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We introduce a tree structure for the iterates of symmetric bimodal maps and identify a
subset which we prove to be isomorphic to the family of unimodal maps. This subset is
used as a second factor for a ∗-product that we define in the space of bimodal kneading
sequences. Finally, we give some properties for this product and study the ∗-product
induced on the associated Markov shifts.

1. Introduction and preliminary definitions

The concept of irreducible complexity of a biological system was introduced by Behe [1]
in 1996. His point of view is that an organism consisting of a finite, possibly very large,
number of independent components, coupled together in some way, exhibits irreducible
complexity if, by removing any of its components, the reduced system no longer functions
meaningfully. Using the language of nonlinear dynamics and chaos theory, Boyarsky and
Góra [2] reinterpreted Behe’s definition from a Markov transition matrix perspective by
saying that a system is irreducibly complex if the associated transition matrix is primitive
but no principal submatrix is primitive.

It is our conviction that the concept of reducible complexity of a dynamical system can
also be interpreted in terms of a factorization: within Milnor and Thurston’s kneading
theory framework and the topological classification obtained from it, Derrida et al. [4]
introduced a ∗-product between unimodal kneading sequences for which it was possible
to prove that the topological entropy, a measure of complexity, of a factorizable system
is equal to the topological entropy of one of the factors. Despite of a larger number of
its components, the complexity of the system remains the same whenever its irreducible
component, a factor of the product, does not change.

Some years later, Lampreia et al. [5] introduced a Markov transition matrix formalism
associated with the kneading theory and a product between unimodal matrices corre-
sponding to the Derrida-Gervois-Pomeau ∗-product. Then they proved that irreducible
unimodal kneading sequences correspond to primitive Markov transition matrices.
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With this work we would like to introduce the generalization, for bimodal symmetric
maps of the interval, of the∗-product and the corresponding product between transition
matrices.

Consider a two-parameter family fa,b of maps from the closed interval I = [c0,c3] into
itself, with two critical points, usually called the bimodal family of maps of the inter-
val, see [3, 7, 10]. Once the parameters (a,b) are fixed, the map fa,b is piecewise mono-
tone, and hence I can be subdivided in the following three subintervals: L = [c0,c1],
M = [c1,c2], and R = [c2,c3], where ci are the critical points or the extremal points, in
such a way that the restriction of f to each interval is strictly monotone. We will choose
the family of maps such that the restrictions fa,b|L and fa,b|R are increasing and the restric-
tion fa,b|M is decreasing.

For each value (a,b), we define the orbits of the critical points by

O
(
ci
)= {xj : xj = f j

(
ci
)
, j ∈N} (1.1)

with i= 1,2.
With the aim of studying the topological properties of these orbits we associate to each

orbit O(ci) a sequence of symbols S= S1S2 . . .S j . . . , where Sj = L if f
j
a,b(ci) < c1, Sj = A if

f
j
a,b(ci) = c1, Sj =M if c1 < f

j
a,b(ci) < c2, Sj = B if f

j
a,b(ci) = c2, and Sj = R if f

j
a,b(ci) > c2.

If we denote by nM the frequency of the symbol M in a finite subsequence of S, we can
define the M-parity of this subsequence according to whether nM is even or odd. In what
follows (see [10]), we define an order relation in Σ5 = {L,A,M,B,R}N that depends on
the M-parity.

Let V be a vector space of dimension three defined over the rationals having as a basis
the formal symbols {L,M,R}; then to each sequence of symbols S= S1S2 . . .S j . . . we can

associate a sequence θ = θ0 . . .θ j . . . of vectors fromV , setting θj =
∏ j−1

i=0 ε(Si)Sj with j > 0,
θ0 = S0 when i= 0, and ε(L)=−ε(M)= ε(R)= 1, where to the symbols corresponding
to the critical points c1 and c2 we associate the vectors (L+M)/2 and (M +R)/2. Thus
ε(A) = ε(B) = 0. Choosing then a linear order in the vector space V in such a way that
the base vectors satisfy L <M < R, we are able to order the sequence θ lexicographically,
that is, θ < θ̄ if and only if θ0 = θ̄0, . . . ,θj−1 = θ̄ j−1 and θj < θ̄ j for some integer i ≥ 0.
Finally, introducing t as an undetermined variable and taking θj as the coefficients of a
formal power series θ (invariant coordinate), we obtain θ = θ0 + θ1t+ ··· =∑∞

j=0 θjt
j .

