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We construct a Cournot duopoly model with production externality in which reaction
functions are unimodal. We consider the case of a Cournot model which has a stable equi-
librium point. Then we show the existence of analytic solutions of the model. Moreover,
we seek general solutions of the model in the form of nonlinear second-order difference
equation.

1. Introduction

The main aim of this study is to construct an explicit form of an analytic solution of
a multidimensional difference equation. To this end, we present a nonlinear Cournot
duopoly model with unimodal reaction functions, show that its dynamical system is dou-
ble logistic when the production externalities involved get stronger, and then give a con-
structive proof of the existence of an analytic solution of the dynamical system.

It is well known that there is an existence theorem for nonlinear differential equations,
which guarantees the existence of an analytic solution. It is also well known that there
is no general existence theorem for a nonlinear difference equation. In consequence, we
check whether a discrete-time system to be considered has a solution or not, and then
we examine its dynamical characteristic. In spite of this inconvenience, a discrete-time
dynamical system is useful for analyzing economic phenomena observed in the real eco-
nomic world such as business fluctuations that occur in real time. As far as global dynam-
ics are concerned, the usual procedure is to perform numerical simulations to visualize
how a dynamical process evolves over time, even if analytical treatment is insufficient.
However, it is still possible that numerical simulations do not approximate the true be-
havior of a discrete-time system, mainly due to computer’s storage limitations; trunca-
tions errors and the binary representation of numbers. To examine exact phenomena
generated by a discrete-time system, it is therefore natural to attempt to provide its ana-
lytical solutions.

This study is organized as follows. Section 2 constructs a nonlinear duopoly model
with unimodal reaction functions. The first half of Section 3 considers the existence of
particular solutions. The second half, the main part of this study, seeks general analytic
solutions and demonstrates their explicit forms.
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2. Nonlinear duopoly model

In this section, we present a discrete-time Cournot duopoly model with unimodal reac-
tion functions. In a duopoly, where there are two firms, each firm has to take into account
its rival’s behavior, when it decides how much output to produce. In particular, we focus
on the case in which each firm has to forecast the other firm’s output choice. Given its
forecast, each firm chooses a profit-maximizing output for itself. A Cournot equilibrium
is a situation where each firm finds its beliefs about the other firm to be confirmed. We
aim to construct an explicit form of an analytic solution approaching the Cournot equi-
librium.

We begin by assuming that an inverse demand function is linear and decreasing,

p = a− bQ, a > 0, b > 0, (2.1)

where Q is the industry output, provided that demand equals supply. Two firms, denoted
by X and Y , produce homogenous output x and y so that the total supply is made up of
supplies from both firms, x+ y =Q.

Let xt and yt be the outputs at time t. Firm X expects that firm Y will produce yet units
of output where the e stands for expected output. Then if firm X decides to produce xt
units of output, the total output it expects to be sold is xt + yet , which will yield a market
price of pt = a− b(xt + yet ). As for the production cost, we follow the formulation of Kopel
[2] and focus on the case in which the production cost is assumed to incorporate positive
production externality due the other firm’s level of production. Denoting the production
cost by cx(xt, yet ,α), firm X solves the following optimization problem:

max
xt

{[
a− b(xt + yet

)]
xt − cx

(
xt, yet ,α

)}
, (2.2)

where

cx(x, y,α)= d+ ax− bxy(1 + 2α) + 2bαxy2. (2.3)

Its solution is called the firm’s best-reply or reaction function. Differentiating the profit
with respect to xt and setting it equal to zero gives the first-order condition which we can
solve to derive the reaction function of firm X :

xt = αyet
(
1− yet

)
. (2.4)

Similarly, we can derive the reaction function of firm Y :

yt = βxet
(
1− xet

)
, (2.5)

where cy(y,x,β)= cx(x, y,α) is assumed. It gives the optimal choice of firm Y ’s output at
time t for a given expectation about firm X ’s output, xet . α and β are positive constants
and measure the intensity of the positive externality.

A combination of output (xc, yc) satisfying

xc = αyc(1− yc
)
, yt = βxc

(
1− xc) (2.6)
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is a Cournot equilibrium in which each firm is maximizing its profits, given its expecta-
tions about the other firm’s output choice, and, furthermore, these expectations are con-
firmed. In other words, each firm optimally chooses to produce the amount of output
that the other firm expects it to produce.

