
QUADRATIC REGULAR REVERSAL MAPS

FRANCISCO J. SOLIS AND LUCAS JÓDAR
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We study families of quadratic maps in an attempt to understand the role of dependence
on parameters of unimodal maps and its relationship with the computer-generated chaos
observed in numerical simulations. Our specific goal is to give conditions on this de-
pendence to avoid chaotic situations. We show several examples that describe in some
generality the qualitative properties of quadratic maps.

1. Introduction

The literature on one-dimensional discrete dynamical systems of the form xn+1 =
f (xn,λ) = fλ(xn) had focused mainly on one-parameter families of systems with itera-
tion functions fλ : I ⊂ R→ I belonging to the unimodal class. The elements of this class
are smooth functions (at least C3(I)) with a single maximum point (see [1]). Unimodal
discrete systems share some fundamental results. For example, if the Schwarzian deriv-
ative of fλ(x) is negative for x �= 0, then the system is independent of initial conditions,
meaning that its orbits have the same asymptotic behavior for almost all initial condi-
tions. Asymptotic behavior of unimodal maps can be periodic, chaotic, or aperiodic but
not chaotic. It is interesting to note that dependence of f on parameters has not been
completely studied. So a first goal of this work is to show the importance of parametric
dependence on families of unimodal maps. A second goal of this work is to analyze, for a
given map, under which circumstances the property of period doubling holds and when
it disappears, which means that chaos is no longer a possibility.

For the logistic equation, ẋ = αx(1− x), the following two unimodal maps have been
considered as its difference equation analogue (see [3, 5]): xn+1 = λxn(1− xn) and xn+1 =
xneλ(1−xn). The first map is known as the logistic map and the second as the exponential
map. These two maps differ enormously under small constant perturbations (see [3]). So,
a third goal of this paper is to show why a perturbation on the exponential map destroys
the chaotic behavior whereas in the logistic map the perturbation does not.

In order to achieve our goals, we propose to study one special case of unimodal maps,
namely, quadratic maps. We will discover that if we understand the asymptotic behavior
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and parametric dependence on quadratic maps, then we will be able to generalize our
results to more complex unimodal maps, such as the exponential map. Therefore we will
be able to understand why a small perturbation makes a map to change its asymptotic
behavior.

This paper is organized as follows. In Section 2, we introduce some important con-
cepts. In Section 3, quadratic regular reversal maps are introduced and analyzed. Two
outstanding examples of quadratic reversal maps are studied in Section 4. In Section 5, we
study a nonquadratic map, namely, the perturbed exponential map. Finally, in Section 6,
the main conclusions of the paper are included.

2. Regular reversal maps

We begin this section by introducing some concepts. Consider the unimodal map xn+1 =
g(xn,λ) with a fixed point given by x = xp(λ); we define the eigenvalue function φ : R→R

as φ(λ)= (∂g/∂x)(xp(λ)). The fixed point x = xp is stable for those values of λ that satisfy
−1 < φ(λ) < 1. We also define the region of type 1 of xp as the set {(λ,φ(λ)) | −1 < φ(λ) <
1} ⊂R2. The requirement that the map be unimodal is to guarantee the existence of the
fixed point. More generally we introduce the following definition.

Definition 2.1. If the map xn+1 = g(xn,λ), not necessarily unimodal, has an isolated pe-
riodic point of period k ≥ 1, say xkp, then it holds that the function φk : R→ R can be

defined as φk(λ) = (∂(k)
g /∂x)(xkp(λ)). The set {(λ,φ(λ)) ⊂ R2 | xkp(λ) is stable} is denoted

as the region of type k for xkp.

The existence of periodic points of periods k > 1 is not assured even for a unimodal
map. The periodic point, x = xkp(λ), whenever exists, is stable in an interval whose ex-
tremes are given by ηk(1) and ηk(−1), where ηk = φk ◦ φ−1. We assume here that the
inverse function φ−1 exists, at least locally. A point (x,φ(x)) in R2 can only belong to a
specific region of a given periodic point. Thus we can use the following terminology.