The sequences of symbols corresponding to periodic orbits of the critical points c1 and
c2 are P = AP1P2 . . .Pp−1A.. . and Q = BQ1Q2 . . .Qq−1B . . . . In what follows we denote by
P(p) = P1P2 . . .Pp−1A and Q(q) =Q1Q2 . . .Qq−1B the periodic blocks associated to P and Q.
The realizable itineraries of the critical points c1 and c2 for the maps previously defined
are called kneading sequences [10].

2. Symbolic dynamics for symmetric bimodal maps

Denote by �KS the set of pairs of kneading sequences (P,Q), with (P,Q) either a pair
of stable orbits or a doubly stable orbit. In Table 2.1, we give the subset of kneading se-
quences, with lengths p,q < 5.

The corresponding columns are given by the conjugate of the previous sequences.
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Table 2.1. Kneading data for bimodal maps (detail). For the lines of the table, we have 1− RLLA,
2− RLA, 3− RLMA, 4− RLB, 5− RA, 6− RMRA, 7− RMB, 8− RMMA, 9− RMMB, 10− RMA,
11−RMLB, 12−RMLA, 13−RB, 14−RRLA, 15−RRLB, 16−RRA, 17−RRMB, 18−RRMA, 19−
RRB, 20−RRRA, 21−RRRB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗ ∗ ∗
5 � ∗ ∗ ∗ ∗ ∗ ∗
6 ∗ � ∗ ∗ ∗ ∗ ∗
7 ∗ � ∗ ∗ ∗ ∗ ∗ ∗ ∗
8 ∗ ∗ ∗ � ∗ ∗ ∗ ∗
9 ∗ ∗ � ∗ ∗ ∗ ∗ ∗ ∗

10 ∗ ∗ ∗ ∗ � ∗ ∗ ∗
11 ∗ ∗ � ∗ ∗ ∗ ∗ ∗
12 ∗ ∗ ∗
13 ∗ ∗ ∗ ∗ � ∗ ∗ ∗ ∗
14 � ∗ ∗ ∗
15 ∗ ∗ ∗ ∗ � ∗ ∗ ∗
16 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ � ∗ ∗
17 ∗ ∗ ∗ ∗ ∗ ∗ � ∗ ∗
18 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ � ∗
19 ∗ ∗ ∗ ∗ ∗ ∗ ∗ � ∗
20 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �
21 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ �

We define a tree � that corresponds to the diagonal in �KS and codify the symmetric
bimodal maps. Each element S ∈� is of one of the following types: S is a pair of stable
orbits, that is, S= (P,P)= (P(p−1)A,P(p−1)B); otherwise, S is a doubly stable orbit, that is,
S= P(p−1)BP(p−1)A, where P(p−1) = P1P2 . . .Pp−1 with Pi = R if Pi = L, Pi =M if Pi =M,
and Pi = L if Pi = R, and 1≤ i≤ p− 1.

Note that the set � is ordered with respect to the order of the sequences P (or the
inverse order in P̄) induced by the order of the symbols−R <−B <−M <−A <−L < L <
A <M < B < R.

Let �1 be a subset of � with elements between (M∞,M∞) and (RM∞,LM∞), see
Figure 2.1. Let S(2p) = (P(p−1)A,P(p−1)B) or S(2p) = P(p−1)BP(p−1)A and consider a full tree
� whose elements are also between (M∞,M∞) and (RM∞,LM∞) and are characterized
by each vertex branch in two edges following the next rule.

Alternatively, the vertices in each level of the tree are doubly stable orbits
P(p−1)BP(p−1)A or pairs of stable orbits (P(p−1)A,P(p−1)B). The doubly stable orbits oc-
cur in odd levels and the pairs of stable orbits in even levels. For the doubly stable or-
bit P(p−1)BP(p−1)A and according to whether the M-parity of P(p−1) is even or odd, the
branching orders can be described, respectively, by
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Figure 2.1. The tree �1.

P(p−1)BP(p−1)A
�

�
�

�
��

(M,M̄)

(P(p−1)MA,P(p−1)MB)

	
	

	
	

		

(R, R̄)

(P(p−1)RA,P(p−1)LB)

P(p−1)BP(p−1)A
�

�
�

�
��

(R, R̄)

(P(p−1)RA,P(p−1)LB)

	
	

	
	

		

(M,M̄)

(P(p−1)MA,P(p−1)MB)

(2.1)

For the pairs of stable orbits, the branching orders can be described by

(P(p−1)A,P(p−1)B)
�

�
�

�
��

(L, L̄)

P(p−1)LBP(p−1)RA

	
	

	
	

		

(M,M̄)

P(p−1)MBP(p−1)MA
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Figure 2.2. The tree �.

