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A sufficient condition to preserve the property of asymptotic stability for a difference
analogue of the linear mathematical inverted pendulum is obtained.

1. Statement of the problem

To use numerical investigation of functional differential equations it is very important to
know if difference analogues of the considered differential equations have the reliability
to preserve some general properties of these equations, in particular, property of stability.
This problem is considered here by investigation of a difference analogue of the linear
mathematical inverted pendulum.

The problem of stabilization of the mathematical inverted pendulum is very popular
among the researches (see, for instance [1, 2, 3, 5, 13, 14]). The linearized mathemati-
cal model of the controlled inverted pendulum can be described by the following linear
differential equation of second order

x(t) —ax(t) =u(t), a>0,t=0. (1.1)

The classical way of stabilization of system (1.1) uses the control u(t) = —b;x(t) — b,x(t),
where b; > a, b, > 0. But this type of control which represents an instantaneous feedback
is quite difficult to realize because usually we need some finite time to make measure-
ments of the coordinates and velocities, to treat the results of the measurements and to
implement them in the control action.

Unlike of the classical way of stabilization in which the stabilized control is a linear
combination of the state and velocity of the pendulum another way of stabilization was
proposed in [4]. There it was supposed that only the trajectory of the pendulum can be
observed and stabilized control depends on the whole trajectory of the pendulum, that is

u(t) = J: AK(D)x(t 1), (1.2)
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where the kernel K(7) is a function of bounded variation on [0,c0] and the integral is
understood in the Stiltjes sense. It means, in particular, that both distributed and dis-
crete delays can be used depending on the concrete choice of the kernel K(7). The initial
condition for the system (1.1), (1.2) has the form

x(s) = ¢(s), x(s) = ¢(s), s=<0, (1.3)

where ¢(s) is a given continuously differentiable function.

Definition 1.1. The trivial solution of system (1.1)—(1.3) is called stable if for any € > 0
there exists § > 0 such that max{|x(t)|,|x(t)|} < € for all t = 0 if [|@ll = sup,_,(Ip(s)| +
[¢(s)]) < 8. If, besides, lim;_ x(t) = 0 and lim;_ %(¢) = 0 for every initial function ¢,
then the trivial solution of system (1.1)—(1.3) is called asymptotically stable.

Put
a; = —a—ky, ki:J T'dK(1), i=0,1, l?zzj 2 |dK(7)]. (1.4)
0 0

THEOREM 1.2 (see [4]). Let

ap >0, kl >0, (1-5)

ky <k = 4 : (1.6)

14+4/1+ ((1+a1)/k1)2

Then the trivial solution of system (1.1)—(1.3) is asymptotically stable.

It is shown also [4] that inequalities (1.5) are necessary conditions for asymptotic sta-
bility of the trivial solution of system (1.1)—(1.3) but inequality (1.6) is only sufficient
one.

Below the mathematical model of the controlled inverted pendulum (1.1)-(1.3) is
considered in the following simple form

() —ax(t) = bix(t—hy) + byx(t —hy), t=0. (1.7)

Here a >0, by, by, hy >0, hy >0 are given arbitrary numbers. From (1.4) it follows that
for equation (1.7)

k0=b1+b2, kl =b1h1+b2h2, I/€\2= |b1|h%+ |b2|h% (18)

The main conclusion of our investigation here can be formulated in the following way:
if conditions (1.5), (1.6) hold then the trivial solution of equation (1.7) is asymptotically
stable and there exists enough small step of discretization of this equation that the trivial
solution of the corresponding difference equation is asymptotically stable too.

Note, that the conditions for asymptotic stability are obtained here by virtue of Kol-
manovskii and Shaikhet’s general method of Lyapunov functionals construction [6, 7, 8,
9, 10, 11, 12, 15] which is applicable for both differential and difference equations, both
for deterministic and stochastic systems with delay.
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2. Construction of difference analogue

Transform equation (1.7) to a system of the equations

2
x(t) = y(1), y(t) = ax(t) +Zb1x(t— hy). (2.1)

I=1

To construct a difference analogue of system (2.1) put
xi=x(t), t=ir, h=m7t, hy=mrt, 7>0. (2.2)