To describe a process of adjustment to equilibrium, we introduce a formation of naive
expectation, that is, xet = xt−1 and yet = yt−1. Namely, at the beginning of period t, one
firm expects that the other will continue to keep its output at the same level as in the
last period t− 1. After substituting the values of expectations into the reaction functions,
the time evolution of the duopoly system is represented by the double logistic discrete
dynamical system:

DS1 :

xt+1 = αyt
(
1− yt

)
,

yt+1 = βxt
(
1− xt

)
.

(2.7)

A number of the Cournot equilibrium points depend on specified values of parame-
ters, α and β. In particular, the dynamical system DS1 possesses only the trivial equilib-
rium (0,0) when these parameters’ values are less than unity. Beside the trivial equilib-
rium point, it has one positive equilibrium point when α and β are greater than unity
and less than or equal to three. It has three distinct equilibria when these are greater than
three and less than or equal to four. It can generate a trajectory that can have negative
values when either or both of α and β are greater than four. The trivial equilibrium point
is uninteresting. We have to solve the problem of selecting an equilibrium point values
when the system yields multiple equilibrium point. Further, negative production are eco-
nomically meaningless. Thus, in order to simplify our following analysis, we confine our
attention to the case where there is only one positive Cournot equilibrium point. To do
so, we make the following assumption.

Assumption 2.1. 1 < α < 3 and 1 < β < 3.

To examine whether the Cournot equilibrium is locally stable, we linearize DS1 at the
equilibrium point to form the Jacobi matrix,

J =
(

0 α
(
1− 2yc

)
β
(
1− 2xc

)
0

)
, (2.8)

where (xc, yc) is the equilibrium point. (Substituting the second equation of DS1 into the
first yields a quadratic equation in x including the trivial solution. It is, thus, possible to
have an explicit form of the equilibrium output, the form of which is, however, messy.)
The eigenvalues λ1 and λ2 satisfy

λ1 + λ2 = 0,

λ1λ2 =−αβ
(
1− 2xc

)(
1− 2yc

)
.

(2.9)

We put λ= λ1 =−λ2 > 0. The Cournot equilibrium point is stable if λ2 = αβ(1− 2xc)(1−
2yc) is less than unity.
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3. Analytical solution

Now we will look for an analytical solution of DS1 in this section. This section is divided
into three subsections. We transform the dynamical system DS1 to a more manageable
form DS3 in Section 3.1. We propose the existence of analytic particular solutions of the
dynamical system in Section 3.2. We seek analytic general solutions in Section 3.3.

3.1. Transformation of variables. As a starting point for a more complicated study, we
confine our analysis to the case in which the Cournot point is stable. The stable equilib-
rium point provides a convenient heuristic setting to detect analytical properties of the
Cournot output adjustment; it makes the formidable mathematical problem simpler and
more manageable; further, it enables us to derive rigorous results. Before proceeding to
the system transformation, we make the following locally stable condition.

Assumption 3.1. −1 <−αβ(1− 2xc)(1− 2yc) < 0.

Assumption 3.1 leads to |λ| < 1. Further, for technical reasons, we temporarily assume
time t to be a complex variable, although it is usually used as a real number. To emphasize
this change, we hereafter adopt x(t) to be the notation of variable dependency on time,
rather than xt. After we show the existence of analytic solutions, we treat t as a real value
to obtain a real value solution.

We transform the dynamical system DS1 to the equilibrium point by changing vari-
ables by u(t)= x(t)− xc and v(t)= y(t)− yc:

DS2 :


u(t+ 1)= α{v(t)

(
1− v(t)

)
+ 2v(t)yc

}
,

v(t+ 1)= β{u(t)
(
1−u(t)

)
+ 2u(t)xc

}
.

(3.1)

For the sake of simplicity, we further transform this simultaneous system to a second-
order difference equation. Let the first equation of DS2 shift one period ahead. Substitut-
ing the second equation into the shifted first equation yields a new dynamical system:

DS3 :



u(t+ 2)= α(1− 2yc
){
β
(
1− 2xc

)
u(t)−βu(t)2

}
−αβ2

{(
1− 2xc

)
u(t)−u(t)2

}2
,

v(t)=Φ
(
u(t+ 1)

)= 1− 2yc

2

1−
√√√√1− 4αu(t+ 1)

α
(
1− 2yc

)2

 .
(3.2)

To show an existence of an analytic solution u(t) of DS3, we further change variables by
setting s(t)= u(t) and w(t)= u(t+ 1).
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3.2. Existence of an analytic solution. At first we can determine a formal solution of the
first equation of DS3 such that

u(t)=
∞∑
n=1

anλ
nt. (3.3)