(P(p−1)A,P(p−1)B)
�

�
�

�
��

(M,M̄)

P(p−1)MBP(p−1)MA

	
	

	
	

		

(L, L̄)

P(p−1)LBP(p−1)RA

(2.2)

according to whether the M-parity of P(p−1)A is even or odd, respectively.
Using these rules, we get, as mentioned before, the full tree �, see Figure 2.2. The next

result establishes that to each S= (P(p−1)A,P(p−1)B) or P(p−1)BP(p−1)A in �1 corresponds
a sequence P(p−1) in �.

Lemma 2.1. If S∈�1, then P(p−1) ∈�.

Proof. Let S = P(p−1)BP(p−1)A ∈ �1 be a doubly stable orbit (odd level), with odd M-
parity. Then, we have

P(p−1)BP(p−1)A
�

�
�

�
��

(R, R̄)

(P(p−1)RA,P(p−1)LB)

(M,M̄)

(P(p−1)MA,P(p−1)MB)

	
	

	
	

		
(L, L̄)

not admissible or not in �1

(2.3)
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The doubly stable orbit P(p−1)BP(p−1)A leads, on the next level, to the pairs of stable orbits
given by (P(p−1)XA,P(p−1)X̄B)= (RM .. .XA,LM .. . X̄B). Note that when (X , X̄)= (L, L̄),

σ (p−1)(LM .. . X̄B)= σ (p−1)(LM .. .RB)= RB . . . > RM .. . (2.4)

which is not admissible or is not in �1. In the same way, the doubly stable ones obtained
from pairs of stable orbits follow the rule in � because now the branch associated to
(R, R̄) is not admissible. The proof for the case when the M-parity of P(p−1)A is even is
analogous. �

In what follows, we denote by �KS the set of kneading sequences associated to uni-
modal maps. Then, we have the following theorem.

Theorem 2.2. The tree �1 is isomorphic to �KS.

Proof. Let � be a complete tree with two symbols {L,R}, where we consider the R-parity.
There exists an isomorphism between � and �, where each symbol L in � corresponds
to a symbol M in � and each symbol R in � corresponds to a symbol L or R in � ac-
cording to whether the (k− 1)-level is even or odd, respectively. Thus the R-parity in �
corresponds to the (R+L)-parity in �, and so we have

P1P2 . . .Pk−1 with #(R+L) even

�
�

�
�

��

M

P1P2 . . .Pk−1M

	
	

	
	

		

R

P1P2 . . .Pk−1R

P1P2 . . .Pk−1 with #(R+L) odd

�
�

�
�

��

R

P1P2 . . .Pk−1R

	
	

	
	

		

M

P1P2 . . .Pk−1M

P1P2 . . .Pk−1 with #(R+L) even

�
�

�
�

��

M

P1P2 . . .Pk−1M

	
	

	
	

		

L

P1P2 . . .Pk−1L

(2.5)
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if the (k− 1)-level is even, and

P1P2 . . .Pk−1 with #(R+L) odd

�
�

�
�

��

L

P1P2 . . .Pk−1L

	
	

	
	

		

M

P1P2 . . .Pk−1M

(2.6)

if the (k − 1)-level is odd. To each admissible vertex P(p−1)C, when we join C to the
end of a block P(p−1) in �, corresponds the symbol A (or B) in the even or odd level
in �. Thus, to each admissible vertex P(p−1)C in �KS corresponds an admissible vertex

(P̃(p−1)A, P̃
(p−1)

B) or P̃(p−1)BP̄(p−1)A in �1. Note that the admissibility in � corresponds
to the admissibility in � since the R-parity in � corresponds to the (R + L)-parity in
� and the shift σ acting on P(p−1)C corresponds in � to a shift σ acting on P̃(p−1)A or
P̃(p−1)BP̄(p−1)A. In this way, if P(p−1)C is admissible, that is,

σi
(
P(p−1)C

)≤ P(p−1)C, ∀i, (2.7)

then we also have

σi
(
P̃(p−1)A

)≤ P̃(p−1)A, ∀i, (2.8)

or

σi
(
P̃(p−1)BP̄(p−1)A

)≤ P̃(p−1)BP̄(p−1)A, ∀i. (2.9)

�

Consider now the Markov matrix associated to a sequence S = P̃(p−1)BP(p−1)A or
(P̃(p−1)A,P(p−1)B) and denote by dP(t) the characteristic polynomial of the Markov ma-
trix AP , where P equals P(p−1)C ∈ �KS and corresponds to P̃ = P̃(p−1)X in �1, where
X = A or B. Then the following result holds.