A difference analogue of system (2.1) can be considered in the form

2

Xipt =X+ Ty, Yin = yit T(axi +2 blxi—mf)- (2.3)
=1

From the first equation of system (2.3) we have
i-1
Xi=Xiem T Dy 1=12. (2.4)

j=i-my

From here and (1.8) it follows

2 2 i—1
Z le,;ml = kox,- — Tz b[ z Vi. (2.5)
I=1 I=1  j=i-m
Substituting (2.5) into the second equation of system (2.3) and using (1.4) we obtain
2 i-1
Vil =yi—taxi— 1> b Y yj. (2.6)
=1 j=i-m

Put

2 i1
Fizrzzbl z (j—i+1+m)yj, q1 = bimy +bymy = 77k, (2.7)

=1 j=i-m
Calculating AF; = Fiiy — F;, we have
2 i i-1
AF,-:TZZbl[ > (-itm)yi— D> (j—i+1+mz)y]}

I=1 j=itl-m j=i—-m

(2.8)

2 i1 2 i—1
:TZZln(mzyi— > ,'Vi):T(kl)’i_TZbl > yj)'

I=1 Jj=i—-m I=1 j=i-m
From here and (2.6) it follows

Yir1 = —tarx;+ (1 — tky) yi + AF,. (2.9)
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So, system (2.3) can be written in the matrix form

z(i+1) = Az(i) + AF (i), (2.10)

. Xi . 0 1 T
z(i) = (}’i) , F(i) = <F,> , A= (—Tm 1— Tk1>' (2.11)

3. Stability conditions of the auxiliary equation

where

Following the general method of Lyapunov functionals construction [7] at first consider
the auxiliary equation

z(i+1) = Az(i) (3.1)
which can be written in a scalar form
Xiva = AoXip1 +A1X; (3.2)
with
Ay =2 -1k, Ay =1(ky—1ay) — 1. (3.3)

It is well known [15] that necessary and sufficient conditions for asymptotic stability
of the trivial solution of equation (3.2) have the form

|A1‘ <1, |AQ| <1 —Al. (34)

For A; from (3.3), (3.4) it follows 0 < 7(k; — Ta;) < 2. It means that

T€E (0,h>, if k?<8ay,

ay
3.5)
ki —+/k? —8a ki ++/k? —8a (
re(o,l 2; 1>u<1 zal 1,?), if k? > 8a,.
1 1 1

For A from (3.3), (3.4) it follows a; 7% — 2k; T +4 > 0. It means that

7€ (0,00), ifk}<4ay,

ki —+Jk}-4 ki ++ki—4 (3.6)
TE(O, ! ! al)u( ! ! al,m), if k7 > 4a,.

ap ai

As a result we obtain necessary and sufficient conditions for asymptotic stability of the
trivial solution of auxiliary equation (3.2) in the form

-1 2
a; k], kl <4a,

afl(kl—\/k%—4a1), k%24a1.

0<t< (3.7)
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Note that if for arbitrary positive definite matrix C the matrix equation
A'DA-D=—-C. (3.8)

has a positive definite solution D then the function v(i) = z’(i)Dz(i) is a Lyapunov func-
tion for equation (3.1), that is Av(i) = —z' (i) Cz(i).

Let matrix C be a diagonal matrix with positive elements ¢; and ¢,. Then the elements
d;j of the matrix D satisfy the system of the equation

Tza%dzz - 2Ta1d12 = —C1,
di — (ray+ki)dia — a1 (1 =1k )dap = 0, (3.9)
Tzdu +2T(1 — Tkl)dlz —1k; (2 — Tkl)dzz = —0,
with the solution

calmt+k) 2-1(ki —a17)

dy = + dr,
11 2ait B ayaz
(3.10)
g G Tan D = al2=1(ky —ai1)] +2a10
27 0ma 0 27 P (b —an)[4- 12k —ar7)]

Remark 3.1. Note that without loss of generality in (3.10) we can put ¢, = 1, ¢; = ¢. Really,
if it is not so we can divide matrix equation (3.8) on c;. As a result we obtain a new
diagonal matrix C with the elements 1 and ¢ = ¢,/c; and a new matrix D with the elements

_ ait+k n 2—T(k1 —lZ]T)

di = d»,
11 2art 2 apan
(3.11)
1 LTay D — 2—1(ki —ai7) +2aic
2= 2T611 2 2 2 T, (k1 - al‘r) [4 — T(2k1 — (ZIT)] '

Remark 3.2. Tt is easy to check that by condition (3.7) the matrix D with elements (3.11)
is a positive definite one.