To determine coefficient values, ak of (3.3), we substitute (3.3) into the left-hand side of
the first equation of DS3 and (3.3) with a two-period shift into the right-hand side. We
then compare the coefficients of λnt on both sides to find

a1D(λ)= 0,

akD
(
λ2k)= Ck(a1,a2, . . . ,ak−1

)
for k ≥ 2,

(3.4)

where D(λ) = λ2 − αβ(1− 2yc)(1− 2xc) and Ck polynomials of a1,a2, . . . ,ak−1 are deter-
mined successively by calculation. (An illustrative example for determination of coeffi-
cients and constructions of Ck is given in Appendix A.) By the definition of the character-
istic equation, D(λ) is zero, and thus we take a1 to be arbitrarily but not zero. For k ≥ 2,
since 0 < λ < 1 and D(λ2k) �= 0, we can determine the coefficient ak with a1,a2, . . . ,ak−1.

Next we change variables in DS3 by putting s= u(t),w = u(t+ 1), and z = u(t+ 2) and,
for notational simplicity, define a new function of s and z in such a way that

H(s,z)=−z+αβ
(
1− 2yc

){(
1− 2xc

)
s− s2}−αβ2{(1− 2xc

)2
s2− 2

(
1− 2xc

)
s3 + s4

}
.

(3.5)

Accordingly, the first equation of DS3 can be written as H(s,z)= 0. Since H(s,z) is holo-
morphic in a neighborhood of z = 0, it can be checked that H(0,0)= 0 and ∂H(0,0)/∂s
= −λ1λ2 > 0. Thus we can have, with a help of the implicit function theorem, the holo-
morphic function φ such that for some ρ > 0,

s= φ(z) for |z| ≤ ρ (3.6)

in which φ(0)= 0. Furthermore, we have a constant K such that |s| = |φ(z)| ≤ K|z| for
|z| ≤ ρ. We prove the existence of an analytic solution u(t) such that u(t)= φ(u(t+ 2)).

Given a positive integer N , we can define a partial sum of the formal solution by
PN (t) = ∑N

n=1αnλ
nt. If a convergent analytic solution u(t) of DS3 exists, then we are

able to derive a convergent infinite series, pN (t)= u(t)−PN (t)=O(|λt|N+1). Conversely,
if there exists a function pN (t) such that pN (t) + PN (t) = φ(pN (t + 2) + PN (t + 2)) and
pN (t)= O(|λt|N+1) for |λt| ≤ ηN with some ηN > 0, then we can define a convergent se-
ries as a sum of pN (t) and PN (t), u(t)= pN (t) +PN (t), which can be an actual solution of
DS3.

The steps of the proof are follows: (1) we show the existence of pN for |λt| ≤ ηN with
some ηN > 0 in Lemma 3.2; (2) we prove the uniqueness of pN in Lemma 3.3; (3) we
demonstrate that the infinite series pN (t) + PN (t) is independent from a choice of N in
Lemma 3.4. Here we put p(t)= pN (t), η = ηN , and p(t)= u(t)−PN (t).
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Now we define a set, such that

S(η)= {
t ∈ C :

∣∣λt∣∣≤ η}. (3.7)

Taking A > 0 and 0 < η which is determined later, we also define a set, such that

J(A,η)= {
p : p(t) is holomorphic and

∣∣p(t)
∣∣≤ A∣∣λt∣∣N+1

for t ∈ S(η)
}
. (3.8)

For p(t)∈ J(A,η), we further define map T by

T[p](t)= φ(p(t+ 2) +PN (t+ 2)
)−PN (t). (3.9)

Lemma 3.2. Given N and ρ > 0, there exists a fixed point p(t) ∈ J(A,η) of map T for t ∈
S(η).

For the proof, see Appendix B.
We turn to the uniqueness of the fixed point.

Lemma 3.3. The fixed point p(t)∈ J(A,η) of T is unique.

For the proof, see Appendix C.
Lemma 3.4 shows that the solution u(t) does not depend on N .

Lemma 3.4. The solution u(t)= p(t) +PN (t) is independent of N .

For the proof, see Appendix D.
Lemmas 3.2, 3.3, and 3.4 prove that an analytic solution u(t) of DS3 exists in S(η) for

an η > 0, and has the expansion u(t) =∑∞
n=1 anλ

nt as shown in (3.3). The function φ(z)
in s= φ(z) for |z| ≤ ρ is defined only locally. Thus we have Theorem 3.5.

Theorem 3.5. Suppose Assumption 3.1, then there is a η > 0 such that DS3 has an analytic
solution u(t)=∑∞

n=1 anλ
nt in S(η)= {t; |λt| < η}.