Definition 2.2. Let � be a nonempty connected subset of R (an interval). A map of the
form xn+1 = g(xn,λ) is called a regular (reversal) map in � if it has an isolated periodic
point such that its associated function φ has the property that if λ1,λ2 ∈� with λ1 < λ2,
then the type of region of (λ2,φ(λ2)) is bigger (smaller) or equal to the type of region of
(λ1,φ(λ1)).

Definition 2.3. Let � be a nonempty subset of R. A map of the form xn+1 = g(xn,λ) is
called a regular reversal map in � if the set � can be decomposed as two nonempty
intervals A1 and A2 such that the map is regular in A1 and reversal in A2.

A regular reversal map is very interesting since it shows exactly the parametric range
where periodicity takes place. It is difficult to show for which maps this phenomenon
appears, so we focus our attention first on quadratic maps. There are several reasons why
to consider only quadratic polynomials as iterated functions. First, quadratic polynomials
give a complete family of unimodal maps with Schwarzian derivative equal to zero and
provide the simplest case of unimodal maps. Second, their importance in biology is also
interesting; for example, there are several discrete models of tumors (see [4]) where the
importance is in the parametric dependence.
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3. Quadratic regular reversal maps

Consider the quadratic discrete dynamical system given in its general form by

yn+1 = α(λ)y2
n +
(
β(λ) + 1

)
yn + γ(λ), (3.1)

where α, β, and γ are functions of λ and α(λ) �= 0 for all λ. The fixed points of this system
are given by

y0 = (2α)−1
(
β+

√
β2− 4αγ

)
, y1 = (2α)−1

(
β−

√
β2− 4αγ

)
. (3.2)

In order to have two real fixed points, we made the assumption that β2− 4αγ > 0. We can
simplify system (3.1) by using the change of coordinates xn = Ayn +B with A = α(λ)−1

and B = (2α)−1(β−
√
β2− 4αγ); notice that y = B is a fixed point of system (3.1). We

obtain the following dynamical system:

xn+1 = g
(
xn
)≡ x2

n− b(λ)xn, (3.3)

where b(λ) = −β(λ)− 2α(λ)B. Now the map (3.3) becomes a unimodal map. Without
loss of generality, we will restrict our attention to the case where b(λ) is a positive contin-
uous function for λ > 0.

Under the above transformation the fixed points of the new system (3.3) are x0 = 0
and x1 = 1 + b so that

∂g

∂x

(
x0
)=−b(λ),

∂g

∂x

(
x1
)= 2 + b(λ). (3.4)

It follows that the region of type 1 for x0 is given by {(λ,b(λ)) | −1 < b(λ) < 1}, and for
x = x1 is given by {(λ,b(λ)) | −3 < b(λ) <−1}.

There are also two periodic points of period two, given by

x2 = (2)−1
(
b− 1 +

√
b2 + 2b− 3

)
, x3 = (2)−1

(
b− 1−

√
b2 + 2b− 3

)
(3.5)

with region of type 2 given by

{(
λ,b(λ)

) | 1 < b(λ) <
√

6− 1
}
. (3.6)

Moreover, there are 2N periodic points of period 2N with region of type N given by
{(λ,b(λ)) | bN−1 < b(λ) < bN}, where the sequence {bk}∞k=0 is a convergent sequence to the
limiting value b∞ = 1.56994567··· (found by numerical means). This sequence is related
to the sequence of parameter values of the bifurcation points described by Feigenbaum,
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see [2]. He discovered that this type of sequences converges exponentially. His sequence
is given by the values of λ, where the function b(λ) intersects the limits of the different
regions, whereas our sequence is given by the values of the image under b of Feigen-
baum’s sequence. Of course we can use the identity function b(λ)= λ to get the values of
Feigenbaum’s sequence. We can state some results for which their corresponding proofs
are evident by the selection of the sequence {bk}∞k=0.

Proposition 3.1. If the function b(λ) is bounded from above by the number bN , then the
map (3.3) can only have periodic points of period 2m with m < N . Moreover, if the bound
is given by b∞, then the system is not chaotic and it can only have periodic points of period
equal to powers of two.

