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This paper proposes an alternative approach to economic growth with endogenous labor
supply. The production side is the same as the Solow model, the Ramsey model, and
the Diamond model. But we deal with the behavior of consumers differently from the
traditional approaches by proposing a concept of disposable income (which is the sum
of the wealth available for use, the current income from interest income, and the wage
payment) and a utility function which depends on the current consumption, savings,
and leisure. The model provides a mechanism of endogenous saving and labor supply
which the Solow model lacks, avoids the assumption of adding up utility over a period
of time upon which the Ramsey approach is based, and does not need the assumption of
two-period agents which the Diamond model and many of its extensions accept.

1. Introduction

There are three main frameworks in modeling economic growth with capital accumula-
tion. The Solow model is the starting point for almost all analyses of economic growth,
see Solow [6]. Nevertheless, the Solow model does not provide a mechanism of endoge-
nous savings. Ramsey’s optimal growth theory [4] has influenced modeling of consumers’
behavior since the late 1960’s. This approach assumes that utility is addable over time.
In his original contribution to growth theory with capital accumulation, Diamond [3]
used the overlapping-generations structure as proposed by Samuelson [5] to examine the
long-term dynamical efficiency of competitive production economies. The model has be-
come a standard tool in macroeconomics to study economic dynamics in discrete time.
Many growth models of macroeconomics are built within the OLG framework. A com-
mon assumption of the approach is that agents live only two periods—as mentioned by
Azariadias [1], each period should last over 30 years if one really wants to use analytical
results to provide direct insights into reality. The length of over 30 years period is gen-
erally considered too long for discussing economic changes because within each period
nothing is allowed to be changeable. These seminal papers were technically refined and
generalized in different ways over years, and many other factors, such as home produc-
tion, labor supply (and leisure), human capital, population growth, and innovation, have
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been introduced into these analytical frameworks. This study proposes an alternative way
in modeling behavior of consumers with endogenous saving and labor supply. The paper
is organized as follows. Section 2 defines the model. Section 3 proves that the dynamic
system has a unique stable equilibrium point. Section 4 examines effects of changes in
technology and preference on economic growth and labor supply. Section 5 concludes
the study.

2. The model

This section builds a growth model with endogenous saving and leisure time in discrete
time. The economy has an infinite future. We represent the passage of time in a sequence
of periods, numbered from zero and indexed by t = 0,1,2, . . .. The end of period t − 1
coincides with the beginning of period t; it can also be called period t. We assume that
transactions are made in each period. The population, N , is constant. Most aspects of our
model are similar to the Solow one-sector growth model, see Solow [6], Burmeister and
Dobell [2]. The discrete version of the Solow model is referred to by Diamond [3] and
Azariadis [1]. It is assumed that there is only one (durable) good in the economy under
consideration. Households own assets of the economy and distribute their incomes to
consume and save. Exchanges take place in perfectly competitive markets. Production
sectors sell their product to households or to other sectors and households sell their labor
and assets to production sectors. Factor markets work well; the available factors are fully
utilized at every moment. Saving is undertaken only by households, which implies that all
earnings of firms are distributed in the form of payments to factors of production, labor,
managerial skill, and capital ownership.

We assume perfect competition in all markets and select commodity to serve as nu-
meraire, with all the other prices being measured relative to its price. Let K(t) denote the
capital existing in period t, and N(t) the flow of labor services used at time t for produc-
tion. The total labor force N(t) is given by N(t) = T(t)N0, where T(t) is the work time
of a representative household and N0 is the population. In this study, we assume N0 to be
fixed. As our model exhibits constant returns to scale, the dynamics (in terms of capita)
will not be affected if we allow the population to change at a constant growth rate over
time.