Proposition 2.3. For each S = P̃(p−1)BP(p−1)A or (P̃(p−1)A,P(p−1)B) ∈�1, there exists a
decomposition of the matrix AS of type

AS =


1 W1 W2

0 0 AP

0 AP 0

 . (2.10)
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Proof. Let S= P̃(p−1)B ˜̄P(p−1)A or (P̃(p−1)A, ˜̄P(p−1)B)∈�1; then the Markov partition as-
sociated to S is given by � = �1 ∪�2 ∪�3, where �1 = {Ii : 1 ≤ i ≤ p− 1}, �2 = Ip,

�3 = {Ii : p+ 1≤ i≤ 2p− 1}, and ∂Ii = zi+1− zi. When S= (P̃(p−1)B ˜̄P
(p−1)

A), we have

zi ∈ J1 =
{
x2 j : 0≤ j < p

}
if Ii ∈�1, (2.11)

or

zi ∈ J2 =
{
x2 j+1 : 0≤ j < p

}
if Ii ∈�3, (2.12)

where x0 (resp., xp) corresponds to the critical point c1 (resp., c2). On the other hand, if

S= (P̃(p−1)A, ˜̄P(p−1)B), then

zi ∈ J3 =
{
x2 j , y2 j : 0≤ j <

p− 2
2

}
if Ii ∈�1, (2.13)

or

zi ∈ J4 =
{
x2 j+1, y2 j+1 : 0≤ j <

p− 2
2

}
if Ii ∈�3, (2.14)

and, in both cases, �2 = {Ip}, with ∂Ip = zp+1− zp, where zp =max{J1(or J3)} and zp+1 =
min{J2(or J4)}. Note also that if we look for the structure of �1, we will conclude that if
S = P̃(p−1)BP̄(p−1)A ∈ �1, then S2i ∈ {L,A,M}, S2i+1 ∈ {M,B,R} with 0 ≤ i < p. If
S= (P̃(p−1)A, P̄(p−1)B)∈�1, then P̃2i ∈ {L,M}, P̃2i+1 ∈ {M,R}, P̄2i ∈ {M,R}, and P̄2i+1 ∈
{L,M} for 0≤ i≤ (p− 2)/2. Thus, the even points establish a Markov shift and the odd
points establish another Markov shift that is isomorphic to the previous one according
to the symmetry of the cubic (where S∈�1). So, we only have to prove that each one of
these shifts is isomorphic to the unimodal map associated with (AP(p) ,σA). Note that the
even points are all less than the fixed point (that corresponds to the sequence of symbols
M∞), whereas the odd points are all higher than the fixed point. So, we get two uni-
modal maps with critical points c1 and c2 given by sequences of symbols in {L,A,M} or
{M,B,R} and by the admissibility unimodal rules. Thus, the partitions �1 and �3 are
equivalent to the unimodal map associated, and so they have the same Markov shifts. Fi-
nally, �2 introduces a state that is transit to itself and also has transitions for other states
that correspond to the transient part of the dynamics, W . �

Corollary 2.4. For each S = P̃(p−1)BP(p−1)A or (P̃(p−1)A,P(p−1)B) ∈ �1, there exists a
decomposition of the characteristic polynomial, dS(t)= det(I − t ·AS), associated to AS, and
it is given by

dS(t)= (1− t)dP(t)dP(−t), (2.15)

where dP(t)= det(I − t ·AP).

Proof. Note that the decomposition of the characteristic polynomial follows from the
previous decomposition of the Markov matrix. �
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Figure 3.1. The tree � of unimodal kneading sequences.

3.∗-product operator

For the unimodal case, the ∗-product operator of symbolic sequences was defined (see
[4]). This product turns out to be a very useful tool to understand the properties of such
maps.

In what follows, we extend the ∗-product operator for the case of symbolic sequences
associated to symmetric bimodal maps. Note that in � the∗-operation is consistent with
the initial definition of the ∗-product introduced by Derrida, Gervois, and Pomeau for
the unimodal case (see also [8, 9, 11] for the bimodal case).