It is worthy to point out that there are unimodal systems without periodic points with
periods greater than one. In this case, the bifurcation diagram consists of only one branch
given by the fixed point.

Proposition 3.2. Assume that the function b(λ) is bounded. If the supremum of the func-
tion b(λ) lies in the interval (bn,bn+1), then the map (3.3) is not chaotic and it has only
periodic points of period 2k, where k ∈ {1, . . . ,n}.

In order to obtain that system (3.3) becomes a regular reversal map for x0 in an interval
� = (λ0,λ1), it is necessary that the function b(λ) has the following property. There are
λ1, λ2, and λ3 in � such that b(λ1) < b(λ3)= bi < b(λ2) for some i ∈ N and λ1 < λ2 < λ3,
where bi is the ith element of the sequence {bk}∞k=0. Notice that it is very easy to build
functions with this last property, which means that there is a large class of unimodal
maps that are not chaotic.

Beyond the value b∞, there are other regions that divide the positive quadrant of R2.
The upper region in R2, namely, the region {(λ,b(λ)) | b(λ) > 2}, can be defined as the
region of type infinity and corresponds to divergent orbits. So far, it is not clear how the
region leftover is subdivided and in general this is an open question.

4. Quadratic examples

We will show two examples, the first one is a nontrivial example of a function b(λ) which
we choose to be a unimodal function. This is a typical example of a regular reversal map.
We will use this example to show how the dependence on the parameter λ can avoid
chaotic situations by controlling the maximum of the function b(λ). In the second exam-
ple, we choose b(λ) as another polynomial in λ that is not a unimodal function and we
choose the coefficients in order to obtain regular reversal maps.

The aim of these examples is to show that the regular reversal maps are a very rich
family and that it is relatively simple to construct maps with specific bifurcation diagrams
with or without chaos.

Example 4.1. The first example comes by choosing b(λ) as a unimodal function, that is,

b(λ)= 4α0

β2
0
λ
(
β0− λ

)
, (4.1)
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where β0 > 0 and 0 < α0. Here, α0 and β0 are the maximum value and a zero of the func-
tion b(λ), respectively. For this example, it will be interesting to show the different sce-
narios obtained for different values of α0, since the bifurcation diagrams of system (3.3)
depend strongly on the value of α0. If 0 < α0 < b1 = 1, then we obtain a bifurcation dia-
gram that consists of a straight line that coincides with the λ-axis. If 1 < α0 < b2 =

√
6− 1,

then we obtain a regular reverse map with a bifurcation diagram that consists of a straight
line with an asymmetric close loop homeomorphic to a circle, see Figure 4.1a. The loss
in the symmetry is due to the fact that the upper part of the loop corresponds to the
periodic point x2(λ) and the lower part to the periodic point x1(λ) (see (3.5)). The diam-
eter of the loop, that is, the distance of intersections of the loop with the λ-axis, is equal

to 2β0

√
α2

0− 1/α0. If bn < α0 < bn+1 for some n ∈ N, then we have a bifurcation diagram
consisting of a straight line with a collection of nested loops as shown in Figures 4.1b and
4.1c for the cases of n= 2 and n= 3, respectively.

We can modify the above example by choosing b(λ) as a unimodal periodic function

b(λ)= αsin(λ) + 1, (4.2)

with the property that the amplitude of oscillation is smaller than the range of the first
region of type two (α ≤ 0.3). The new bifurcation diagrams will be almost identical to
the diagrams of Figure 4.2 except that in this case the bifurcation diagrams will appear
periodically reproduced.

Example 4.2. We choose b(λ) as a four-degree polynomial on λ. We choose its coefficients
in such a way that b(λ) is not a unimodal function. For example, choose

b(λ)=−(αλ4− 1.533λ3 + 4.1083λ2− 4.166λ
)

(4.3)

with α in the interval (0.18, 0.192). The function b(λ) has three local extremes (two
humps). In this case, the bifurcation diagram will look like a closed loop with four humps
for small values of α, and little bubbles will appear for the subsequent values of this pa-
rameter. The subdivision will continue until chaos appears. This phenomenon is shown
in Figure 4.2.

