252 ð1=2Þ~T3 362
t~T3 164 ~T3 191 ð1=2Þt~T3 374
t 2~T3 192 t~T3 252 ~T3 600

ð1=2Þt 2~T3 362
t~T3 570
ð1=2Þt 3~T3 510
t 2~T3 600

2t 0 ~T2 342 t 02~T2 590 2ð1=2Þt 0 ~T2 870
2t 02~T2 272 22t 03~T2 500 t 02~T2 710
~T2 342 2t 0 ~T2 560 ð1=2Þ~T2 870
22t 0 ~T2 212 2t 02~T2 332 2t 0 ~T2 552
2~T2 212 ~T2 590 t=2~T2 870
2t ~T2 272 22t 0 ~T2 344 ~T2 361

2~T2 332 22t 0 ~T2 870
2t~T2 500 t~T2 552

2~T2 840
t 2~T2 710
2t ~T2 870

Figure 5. Examples showing three of the 54 configurations in Table 1. Available in colour online.
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until enough (by number) layers of points are present to account for all material boundaries.

Since we focus on RNA viruses of a relatively small size here, this number is small and we

only consider the 54 point configurations in the preceding section and combinations thereof.

In particular, combination of two start configurations are possible if they have been obtained via

a translation along the same symmetry axis. In this case, we rescale one of the start

configurations such that both translation lengths match and then use both start configurations

superimposed as a new start configuration in combination with this translation length.

We have applied this increased library to a number of viruses of different structure and sizes

[15]: Pariacoto virus, an insect virus with a quasi-equivalent T ¼ 3 structure [25], bacteriophage

MS2, a quasi-equivalent T ¼ 3 phage [3,26,31,32], Satellite Tobacco Necrosis Virus (STNV), a

T ¼ 1 virus [30] and Poliovirus [24]. In each of the cases, we gauge the biological setting to the

outer layer of points in the point configuration, and then infer predictions on internal features. For

example, this approach could be used to predict the RNA organization within the viruses we

considered. For example, for Pariacoto virus, only three of the 49 classified symmetry systems

show reasonable matches. These correspond to the red, blue and green vertices in Figure 6 shown

superimposed on the crystal structure of Pariacoto virus which is available as a pdb-file (pdb-ID

1F8V) from the VIPER website [20]. A simple visual comparison shows that whilst, the red dots

are located on themost radial distant features of the capsid proteins, the green and blue dots do not

fit in a meaningful way with the structure. This demonstrates that discrimination between the

different lattice structures is feasible by eye; however, we have performed an RMSD analysis (see

Ref. [15]) in each case to quantify this. In a next step, we have to consider all point sets with

combined start configurations that have an outer layer of points coinciding with the one we have

identified. In the case of Pariacoto virus there are 12 such configurations. We apply the scaling

factor associated with the outer layer, i.e. the red points in Figure 6, to all other symmetry related

points in these 12 configurations and compare with the data. For only one of them, we find a

spread of points that remarkably fits around all molecular boundaries of Pariacoto virus. This

implies that this virus has assembled to maximize symmetry in 3D and that icosahedral symmetry

occurs on different radial levels ochestrated by the new symmetry principle described here. A

more extensive analysis of where these points are situated with respect to the molecular

components of this and other viruses will be discussed in Ref. [15], where we also show that this

approach predicts the organization of the viral RNA within other viruses and phages.

Figure 6. (a) The crystal structure of Pariacoto virus with a trimer highlighted in the upper right-hand
corner. (b) and (c) showing close-ups of that trimer, with red points corresponding to the model identified as
the outer layer for Pariacoto virus. The green and blue points represent symmetry systems with outer layers
closest to the red points; a comparison with the data shows that these are not suitable for the description of
Pariacoto virus. Available in colour online.
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4. Discussion

This analysis suggests that symmetry is more important for virus architecture than previously

appreciated. Remarkbly, all viruses we have investigated to date follow the blueprints derived

here. This begs the question in how far this new approach consitutes a new general principle in

virus architecture. The library of lattice-like structures used in Ref. [15] relies on two

assumptions: the overall icosahedral symmetry of the object under consideration and the fact

that the viruses and phages under consideration have a number of material boundaries in a

certain range. However, the formalism is easily generalizable to situations where these

assumptions are violated. For example, we expect that for larger viruses, a suitable library of

lattice-like structures can be obtained from the same symmetry systems by considering higher

order monomials (larger iteration numbers for T in the expressions of the group generators

applied to the start vector). Moreover, for viruses or phages with prolate capsids, where only a

reduced symmetry is present (one 5-fold axis only, which reduces the symmetry from

icosahedral symmetry 5–3–2 to the subgroup encoding 5-fold symmetry), the same formalism

can be applied to the reduced group structure.

Finally, if this principle is of general relevance, one would expect that it has applications also

in areas other than virology. We have therefore applied our formalism to another protein

complex, GroEL–GroES [18], a cavity with 7-fold symmetry. Also for this case, preliminary

results show that our method makes predictions on the three-dimensional organization of the

proteins (Figure 7). These results suggest that the new principle presented here is indeed of

general relevance in microbiology.
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resolution, Nature 295 (1982), pp. 110–115.

[20] V.S. Reddy, H.A. Giesing, R.T. Morton, A. Kumar, C.B. Post, C.L. Brooks III, and J.E. Johnson,
Virus particle explorer (VIPER), a website for virus capsid structures and their computational
analyses, J. Virol. 75 (2001), pp. 11943–11947.

[21] D.M. Salunke, D.L.D. Caspar, and R.L. Garcea, Polymorphism in the assembly of Polyomavirus
capsid protein VP1, Biophys. J. 56 (1989), pp. 887–900.

[22] M. Senechal, Quasicrystals and Geometry, Cambridge University Press, Cambridge, 1996.
[23] D. Shechtman, I. Blech, D. Gratias, and J.W. Cahn, Metallic phase with long-range order and no

translational symmetry, Phys. Rev. Lett. 53 (1984), pp. 1951–1953.
[24] R. Syed, D. Filman, and J. Hogle, Refinement of the Sabin strain of type 3 Poliovirus at 2.4 Angstroms

and the crystal structures of its variants at 2.9 Angstroms resolution, PDB ID 1pvc (1995).
[25] L. Tang, K.N. Johnson, L.A. Ball, T. Lin, M. Yeager, and J.E. Johnson, The structure of Pariacoto

virus reveals a dodecahedral cage of duplex RNA, Nat. Struct. Biol. 1 (2001), pp. 77–83.
[26] K. Toropova, G. Basnak, R. Twarock, P.G. Stockley, and N.A. Ranson, The three-dimensional structure

of genomicRNA inbacteriophageMS2: Implications for assembly, J.Mol.Biol. 375 (2008), pp. 824–836.
[27] R. Twarock, New group structures for carbon onions and carbon nanotubes via affine extensions of

noncrystallographic Coxeter groups, Phys. Lett. A 300 (2002), pp. 437–444.
[28] ———, A tiling approach to virus capsid assembly explaining a structural puzzle in virology,

J. Theor. Biol. 226 (2004), pp. 477–482.
[29] ———, The architecture of viral capsids based on tiling theory, J. Theor. Med. 6 (2005), pp. 87–90.
[30] T. Unge, L. Liljas, B. Strandberg, I. Vaara, K.K. Kannan, K. Fridborg, C.E. Nordman, and P.J. Lentz

Jr., Satellite tobacco necrosis virus structure at 4.0 Å resolution, Nature 285 (1980), pp. 373–377.
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