4. Stability conditions of the difference analogue

Let us obtain now a sufficient condition for asymptotic stability of the trivial solution of
(2.10). Transform this equation to the form

z(i+1)—F(i+1) = Az(i) — F(i). (4.1)

Following the general method of Lyapunov functionals construction [7] we will construct
Lyapunov functional V; for equation (2.10) in the form V; = Vy; + V;, where

Vii = (2(i) - F(i)) ' D(z(i) ~ F(i)) (42)

and the matrix D is a positive definite solution of matrix equation (3.8).
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Calculating AVy; via (4.2), (4.1), (3.8) we have
AVyi= (z(i+1)=F(i+1)) D(z(i+1) — F(i+1))
= (2(i) = F(D))'D(2(i) - F()

= (Az(i) - F(i)) ' D(Az(i) - F(i)) - (2(i) - F(i)) ' D(2(i) - F(i))
= —7Z'(i)Cz(i) — 2F'(i)D(A —I) ().

Note that
2F'(i)D(A — I)z(i)
B N (du dn 0 T Xi
- 2 <0 Fl) <d12 d22> (_Tal _Tkl) (yz)
_9F 24
72F1 (d12 d22) <_T(a1xl+k1yl))
= ZF,'( —Taidynx;+ T(d12 - k1d22)yi)
= —2Ta1d22x,'Fi + 2T(d12 - kldzz))/iFi-
Put

2 —1(ki —ai1) +2a;c
(k1 —(ZIT) [4—T(2k1 —al‘r)]’

X =

Then from (3.11), (4.5) it follows

Using (3.11), (4.5), (4.6) we obtain

T(dlz - kldzz) = i(l - (X(Zkl - alr))
1 (1 B (ki —a17)[2 = 7(ky — a17) +2a1c]> _ g

2a; (k1 —a17)[4—7(2k) —a17)]

where

~ T+c(2k) —a7)
P e —amla -k -am)]’

So, via Remark 3.1, (4.3), (4.4), (4.6), (4.7)
AVyi = —x7 — ¢y} — 2ax;F; — 2ByiF..

Put now

2 i—1

q2=%z|bl|m1(m1+1), Z|bl| S (it 1m)yt

I=1 I=1 j=i—-m

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)
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Using (2.7) and A; > 0 we have

i-1

2
26F; =273 b > (j—i+1+m)xiy;

I=1 j=i-m
o i (4.11)
< TZZ il > (j—i+t1+m) (Alx,~2+%y]2~> =/1112q2xi2+;—8i
j=i—my 1 1
and analogously
2
2y,Fi < L2 qayi + S Ay >0. (4.12)
2
As a result we obtain
AVyi < —(1—ar’liq2)x7 — (¢ = B°haq) i +pSis (4.13)
where
_o(*, B
p=T (/\1 +/\z>' (4.14)

To neutralize the positive component in the estimate for AV;; choose V5; in the form

i—1 2 2
.. 3
2. (J—l+§+mz) i, Zlbz ( +mz). (4.15)

I=1 j=i—my

Calculating AV5;, we obtain

| 2 .3 :
w53 nl| X (i dem) = 3 (-3 em) 5]

)
((j—i+%+mz)2—(j—i+%+mz)2)yjz-] (4.16)

2 2
1 .
=§Z|bz|[(5+mz) Vi 3 Vem =2 S —l+1+f?11)}’,2']

j=i-m

= pgsy;i — PZ|bl|[ Vi + Z joit1l+m)y 4]<pq3y, - pSi.

j=i-m

Thus, for the functional V; = Vy; + V,; we have

AV < —(1—ar’li1q2)x7 — (c — Br*haqa — pqs) yi. (4.17)
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Using (4.14) we obtain the stability conditions in the form

?aligp <1, TPhqr+1gs (/1_ + ?) <c. (4.18)
2

To minimize the left-hand part of the second condition (4.18) put A, = \/q3/q>. Then
(4.18) takes the form

?adiqa < 1, (2[3 9295 + ;B) 1. (4.19)

Choosing A; > 0 from the condition
aqs
adiqy = — (2[3 Qg3+ —~— e ) (4.20)

we obtain

V(B P oe)

A= wa . (4.21)

Substituting (4.21) into (4.19) we get stability condition in the form

)’(/3+ VB +0¢26) <¢,  y=10295. (4.22)