However, the solution u(t) can be analytically continued by keeping out of branch
point. The solution u(t) obtained is multivalued, because the function φ(z) in (3.6) is
defined only locally.

Since (−λ)k �= λ for any positive integer k greater than 1, then we can determine a
formal solution u2(t) =∑∞

n=1 a2,nλnt as in Section 3.2, with −λ instead of λ. And it is
shown to be an actual solution, as in the argument above. Therefore, putting u1(t)= u(t),
a1,n = an, and η1 = η, we have two analytic solutions u1(t) in S(η1) and u2(t) in S(η2).

3.3. General analytic solutions. This subsection is our main work. In this subsection,
we seek general solutions of DS3.

For any linear second-order difference equation, general solutions are constructed
from two particular solutions of it. But, for a nonlinear second-order difference equation,
we can see that general solutions which converge to an equilibrium point of the equation
are written from one of two particular solutions u1 or u2 of the difference equation.
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Here we put

l(x, y)= α(1− 2yc
){
β
(
1− 2xc

)
x−βx2}

−αβ2{(1− 2xc
)
x− x2}2−αβ(1− 2xc

)(
1− 2yc

)
x.

(3.10)

From DS3, we have

u(t+ 2)= αβ2{(1− 2xc
)
x− x2}2

u(t) + l
(
u(t),u(t+ 2)

)
, (3.11)

where l is higher-order term for u(t), u(t+ 1).
Let u(t) be a solution of DS3, and w(t)= u(t+ 1). Then DS3 can be written as a system

of simultaneous equations:(
u(t+ 1)
w(t+ 1)

)
=
(

0 1
αβ
(
1− 2xc

)(
1− 2yc

)
0

)(
u(t)
w(t)

)
+

(
0

l
(
u(t),w(t)

)) . (3.12)

Let P = ( 1 1
λ −λ

)
and put (

u
w

)
= P

(
U
W

)
. (3.13)

From λ �= −λ, we can transform the coefficients matrix of linear terms of (3.12) into
diagonal form, that is, (3.12) is transformed to the following system with respect toU ,W :

U(t+ 1)= λU(t) +
∑

i+ j�2

ci jU(t)iW(t) j = X(U(t),W(t)
)
,

W(t+ 1)=−λW(t) +
∑

i+ j�2

di jU(t)iW(t) j = Y(U(t),W(t)
)
.

(3.14)

On the other hand, let Q = ( 1 1
−λ λ

)
. Put(
u
w

)
=Q

(
U
W

)
. (3.15)

Then (3.12) is transformed to the following system with respect to U ,W :

U(t+ 1)=−λU(t) +
∑
i+ j≥2

c′i jU(t)iW(t) j = X ′(U(t),W(t)
)
,

W(t+ 1)= λW(t) +
∑
i+ j≥2

d′i jU(t)iW(t) j = Y ′(U(t),W(t)
)
.

(3.16)

From these transformation, we can obtain following relation.
Let u(t) be a solution of DS3 in Section 3.2, and suppose Υ(t) is a solution of DS3 such

that Υ(t+n)→ 0 as n→ +∞ uniformly on any compact subset of t-plane.
If a solution (U(t),W(t)) of (3.14) exists, then we obtain the inverse function t = ψ(U)

of U =U(t) and we can write

W(t)=W(
ψ(U)

)=Ψ(U), (3.17)
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as far as dU/dt �= 0. Then the function Ψ satisfies

Ψ
(
X
(
U ,Ψ(U)

))= Y(U ,Ψ(U)
)
, (3.18)

where X and Y are defined in (3.14).
Conversely, we assume that a function Ψ is a solution of the functional equation (3.18).

If the first-order difference equation

U(t+ 1)= X(U(t),Ψ
(
U(t)

))
(3.19)

has a solution U(t), then we put W(t) = Ψ(U(t)) and have a solution (U(t),W(t)) of
(3.14).