We use the conventional production function to describe a relationship between in-
puts and outputs. The function F(t) defines the flow of production at time t. The pro-
duction process is described by some sufficiently smooth function, F(t)= F(K(t),N(t)).
We assume that F(K(t),N(t)) is neoclassical. Introduce f (k(t))≡ F(k(t),1), where k(t)≡
K(t)/N(t). The function f has the following properties: (i) f (0)= 0; (ii) f is increasing,
strictly concave on R+, and C2 on R++; f ′(k) > 0 and f ′′(k) < 0; (iii) limk→0 f ′(k) =∞
and limk→+∞ f ′(k) = 0. Let δk denote the fixed rate of capital depreciation. Markets are
competitive; thus labor and capital earn their marginal products, and firms earn zero
profits. We assume that the output good serves as a medium of exchange and is taken
as numeraire. The rate of interest and wage rate are determined by markets. Hence, for
any individual firm, r(t) and w(t) are given at each point of time. The production sector
chooses the two variables K(t) and N(t) to maximize its profit. The marginal conditions
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are given by

r(t) + δk = f ′
(
k(t)

)
, w(t)≡ f

(
k(t)

)− k(t) f ′
(
k(t)

)
. (2.1)

Consumers make decisions on choice of consumption levels of services and commodities
as well as on how much to save. In order to provide proper description of endogenous
savings, we should know how individuals perceive the future. Different from the optimal
growth theory in which utility defined over future consumption streams is used, we do
not explicitly specify how consumers depreciate future utility resulting from consuming
goods and services. We assume that we can find preference structure of consumers over
consumption and saving at the current state.

Let k∗(t)(≡ K(t)/N0) stand for per capita wealth. According to the definition of k(t)
and k∗(t), we have k∗(t)= k(t)T(t). Per capita current income from the interest payment
r(t)k∗(t) and the wage payment w(t)T(t) is given by

y(t)= r(t)k∗(t) +w(t)T(t). (2.2)

We call y(t) the current income in the sense that it comes from consumers’ daily toils
(payment for human capital) and consumers’ current earnings from ownership of wealth.
The current income is equal to the total output as we neglect any taxes at this initial stage.
The sum of money that consumers are using for consuming, saving, or transferring is not
necessarily equal to the temporary income because consumers can sell wealth to pay, for
instance, the current consumption if the temporary income is not sufficient for buying
food and touring the country. Retired people may live not only on the interest payment
but also have to spend some of their wealth. The total value of wealth that consumers
can sell to purchase goods and to save is equal to k∗(t). Here, we assume that selling and
buying wealth can be conducted instantaneously without any transaction cost. The per
capita disposable income is given by

ŷ(t)= y(t) + k∗(t). (2.3)

The disposable income is used for saving and consumption. At each point of time, a con-
sumer would distribute the total available budget among savings s(t) and consumption
of goods c(t). The budget constraint is given by

c(t) + s(t)= ŷ(t)= r(t)k∗(t) +w(t)T(t) + k∗(t). (2.4)

Denote by Th(t) the leisure time at time t and denote the (fixed) available time for work
and leisure by T0. The time constraint is expressed by

T(t) +Th(t)= T0. (2.5)

Substituting this function into the budget constraint yields

w(t)Th(t) + c(t) + s(t)= ȳ(t)≡ r(t)k∗(t) +w(t)T0 + k∗(t). (2.6)

In our model, at each point of time, consumers have three variables to decide. We assume
that the utility level U(t) that the consumers obtain is dependent on the leisure time Th,
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the consumption level c(t) of commodity, and the savings s(t) as follows:

U(t)= Tσ
h (t)cξ(t)sλ(t), σ ,ξ,λ > 0, σ + ξ + λ= 1, (2.7)

where σ is called the propensity to use leisure time, ξ, the propensity to consume, and λ,
the propensity to own wealth. For any individual, wage rate w(t) and rate of interest r(t)
are given in markets and wealth k(t) is predetermined before decision.