From the previous examples, we can conclude that bifurcations diagrams can be built
to achieve some prefixed properties. Moreover, if we allow discontinuous eigenvalue func-
tions φ(λ) = b(λ), their bifurcation diagrams can be more elaborated in the sense that
now we can obtain the behavior we have just described in different parameter regimes.

It is relevant to realize that the important fact is where and when the function φ(λ)
intersects the boundaries of the regions. Whatever happens inside a region, it only affects
the shape of the branches of the asymptotic solution. Thus the relationship between the
bifurcation diagram and the eigenvalue function becomes universal in the sense that this
relationship does not depend on the shape of the function.
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Figure 4.1. Regular reversal maps for (a) α0 = 1.2, (b) α0 = 1.5, and (c) α0 = 1.562.
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Figure 4.2. Regular reversal maps for (a) α= 0.19166, (b) α= 0.191, and (c) α= 0.19.
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5. Perturbed exponential map

We return our attention to the perturbed exponential map. The perturbed map is a uni-
modal map with a unique fixed point given asymptotically by

x(ε)= 1 +
ε
λ

+
λ− 2
2λ2

ε2 +
3(λ− 2)2 + λ(3− λ)

6λ3
ε3 +

(5λ− 6)(λ− 3)
6λ4

ε4 +O
(
ε5). (5.1)

Here, we will show that the perturbed exponential map is a regular reverse map for some
values of ε. To achieve this goal, we study the behavior of the eigenvalue function which
is given by

φε(λ)= (1− λ+ z(ε,λ)
)

exp
(
z(ε,λ)

)
, (5.2)

with

z(ε,λ)=−ε− λ− 2
2λ

ε2− 3(λ− 2)2 + λ(3− λ)
6λ2

ε3− (5λ− 6)(λ− 3)
6λ3

ε4 +O
(
ε5). (5.3)

The function φε has the property that when we increase the value of ε it tends to a
finite limit when λ tends to infinity. Thus the growth of the function is controlled by ε.
Depending on the value of ε, the map may have different scenarios depending on the ap-
pearance of the number of nested loops, which determines the number of periodic points.
For values of ε > 1.14, there are only fixed points so that in its corresponding bifurcation
diagram there is not any loops, it only consists of a curve. For ε ∈ (0.104,1.14), there ap-
pear periodic points of period two with its bifurcation diagram given by the typical flip
bifurcation, which corresponds to Figure 4.1b for values of the parameter in (2,2.6), as in
the previous interval there are not loops. The third case corresponds to values of ε lying
in the interval (0.063,0.104), where there appear two loops and, therefore, four periodic
points of period four, see Figure 4.1b. For ε ∈ (0.05745,0.063), there are four loops and
23 periodic points of period 23. Finally, for ε ∈ (0.0564,0.05745), there are eight loops
and 24 periodic points of period 24. By decreasing the value of the parameter ε, the num-
ber of nested loops increases progressively as well as the number of periodic points. All
these conclusions were obtained numerically since the function (5.2) does not have an ex-
plicit analytic expression. In Figure 5.1, we show the behavior of the branches of periodic
points of periods one and two for the value of ε = 0.07.

Notice that it is clear that the unperturbed exponential map is chaotic, since its eigen-
value function

φ0(λ)= 1− λ (5.4)

is a polynomial (as the logistic map). This polynomial goes through all regions of all
types, thus it has the property of double periodicity followed by chaos.
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Figure 5.1. Branches of periodic points of periods one and two.

6. Conclusions

In this paper, we have presented a new method for constructing a rich class of bifurcation
diagrams for unimodal maps. We studied in detail the behavior of quadratic maps when
the dependence of their coefficients was given by continuous functions. We gave condi-
tions on the coefficients of the quadratic maps in order to obtain regular reversal maps.
For discontinuous coefficients, the bifurcation diagrams are more elaborated than before,
but one can easily describe how to obtain regular reversal maps. Several examples were
presented in order to show diverse bifurcation diagrams with or without chaos.
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