Put ω(t)= Υ(t+ 1), and (
χ
ν

)
= P−1

(
Υ
ω

)
. (3.20)

Then we have
( χ(t+n)

ν(t+n)

) → (
0
0

)
since Υ(t + n) → 0 as n → 0, and we obtain a solution(

χ(t),Ψ
(
χ(t)

))
of (3.14). According to [4, 5], Ψ is obtained, in a neighborhood of x = 0,

in the form

Ψ(x)=
∞∑
n=2

γnx
n, (3.21)

that is, the expansion begins with x2. From χ(t+ 1)= X(χ(t),Ψ(χ(t))), we have

χ(t+ 1)
χ(t)

= λ1 +
∑

i+ j�2

ci jχ(t)i−1Ψ
(
χ(t)

) j
. (3.22)

Since χ(t+n)→ 0, as n→ +∞ and by (3.21),

Ψ
(
χ(t+n)

)
χ(t+n)

−→ 0,
χ(t+ 1 +n)
χ(t+n)

−→ λ1, as n−→ +∞. (3.23)

From Υ(t)= χ(t) +Ψ(χ(t)), we have

Υ(t+n+ 1)
Υ(t+n)

= χ(t+n+1)/χ(t+n) +
(
Ψ
(
χ(t+n+1)

)
/χ(t+n+1)

) · (χ(t+n+1)/χ(t+n)
)

1 +Ψ
(
χ(t+n)

)
/χ(t+n)

−→ λ1, as n−→ +∞.
(3.24)

On the other hand, if a solution (U ,W) of (3.16) exists, and letting Ψ be a solution of
functional equation

Ψ
(
X ′
(
U ,Ψ(U)

))= Y ′(U ,Ψ(U)
)
, (3.25)
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whereX ′ andY ′ are defined in (3.16), then we obtain similar relation of a solution (U ,W)
of (3.16) and a solution Ψ of (3.25). Furthermore, we have

Υ(t+ 1 +n)
Υ(t+n)

−→ λ2, n−→ +∞. (3.26)

From the arguments above, we have following lemma.

Lemma 3.6. Suppose that Υ(t) is an analytic solution of DS3 such that Υ(t + n) → 0 as
n→ +∞, uniformly on any compact subset of t-plane, then there is the following dichotomy:

(I)

Υ(t+ 1 +n)
Υ(t+n)

−→ λ1, n−→ +∞, (3.27)

(II)

Υ(t+ 1 +n)
Υ(t+n)

−→ λ2, n−→ +∞. (3.28)

From Lemma 3.6, we have following theorem and we obtain general analytic solutions
of DS3.

Theorem 3.7. Let λ1 and λ2 be roots of the characteristic equation of DS1 and 0 < λ =
λ1 =−λ2 < 1. Suppose that u1(τ), u2(τ) are solutions of DS3 which have expansions u1(t)=∑∞

n=1 a1,nλ
nt
1 in S(η1) = {t; |λt1| < η1}, u2(t) =∑∞

n=1 a2,nλ
nt
2 in S(η2) = {t; |λt2| < η2}, with

some constant η1,η2 > 0. Further, suppose that Υ(t) is an analytic solution of DS3 such that
Υ(t + n)→ 0 as n→ +∞, uniformly on any compact subset of t-plane. If the solution Υ of
DS3 satisfies Υ(t+ 1 +n)/Υ(t+n)→ λi, (i= 1,2), as n→ +∞, then there is a periodic entire
function πi(t), (πi(t+ 1)= πi(t)), such that

Υ(t)= 1
λi+1− λi

 ∞∑
n=1

ai,nλ
n(t+πi(t))
i −

∞∑
n=1

ai,nλ
n(t+πi(t)+1)
i


+Ψi

 1
λi+1− λi

 ∞∑
n=1

ai,nλ
n(t+πi(t))
i −

∞∑
n=1

ai,nλ
n(t+πi(t)+1)
i

 ,

(3.29)

in S(ηi), with the convention λ3 means λ1. When i = 1, Ψ1 is a solution of (3.18). When
i= 2, Ψ2 is a solution of (3.25) in which X , Y are defined in (3.14), and X ′, Y ′ are defined
in (3.16).

Conversely, a function Υ(t) which is represented as shown in (3.29) in S(ηi) for some ηi >
0, where πi(t) is a periodic function with period 1, is a solution of DS3 such that Υ(t+n)→ 0
and Υ(t+ 1 +n)/Υ(t+n)→ λi as n→ +∞ with i= 1,2.

Proof. Here we prove case (I), when i = 1. Put u(t) = u1(t) to be the solution of DS3

which we obtain in Theorem 3.5 as u(t)=∑∞
n=1 anλ

nt, (an = a1,n). And suppose Υ(t) is a
solution of DS3 such that Υ(t+n)→ 0 as n→ +∞ uniformly on any compact set.
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Put ω(t) = Υ(t + 1), and ( χν ) = P−1(Υω ), where (χ,ν) is a solution of (3.14). Then we
have

U(t)= 1
λ2− λ

(
λ2u(t)−u(t+ 1)

)= 1
λ2− λ

 ∞∑
n=1

(
λ2an− anλn

)(
λt
)n= Ũ(λt), (3.30)

where ζ = Ũ(τ) is a function of τ = λt and Ũ ′(0)= a1 �= 0 and Ũ(0)= 0. Since Ũ(τ) is an
open map, for any η1 > 0, there is an η2 > 0 such that Ũ({|τ| < η1}) ⊃ {|ζ| < η2}. Since
χ(t + n)→ 0 as n→∞, supposed that t belongs to a compact set K , there is an n0 ∈ N
such that for t′ ∈ K , |χ(t′ +n)| < η2 (n� n0).