Maximizing U(t) in (2.7) subject to the budget constraint (2.6) yields

w(t)Th(t)= σ ȳ(t), c(t)= ξ ȳ(t), s(t)= λȳ(t). (2.8)

According to the definitions, the household’s wealth in period t+ 1 is equal to the savings
made in period t,

k∗(t+ 1)= s(t)= λȳ(t). (2.9)

We have thus completed building the model. We now analyze dynamic properties of the
system.

3. Equilibrium and stability

This section examines dynamic properties of the system (2.9). First, from the definition
of ȳ(t) and (2.1), we obtain

ȳ = ( f ′(k)− δk
)
k∗ +

(
f (k)− k f ′(k)

)
T0 + k∗. (3.1)

Substituting this equation into w(t)Th(t)= σ ȳ(t) yields

(ξ + λ
)(

f (k)− k f ′(k)
)
T0 =

(
f ′(k) + δ

)
σk∗ +

(
f (k)− k f ′(k)

)
T , (3.2)

where we use (2.1) and T(t) +Th(t)= T0. Inserting k∗(t)= T(t)k(t) into the above equa-
tion, we solve

T(t)=
(
f (k)− k f ′(k)

)
(ξ + λ)T0(

f ′(k) + δ
)
σk+

(
f (k)− k f ′(k)

) , (3.3)

where δ ≡ 1− δk and f − k f ′ > 0 for any positive k. We see that for any positive k, 0 <
T(t) < T0. This also guarantees that

0 < Th(t)
(= T0−T(t)

)
< T0. (3.4)

We see that T(t) is uniquely determined as a function of k(t). From k∗(t)= T(t)k(t) and
(2.9), we obtain

T(t+ 1)k(t+ 1)= λȳ(t). (3.5)

Inserting k∗(t)= T(t)k(t) and (3.1) into this equation, we obtain

Λ0
(
(t+ 1)

)
k(t+ 1)=Λ

(
k(t)

)(
f (k(t)

)− k(t) f ′
(
k(t)

))
, (3.6)
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where

Λ0
(
k(t+ 1)

)≡
(
f
(
k(t+ 1)

)− k(t+ 1) f ′
(
k(t+ 1)

))
(ξ + λ)(

f ′
(
k(t+ 1)

)
+ δ
)
σk(t+ 1) +

(
f
(
k(t+ 1)

)− k(t+ 1) f ′
(
k(t+ 1)

)) ,

Λ
(
k(t)

)≡ [
(
f ′
(
k(t)

)
+ δ
)
k(t) +

(
f
(
k(t)

)− k(t) f ′
(
k(t)

))(
f ′
(
k(t)

)
+ δ
)
σk(t) +

(
f
(
k(t)

)− k(t) f ′
(
k(t)

))]λ > 0.

(3.7)

We calculate

d
[
k(t+ 1)Λ0

(
k(t+ 1)

)]
dk(t+ 1)

=
(
f (k)− k f ′(k)

)
Λ0(k)(

f ′(k) + δ
)
σk+

(
f (k)− k f ′(k)

)
− σk2 f ′′Λ0(k)

((
f ′(k) + δ

)
k+
(
f (k)− k f ′(k)

))(
f (k)− k f ′(k)

)[(
f ′(k) + δ

)
σk+

(
f (k)− k f ′(k)

)] > 0.

(3.8)

As d(Λ0k)/dk > 0 for any positive k, according to the implicit function theorem, from
(3.6), we can express k(t+ 1) as a function of k(t) as follows:

k(t+ 1)=Λ∗
(
k(t)

)
, (3.9)

where Λ∗(k) has the same degree of smoothness of f ′′(k). The difference equation in-
volves a single variable k(t). With a positive initial condition, the one-dimensional differ-
ence equation determines k(t) in any period of time.

Lemma 3.1. For any positive solution k(t) of the difference equation (3.9), all the other
variables are uniquely determined by the following procedure: T(t) by (3.3)→ Th(t)= T0−
T(t)→ k∗(t)= T(t)k(t)→ r(t) and w(t) by (2.1) → ŷ(t) by (2.4) → ȳ(t) by (2.6) → c(t),
and s(t) by (2.8)→ f (k(t))→ F(t)=N(t) f (k(t)).