According to Theorem 2.2, the tree �1 is isomorphic to � (ordered set of unimodal
kneading sequences, see Figure 3.1).

From this set we can define another tree � = {�− =��, if the level is odd, or �+ =
(�,σ(�)) if the level is even}, see Figure 3.2. Now, using the symbolic codification ap-
plied to f ◦ f , with f a unimodal map, we introduce the following translation rules:

�� −→ L, �c −→ A, �r −→M, cr −→ B,

rr −→ R, rc −→ C, r� −→U.
(3.1)

By applying these rules, Figure 3.2 can be rewritten as the tree � = �+ ∪�−, see Figure
3.3.

Remark 3.1. Let (x1 . . .x2n−1c,σ(x1 . . .x2n−1c)) ∈ �+ or x1 . . .x2ncx1 . . .x2nc ∈ �−, where
xi ∈ {�,r} and � = �+ ∪�− is the tree presented in Figure 3.2. Let � be the set of
trimodal kneading data such that the images of both maxima are equal. With D = A
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Figure 3.2. The tree �.
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Figure 3.3. The tree � of the second factor for the ∗-product.

or B, we will write (P1 . . .P2p−1D,Q1 . . .Q2p−1B,P1 . . .P2p−1D) ∈ �, for even levels, and
(P1 . . .P2p−1BQ1 . . .Q2p−2A,P1 . . .P2p−1B) ∈ �, for odd levels, with Pi,Qj ∈ {L,A,M,B,R,
C,U} = {��,�c,�r,cr,rr,rc,r�}. With this notation, we can get � from the tree � (see
also [6]).
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Thus, we will consider the following different situations for the definition of the
∗-product: first, let F = (P,P) ∈ � and G = (x1x2 . . .xx−1c,x1x2 . . .xx−1c), with x1x2 . . .
xx−1c ∈�; then, we let F = PBPA∈� and G∈�.

Type 1. Let F = (P,P) = (P(p−1)A,P(p−1)B) ∈� be a bimodal kneading datum and G =
(X ,X) a pair of unimodal kneading sequences. Then we have

F ∗G= (P,P)∗ (X ,X)= (P(p−1)∗X (x−1)c,P(p−1)∗X (x−1)c
)
, (3.2)

with

P(p−1)∗X (x−1)c = P(p−1)A±1 P
(p−1)A±2 . . .P

(p−1)
x−1 A±x−1P

(p−1)A, (3.3)

where

A±i =


M if xi = r,

A if xi = c,

L if xi = �,

if P is even, A±i =


L if xi = r,

A if xi = c,

M if xi = �,

if P is odd. (3.4)

In a similar way,

P(p−1)∗X (x−1)c = P(p−1)B±1 P(p−1)B±2 . . .P(p−1)B±y−1P
(p−1)B, (3.5)

where

B±i =


M if xi = r,

B if xi = c,

R if xi = �,

if P is even, B±i =


R if xi = r,

B if xi = c,

M if xi = �,

if P is odd. (3.6)

Type 2. Let F = PBPA= P(p−1)BP(p−1)A∈� and G= X (x−1)BY (y−1)D ∈�− (where D =
A or C) be two kneading data. Then

F ∗G= P(p−1)B±1 P(p−1)A±1 P
(p−1)B±2 P(p−1)A±2 . . .P

(p−1)BP(p−1)A±x P
(p−1)

×B±x+1P
(p−1)A±x+1P

(p−1)B±x+2 . . .P
(p−1)A±x+y−1P

(p−1)B±x+yP
(p−1)A.

(3.7)
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Let Zi = Xi, Zx+i = Yi, and Zx+y =D; then

P(p−1)B±i P(p−1)A±i =



P(p−1)MP(p−1)M if Zi = L,

P(p−1)MP(p−1)A if Zi =A,

P(p−1)MP(p−1)L if Zi =M,

P(p−1)BP(p−1)L if Zi = B,

P(p−1)RP(p−1)L if Zi = R,

P(p−1)RP(p−1)A if Zi = C,

P(p−1)RP(p−1)M if Zi =U ,

if P and P are even,

P(p−1)B±i P(p−1)A±i =



P(p−1)RP(p−1)L if Zi = L,

P(p−1)RP(p−1)A if Zi =A,

P(p−1)RP(p−1)M if Zi =M,

P(p−1)BP(p−1)M if Zi = B,

P(p−1)MP(p−1)M if Zi = R,

P(p−1)MP(p−1)A if Zi = C,

P(p−1)MP(p−1)L if Zi =U ,

if P and P are odd.