Thus there is a τ′ = λσ , such that

χ(t′ +n)= Ũ(τ′)= Ũ(λσ). (3.31)

Since Ũ ′(0) = a1 �= 0, using the theorem on implicit function for (3.31), we have Ũ−1

such that λσ = Ũ−1(χ(t′ + n)). Put t = t′ + n, then λσ = Ũ−1(χ(t)), and we write σ =
logλ Ũ

−1(χ(t))= l̃(t).
When there is a solution χ(t) of (3.14), we have

χ(t+ 1)= X(χ(t),Ψ
(
χ(t)

))= X(Ũ(λσ),Ψ(Ũ(λσ)))
= X(U(σ),Ψ

(
U(σ)

))=U(σ + 1)= Ũ(λσ+1). (3.32)

Therefore, we have σ + 1 = l(t + 1), l(t) + 1 = l(t + 1). If we put π1(t) = �(t)− t, then we
obtain π1(t + 1)= �(t + 1)− (t + 1)= �(t)− t = π1(t), and we can write π1(t) defined for
a compact set K with 	[t] sufficiently large, which we can continue analytically as a
periodic function with period 1, as

l(t)= t+π1(t), (3.33)

then σ = t+π1(t).
From (3.30) and (3.31), χ(t) can be written as χ(t) = Ũ(λt+π1(t)) = U(t + π1(t)) =

(1/(λ2− λ1))(λ2u(t+π1(t))−u(t+ 1 +π1(t))). Using (3.31), we have

Υ(t)= χ(t) + ν(t)

= χ(t) +Ψ
(
χ(t)

)
=U(t+π1(t)

)
+Ψ

(
U
(
t+π1(t)

))
= 1
λ2− λ1

 ∞∑
n=1

anλ
n(t+π1(t))−

∞∑
n=1

anλ
n(t+π1(t)+1)


+Ψ

 1
λ2− λ1

 ∞∑
n=1

anλ
n(t+π1(t))−

∞∑
n=1

anλ
n(t+π1(t)+1)

 ,

(3.34)

where Ψ is a solution of (3.18) as shown in (3.21) and π1 is defined for t ∈∪n∈Z(K + n)
with a compact set K . Since K is arbitrary, we can continue π(t) analytically as periodic
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entire function with period 1. From Lemma 3.6, we have Υ(t+ 1 +n)/Υ(t+n)→ λ1, n→
+∞.

Conversely, if we put Υ(t) such that (3.29), where π is an arbitrary periodic entire
function, and Ψ is a solution of (3.18), then we can have Υ(t) as a solution of DS3 such
that Υ(t+n)→ 0 as n→ +∞. Furthermore, we have a solution χ of (3.14) such that

Υ(t)= χ(t) +Ψ
(
χ(t)

)
, (3.35)

where χ(t+n)→ 0 as n→ +∞. Hence we have Υ(t+ 1 +n)/Υ(t+n)→ λ1 as n→ +∞.
For case (II), when i= 2, the proof is similar to the above proof with (3.15) and (3.25).

�

From Theorem 3.7, general analytic solutions of DS3 which converge to 0 are given.
Thus we can obtain analytic general solutions (x(t), y(t)) of DS1 which converge to

(xc, yc) as follow:

x(t)= Υ(t) + xc, y(t)=Φ
(
Υ(t)

)
+ yc. (3.36)

Appendices

A.

In this appendix, we outline the procedure to determine values of coefficients an.
DS3 is spelled out as

u(t+ 2)= αβ(1− 2xc
)(

1− 2yc
)
u(t)−αβ

{(
1− 2yc

)
+β

(
1− 2xc

)2
}
u(t)2

+ 2αβ2(1− 2xc
)
u(t)3−αβ2u(t)4.