Lemma 3.1 guarantees that once we determine dynamic properties of (3.9), we can
determine the behavior of all the other variables in the system. Hence, it is sufficient for
us to be concerned with (3.9).

By (3.6), an equilibrium point is given by

Λ0(k)k =Λ(k)
(
f (k)− k f ′(k)

)
. (3.10)

Inserting Λ0(k) and Λ(k) into the above equation yields

f (k)
k

−
(
ξ

λ
+ δk

)
= 0. (3.11)

The equation has a unique positive solution if f ′(0) > (ξ/λ+ δk). With Lemma 3.1, we
see that the system has a unique positive solution. We denote the equilibrium value of
k by k∗. To check stability of the unique equilibrium, we calculate dΛ1/dk at k∗. Taking
derivatives of the two sides of the difference equation (3.6), we have

d
[
Λ0
(
(t+ 1)

)
k(t+ 1)

]
dk(t+ 1)

dk(t+ 1)
dk(t)

= d
[
Λ
(
k(t)

)(
f
(
k(t)

)− k(t) f ′
(
k(t)

))]
dk(t)

, at k = k∗.

(3.12)
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Substituting

d
(
kΛ0

)
dk

= ( f − k f ′)Λ0

( f ′ + δ)σk+ ( f − k f ′)
− σk2 f ′′Λ0

(
( f ′ + δ)k+ ( f − k f ′)

)
( f − k f ′)

[
( f ′ + δ)σk+ ( f − k f ′)

] ,

dΛ

dk
=
[

f ′ + δ

( f ′ + δ)k+ ( f − k f ′)
− (σ f ′ + σδ)− (ξ + λ)k f ′′

( f ′ + δ)σk+ ( f − k f ′)

]
Λ

(3.13)

into (3.12), we have

F1(k)
dΛ1

dk
= F2(k), (3.14)

in which

F1(k)≡ f − k f ′ − σk2 f ′′ − σk3 f ′′F∗, F2(k)≡ (ξ + λ)( f ′ + δ)k
(kF∗ + 1)

− (kF∗ + 1)σk2 f ′′,

F∗ ≡ f ′ + δ

f − k f ′
(3.15)

at k∗. Using f ′ > 0, f ′′ < 0, and f − k f ′ > 0, we see that F1 > 0 and F2 > 0. It is straight-
forward to check that F1 > F2. Hence, we conclude that

dΛ1

dk
= F2

F1
∈ (0,1). (3.16)

This implies that the equilibrium point is stable.

Theorem 3.2. The dynamic system has a unique stable equilibrium.

4. Comparative statics analysis

We showed that the dynamic system has a unique stable equilibrium. We now examine
impact of change in some parameters. First, we introduce technological change by speci-
fying f (k)=Ah(k), where A describes the level of technology. Taking derivatives of (3.11)
with respect to A yields

dk

dA
= k f

( f − k f ′)A
> 0, (4.1)

where f /k− f ′ > 0. As technology is improved, the capital intensity k is increased. From
(3.3), we obtain

dT

dA
=−

(
( f − k f ′) f ′ + k f f ′′)( f + δk)kTσ

A( f − k f ′)2
[
( f ′ + δ)σk+ ( f − k f ′)

] . (4.2)

The sign of dT/dA is the same as that of ( f − k f ′) f ′ + k f f ′′. As ( f − k f ′) f ′ > 0 and
k f f ′′ < 0, the impact is ambiguous. If f takes on the Cobb-Douglas form, that is, f =
Akα, then dT/dA = 0. If the production function takes on the CES form f = A(akρ +
1)1/ρ, where ρ < 1, a and A are positive, we calculate