(3.8)

Type 3. Let F = P(p−1)BP(p−1)A ∈� and G = (X (n−1)D,Y (n−1)B) ∈ �+ be two kneading
data. Then

F ∗G= (P(p−1)B±1 P(p−1)A±1 P
(p−1)B±2 P(p−1)A±2 . . .P

(p−1)B±n P(p−1)A,

P(p−1)A±n+1P
(p−1)B±n+1P

(p−1)A±n+2P
(p−1)B±n+2 . . .P

(p−1)A±2nP
(p−1)B

)
.

(3.9)

The transformation rules are the same as above for the first sequence

F ∗X (x−1)A= P(p−1)B±1 P(p−1)A±1 P
(p−1)B±2 P(p−1)A±2 . . .P

(p−1)B±n P(p−1)A, (3.10)

except that Zi = B cannot occur. For the second position of the pair, we have

σ p−1(F)∗ σn−1(Y (n−1)B
)

= BP(p−1)A±n+1P
(p−1)B±n+1P

(p−1)A±n+2P
(p−1)B±n+2 . . .P

(p−1)A±2nP
(p−1),

σ
(
σ p−1(F)∗ σn−1(Y (n−1)B

))
= P(p−1)A±n+1P

(p−1)B±n+1P
(p−1)A±n+2P

(p−1)B±n+2 . . .P
(p−1)A±2nP

(p−1)B,

(3.11)
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where

B±i P(p−1)A±i P
(p−1) =



MP(p−1)MP(p−1) if Yi = L,

MP(p−1)LP(p−1) if Yi =M,

BP(p−1)LP(p−1) if Yi = B,

RP(p−1)LP(p−1) if Yi = R,

RP(p−1)MP(p−1) if Yi =U ,

if P and P are even,

B±i P(p−1)A±i P
(p−1) =



RP(p−1)LP(p−1) if Yi = L,

RP(p−1)MP(p−1) if Yi =M,

BP(p−1)MP(p−1) if Yi = B,

MP(p−1)MP(p−1) if Yi = R,

MP(p−1)LP(p−1) if Yi =U ,

if P and P are odd.

(3.12)

The following examples illustrate the definitions given above.

Example 3.2.

(RMMA,LMMB)∗ (r�c,r�c)= (RMMMRMMLRMMA,LMMMLMMRLMMB).
(3.13)

Example 3.3.

RBLA∗ULBLA= RRLMRMLMRBLLRMLMRMLA. (3.14)

Example 3.4.

RBLA∗ (UA,LB)= (RRLMRMLA,LLRMLMRB). (3.15)

Remark 3.5. Notice that, regarding Example 3, where both P and P are even sequences,
we have, for the second position of the pair,

σ
(
σ(RBLA)∗ σ(LB)

)= σ(BLAR∗BL)= σ(BLLRMLMR)= LLRMLMRB. (3.16)

Remark 3.6. The ∗-product in � is not a true binary product A∗B = C, for all A and
B ∈�. When C is factorizable, with C ∈�, then B must be in �.

Remark 3.7. Note that for all A∈� and B ∈ �, the result of the ∗-product defined pre-
viously is also in �.
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4.⊗-product between Markov matrices

In the same way, we can extend the ⊗-product between Markov matrices (introduced for
unimodal maps in [5]) associated to symmetric bimodal maps, that is,

AS = AV ⊗AW , (4.1)

where S=V ∗W with V ∈� and W ∈�.

Theorem 4.1. Let V ∈� and W ∈�; then there exists a matrix product such that

AS = AV∗W =AV ⊗AW. (4.2)

Proof. The proof is based on a construction of a product on the matrices induced by the
∗-product between kneading sequences. We will give this construction but only for the
∗-product between kneading sequences of the first type. For the others, it is technically
similar and can be reproduced from this one. Let W = (x1x2 . . .xk−1c,x1x2 . . .xk−1c) ∈ �.
First of all, note that the matrix AW is symmetric, and so it can be written in the form

AW =


0 0 B̂X

N1 1 N2

BX 0 0

 , (4.3)

where
[
N1 1 N2

]
is the kth row and

[
0 1 0

]
is the kth column. Denoting BX =

[bi j], then we define the (k− 1)× (k− 1) matrix B̂X by B̂X = BX if P(p) is even and by