From here it follows

y(ye? +2p) <c. (4.23)
Put
ki=> |bi|hi, i=0,1,2. (4.24)
I=1
Then

g1’ = Z|b1|hlr+h1) (Tk1+k2)

l=1

(4.25)
zzlzz bl (Zm) = L (ko ok +5
qsT 2 |12+l 240"'1'1+2-
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Therefore,

- %J(ﬂa ) (Shos o+ (4.26)
Using dependence « and f3 on ¢ put
a =B (A+2ac), B=B"'(t+Gc), (4.27)
where
A=2—1(ki —a7), B = (ki —ai17)(4 - Gr1), G =2k —ar. (4.28)
Substituting (4.27) into (4.23) we obtain

A%y+2B
yB~2 (yf‘[ +4yaic+4Aya +ZBG) <1l (4.29)

After minimization of the left-hand part of (4.29) with respect to ¢ > 0 one can rewrite
(4.29) in the form

d(r) =2yB? (Zalq/y(AZy +2Bt) +2Aya; + BG) <1. (4.30)

One has remember that in condition (4.30) a; is defined by (1.2), A, B, G are defined by
(4.28) and y is defined by (4.26), (4.24). So, A, B, G and y depend on 7.
Thus, the following theorem is proven.

THEOREM 4.1. Let conditions (1.5) hold and the step of quantization T > 0 satisfies condition
(4.30). Then the trivial solution of system (2.3) is asymptotically stable.

LEMMA 4.2. If condition (1.6) holds then there exists enough small T >0 that condition
(4.30) holds too.

Proof. For 7 = 0 condition (4.30) takes the form

-1
k2<4<1+ 1+%) . (4.31)

1
It is easy to see that if condition (1.6) holds then condition (4.31) (or condition (4.30)
for 7 = 0) holds too. Since the function §(7) is continuous in the point 7 = 0 then if
condition (4.30) holds for 7 = 0 then it holds for enough small 7 > 0 also. The proof is
completed. O

CoROLLARY 4.3. Let conditions (1.5), (1.6) hold then there exists enough small T > 0 that
the trivial solution of system (2.3) is asymptotically stable.
5. Numerical analysis

Here we consider some numerical examples which illustrate the theoretical results ob-
tained above. For illustration of Corollary 4.3 consider the following example.
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Example 5.1. Put in equation (1.7) a = 9.5, b; = 10, b, = —20, h; = 0.4, h, = 0.02. Then
a; =05>0,k; =3.6>0, 122 = 1.608 < k,, = 1.92. Conditions (1.5), (1.6) hold, there-
fore (Theorem 1.2), the trivial solution of equation (1.7) is asymptotically stable. Besides
there exists enough small 7 > 0 that condition (4.30) holds. Using 7 = 0.01 we obtain
6(0.01) = 0.869 < 1, that is condition (4.30) holds. Therefore, the trivial solution of dif-
ference system (2.3) is asymptotically stable. On Figure 5.1 it is shown that the trajectory
of solution of system (2.3) with the initial condition x; = 33, j <0, yo = 0 goes to zero.

If conditions (1.5) hold but condition (1.6) does not hold then the trivial solution
of equation (1.7) can be asymptotically stable or unstable. If in this case for some 7 >0
condition (4.30) does not hold too then the trivial solution of difference system (2.3) can
be also asymptotically stable or unstable. In the following two examples one can see the
both situations.

Example 5.2. Put in equation (1.7) a =3, b, =1, b, = =5, h; = 0.55, h, = 0.1. Then a; =
1>0,k =0.05>0, 122 =0.3525 > k,,, = 0.0975, §(0.01) = 20.83 > 1. So, conditions (1.5)
hold but conditions (1.6) and (4.30) do not hold. On Figure 5.2 it is shown that the
trajectory of solution of system (2.3) with the initial condition x; = 12, j < 0, yo = 0 goes
to zero.
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Figure 5.3

Example 5.3. Putting in the previous example /; = 0.53 (without changing the values
of the other parameters) we obtain a; = 1> 0, k; = 0.03 >0, 122 =0.3309 > k,, = 0.0591,
6(0.01) = 73.06 > 1. As in the previous example conditions (1.5) hold, conditions (1.6)
and (4.30) do not hold but in this case the trajectory of solution of system (2.3) with the
initial condition x; = 12, j <0, y; = 0 goes to infinity (Figure 5.3).
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