(A.1)

By the definition of the formal solution, u(t)=∑∞
n=1 anλ

nt and u(t + 2)=∑∞
n=1 anλ

n(t+2),
which are substituted into the above equation,

a1λ
2λt + a2λ

4λ2t + a3λ
6λ3t + · · ·

= αβ2(1− 2xc
)(

1− 2yc
){
a1λ

t + a2λ
2t + a3λ

3t + · · ·}
−αβ

{(
1− 2yc

)
+β

(
1− 2xc

)2
}{
a1λ

t + a2λ
2t + a3λ

3t + · · ·}2

+ 2αβ2(1− 2xc
){
a1λ

t + a2λ
2t + a3λ

3t + · · ·}3

−αβ2{a1λ
t + a2λ

2t + a3λ
3t + · · ·}4

.

(A.2)

We compare the coefficients of λnt in the left hand side of the above equation with the
ones in the right hand side. For the coefficients of λt, we have

a1
{
λ2−αβ(1− 2xc

)(
1− 2yc

)}= a1D(λ), (A.3)

where D(λ) = λ2 − αβ(1− 2xc)(1− 2yc) is the characteristics polynomial of DS3. Since
D(λ)= 0 identically, a1 can be arbitrary. For the coefficients of λ2t, we have

a2D
(
λ2)=−α{β(1− 2yc

)
+α2(1− 2xc

)2
}
a2

1. (A.4)
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Since λ2 �= λ1, λ2, we have D(λk) �= 0 (k ≥ 2). So we can determine a2 by dividing both
sides by D(λ2),

a2 = C2
(
α1
)

D
(
λ2
) , (A.5)

where C2(α1)=−α{β(1− 2yc) +α2(1− 2xc)2}a2
1. By the same token, for the coefficients

of λ3t, we have

a3D
(
λ3)=−2α

{(
β
(
1− 2yc

)
+α2(1− 2xc

)2
)
a1a2−αβ

(
1− 2xc

)
a3

1

}
(A.6)

and then

a3 = C3
(
a1,a2

)
D
(
λ3
) , (A.7)

where C3(a1,a2) = −2α{(β(1− 2yc) + α2(1− 2xc)2)a1a2 − αβ(1− 2xc)a3
1}. Similarly, for

the coefficients of λnt (n≥ 4), αn is sequentially determined by a1,a2, . . . ,an−1 by

an = Cn
(
a1,a2, . . .an−1

)
D
(
λn
) , (A.8)

where Cn(a1,a2, . . . ,an−1) is defined accordingly.

B. Proof of Lemma 3.2

In this appendix, we prove Lemma 3.2. Since φ is holomorphic on |z| ≤ ρ, we have

d

dz
φ(z)= 1

2πi

∫
|ξ|=ρ

φ(ξ)
(ξ − z)2

dξ. (B.1)

When |z| ≤ ρ/2, we have |ξ − z| ≥ |ξ|− |z| ≥ ρ− ρ/2= ρ/2, and hence∣∣∣∣ ddzφ(z)
∣∣∣∣≤ 1

π

∫
|ξ|=ρ

∣∣φ(ξ)
∣∣

(ρ/2)2
dξ ≤ 1

π

∫
|ξ|=ρ

K

(ρ/2)2
dξ = 8K

ρ
. (B.2)

Next we choose A and η such that AηN+1 < ρ/4. Then for sufficiently large t, we have
|p(t)| ≤ A|λt|N+1 ≤AηN+1 < ρ/4. The inequality still holds even for t+ 2,

∣∣p(t+ 2)
∣∣≤ A∣∣λt+2

∣∣N+1 =A|λ|2(N+1)
∣∣λt∣∣N+1

<
ρ

4
. (B.3)

Consequently, for t large enough, |PN (t+ 2)| < ρ/4, and then

|z| = ∣∣p(t+ 2) +PN (t+ 2)
∣∣≤ ρ

4
+
ρ

4
= ρ

2
. (B.4)

Since

g1
(
t, p(t+ 2)

)= ∫ 1

0
p(t+ 2)

d

dr
φ
(
r p(t+ 2) +PN (t+ 2)

)
dr, (B.5)
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(B.2), (B.3), and (B.4) imply

∣∣g1
(
t, p(t+ 2)

)∣∣≤ 8K
ρ
A|λ|N+1

∣∣λt∣∣N+1
. (B.6)

From the definition of g2, we have∣∣g2(t)
∣∣≤ K2

∣∣λt∣∣N+1
, (B.7)

where K2 is a constant but its magnitude depends on N . Hence, using (B.6) and (B.7), we
have

∣∣T[p](t)
∣∣≤ ∣∣g1

(
t, p(t+ 1), p(t+ 2)

)∣∣+
∣∣g2(t)

∣∣≤ (
8K
ρ
A|λ|N+1 +K2

)∣∣λt∣∣N+1
. (B.8)