B̂X = [b̂mj] with b̂mj = bi j , where m = k − i, if P(p) is odd. Given V = (P,P) ∈ � and
W = (X ,X)∈�, it is immediate that their associated transition matrices, AV and AW , are
square, (2p− 1)- and (2k− 1)-dimensional matrices, respectively, where p and k denote
the numbers of symbols of the sequences P and X . Analogously, it is fairly simple to see
that the transition matrix associated with the sequence V ∗W is a square matrix with
dimension (2pk− 1). Now we need to show that the elements of AV∗W are completely
determined by knowing the matrices AV and AW . Consider the symbolic shifts of the

sequences P ∗X and P ∗X and denote the corresponding points of the interval by p
j
i

and q
j
i , that is, p

j
i will be the point corresponding to the sequence σ p( j−1)+(i−1)(P ∗X)

and q
j
i the point corresponding to the sequence σ p( j−1)+(i−1)(P∗X). When one considers

the collection of points of the interval from all the shifts cited above, one can see that they
appear as groups of blocks of x points. Considering the order of the shifted sequences
σi(P), σ j(P), σk(X), and σn(X) and the way those sequences appear as subsets of the
partition induced by the sequence V ∗W , we can conclude (see also [5]) that the matrix
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AV∗W has the following block structure:

A1,1 A1,2 ··· A1,l+m+r N1
...

...
...

...

Al,1 Al,2 ··· Al,l+m+r Nl

Zl+1,1 Zl+1,2 ··· Zl+1,l+m+r ĀX

Al+2,1 Al+2,2 ··· Al+2,l+m+r Nl+2
...

...
...

...

Al+m+1,1 Al+m+1,2 ··· Al+m+1,l+m+r Nl+m+1

ÃX Zl+m+2,2 ··· Zl+m+2,l+m+r Nl+m+2

Nl+m+3 Al+m+3,2 ··· Al+m+3,l+m+r Al+m+3,l+m+r+1
...

...
...

...

Nl+m+r+2 Al+m+r+2,2 ··· Al+m+r+2,l+m+r Al+m+r+2,l+m+r+1



, (4.4)

where l,m, and r are, respectively, the numbers of the symbols L,M, andR in the sequence
V , Ai, j , with (i, j) �= (l+m+ 1,1), is either one of the k× k matrices

1 1 ··· 1

0 0 ··· 0
...

...
...

0 0 ··· 0

 ,



1 0 ··· 0

0 1 ··· 0
...

...
...

0 0 ··· 1

 ,



0 ··· 0 1

0 ··· 1 0
...

...
...

1 ··· 0 0

 ,



0 0 ··· 0

0 0 ··· 0
...

...
...

1 1 ··· 1

 ,

(4.5)

or a null block, and

Al+m+1,1 =


n1 ··· ny ny+1

b1,1 ··· b1,y m1
...

...
...

by,1 ··· by,y my

 , (4.6)

where the submatrix [bi, j] is defined by the matrix BX . The matrices Zk and Nj are null
matrices, except Nl, Nl+1, and Nl+m+2 that can contain some elements 1. The distribution
of the previous blocks Ai, j , with (i, j) �= (l+m+ 1,1), is given by the structure of the ma-
trix AV . On the other hand, the internal structure of each block Ai, j is determined by the
order of the shifts of the sequence W . For the case of the block Al+m+1,1, its submatrix
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[bi, j] has an internal structure determined by BX . The elements ni and mj are null, ex-
cept those needed to preserve the continuity of the transitions (from the fact that f is a
continuous function). Analogously, the block ĀX is determined by B̂X . Finally, the blocks
Nl, Nl+1, and Nl+m+2 are null, except, once again, for the elements needed to preserve the
continuity of the transitions. �

The following example illustrates the use of the previous theorem.

Example 4.2. Let V = (RMMA,LMMB) and W = (r�c,r�c). Then, we have S=V ∗W =
(RMMMRMMLRMMA,LMMMLMMRLMMB), and the ⊗-product of their matrices

AV =



0 0 0 0 1 1 1
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 1 1 1 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
1 1 1 0 0 0 0


, AW =

(0 1

1 1

 ,

0 1

1 1

), (4.7)

AS =AV∗W , is given by

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0



.

(4.8)
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