( f − k f ′) f ′ + k f f ′′ = aρA2kρ−1(akρ + 1)2/ρ−2. (4.3)
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We see that if ρ > 0, then dT/dA > 0; if ρ= 0, then dT/dA= 0; and if ρ < 0, then dT/dA <
0. By k∗ = kT , we have

dk∗

dA
= k

dT

dA
+T

dk

dA
. (4.4)

If the improvement in technology increases work time, then per capita wealth definitely
increases; otherwise, the impact is ambiguous. From (2.1), we obtain

dr

dA
= f ′

A
+ f ′′

dk

dA
,

dw

dA
= w

A
− k f ′′

dk

dA
> 0. (4.5)

The wage rate is increased due to technological improvement; but the impact on the rate
of interest is ambiguous. The impact on the output level is given by

df

dA
= f

A
+ f ′

dk

dA
> 0. (4.6)

We now examine impact of change in preference. As σ + ξ + λ= 1, change in the propen-
sity to consume leisure has to be associated with change in other propensities. For sim-
plicity, we specify the preference change as follows: dσ =−dλ and dξ = 0. Taking deriva-
tives of (3.11) with respect to σ yields

dk

dσ
=− ξk2

( f − k f ′)λ2
< 0. (4.7)

As the propensity to use leisure increases and the propensity to save declines, the capital
intensity declines in the long term. It is important to note that if dσ = −dξ and dλ = 0,
then we have dk/dσ > 0. That is, if the propensity to use leisure time increases and the
propensity to consume declines, then the capital intensity increases. Another pattern of
the preference is given by

dσ =−d(ξ + λ),
dξ

ξ
= dλ

λ
. (4.8)

In this case, we have dk/dσ = 0. As preference may change in different ways, its impact
on k is dependent on the specified pattern of preference change. In what follows, we limit
our discussion to the case of dσ =−dλ and dξ = 0.

From (3.3), we obtain

1
T

dT

dσ
=
[

( f ′ + δ)( f − k f ′)σ − ( f + δk)σk f ′′[
( f ′ + δ)σk+ ( f − k f ′)

]
( f − k f ′)

]
dk

dσ
− 1

(ξ + λ)

− ( f ′ + δ)k
( f ′ + δ)σk+ ( f − k f ′)

< 0.
(4.9)

We conclude that as the propensity to stay at home is increased, the time of staying at
home increases. It should be remarked that this conclusion may not hold if we specify
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different patterns of preference change. By k∗ = kT , we have

dk∗

dρ
= k

dT

dρ
+T

dk

dρ
< 0. (4.10)

As the propensity to use leisure increases, per capita wealth declines in the long term.
From (2.1), we obtain

dr

dσ
= f ′′

dk

dσ
> 0,

dw

dσ
=−k f ′′ dk

dσ
< 0. (4.11)

As the propensity to use leisure time increases, the wage rate falls and the rate of interest
increases. The impact on the output level is given by

df

dσ
= f ′

dk

dσ
> 0. (4.12)

5. Conclusions

We proposed a one-sector growth model with endogenous leisure. The model of fixed
time is much influenced by the Solow model, the Ramsey model, and the Diamond
model. The main deviation from the traditional approaches is that we proposed an al-
ternative approach to the behavior of consumers. Our approach has a mechanism of en-
dogenous saving which the Solow model does not have; it does not assume addition of
utility over time as the Ramsey model asks for; and it does not assume that agents live
only two periods as in the Diamond model. It provides a mechanism of endogenous sav-
ings and labor supply. The dynamics is one-dimensional as that of the Solow model. In
comparison with the Ramsey approach which would lead to two-dimensional dynam-
ics for a similar problem, the dimension in our approach is reduced—this advantage is
evident when we model multiple groups of consumers. It should be mentioned that the
utility function used in this study has been applied to different fields of economics by
Zhang (e.g., [7, 8]); but all these studies used the Cobb-Douglas production and utility
functions in continuous time. This study may be considered as a generalization of these
previous studies. Indeed, we may study many other dynamic issues of economic growth
within the framework proposed in this study.
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