If we suppose N is so large that (8K/ρ)|λ|N+1 < 1/2, moreover we take A to be so large
that A > 2K2, then we obtain ∣∣T[p](t)

∣∣≤A∣∣λt∣∣N+1
. (B.9)

Hence, we find that T maps J(A,η) into itself. The map T is obviously continuous if
J(A,η) is endowed with topology of uniform convergence on a compact set in S(η).
J(A,η) is clearly convex and is relatively compact due to the theorem of Montel [1]. Since
requirements of Schauder’s fixed point theorem [3] are all satisfied, we can show the ex-
istence of a fixed point p(t)∈ J(A,η) of T which depends on N . This proves Lemma 3.2.

C. Proof of Lemma 3.3

In this appendix, we prove Lemma 3.3. Suppose that there exists another fixed point,
p∗(t) ∈ J(A∗,η∗). Put A0 =max(A,A∗), η0 ≤min(η,η∗), u(t) = p(t) + PN (t), u∗(t) =
p∗(t) +PN (t), and q(t)= p∗(t)− p(t), then we have |q(t)| ≤ 2A0 and

q(t)=
{
φ
(
p∗(t+ 2) +PN (t+ 2)

)−φ(PN (t+ 2)
)−PN (t)

}
−
{
φ
(
p(t+ 2) +PN (t+ 2)

)−φ(PN (t+ 2)
)−PN (t)

}
= φ(q(t+ 2) +u(t+ 2)

)−φ(u(t+ 2)
)

=
∫ 1

0
q(t+ 2)

d

dz
φ
(
rq(t+ 2) +u(t+ 2)

)
dr.

(C.1)

If η0 is sufficiently small, then∣∣∣∣ ddzφ(rq(t+ 2) +u(t+ 2)
)∣∣∣∣ < 8K

η
, |λ|N+1 <

η

32K
. (C.2)

Consequently, we have

∣∣q(t)
∣∣≤ ∫ 1

0

8K
ρ

∣∣q(t+ 2)
∣∣dr ≤ ∫ 1

0

8K
ρ
|λ|N+1

(
2A0

∣∣λt∣∣N+1
)
dr <

1
2
A0
∣∣λt∣∣N+1

. (C.3)
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Hence,

∣∣q(t)
∣∣= ∣∣p∗(t)− p(t)

∣∣≤ 1
2
A0
∣∣λt∣∣N+1 =

(
1
4

)
2A0

∣∣λt∣∣N+1
. (C.4)

Next we consider q(t) in which |q(t)| � (1/4) · 2A0|λt|N+1 and repeat this procedure,
then we have |q(t)|� (1/4)2 · 2A0|λt|N+1. Repeating this procedure k times, we obtain

∣∣p∗(t)− p(t)
∣∣ < (1

4

)k(
2A0

)∣∣λt∣∣N+1
, k = 1,2, . . . , (C.5)

where the inequality holds for any k. Letting k→∞, we have

p∗(t)= p(t) for t ∈ S(η0
)
. (C.6)

Since this implies that p∗(t)= p(t) and p(t)= p(t) are holomorphic in |λt| ≤min(η,η∗),
we conclude, p∗(t)≡ p(t). This completes the proof of Lemma 3.3.

D. Proof of Lemma 3.4

In this appendix, we prove Lemma 3.4. Let pN (t) ∈ J(AN ,ηN ) and pN+1(t) ∈
J(AN+1,ηN+1) be fixed points of T , and

uN+1(t)= pN+1(t) +PN+1(t)= pN+1(t) + aN+1λ
(N+1)t +PN (t)= p̃N (t) +PN (t). (D.1)

Then we have

∣∣ p̃N (t)
∣∣= ∣∣pN+1(t) + aN+1λ

(N+1)t
∣∣

≤ AN+1λ
N+2

∣∣λt∣∣N+2
+
∣∣aN+1

∣∣∣∣λt∣∣N+1

= (
AN+1|λ|+

∣∣aN+1
∣∣)∣∣λt∣∣N+1

= A∗N
∣∣λt∣∣N+1

.

(D.2)

By the uniqueness of the fixed point, p̃N (t)= pN (t) for t ∈ S(ηN )∩ S(ηN+1). Thus

uN+1(t)= uN (t) for t ∈ S(ηN)∩ S(ηN+1
)
. (D.3)

By analytic prolongation [1], both uN (t) and uN+1(t) are holomorphic in S(ηN )∪ S(ηN+1)
and coincide. This completes the proof of Lemma 3.4.
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