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A sufficient condition to preserve the property of asymptotic stability for a difference
analogue of the linear mathematical inverted pendulum is obtained.

1. Statement of the problem

To use numerical investigation of functional differential equations it is very important to
know if difference analogues of the considered differential equations have the reliability
to preserve some general properties of these equations, in particular, property of stability.
This problem is considered here by investigation of a difference analogue of the linear
mathematical inverted pendulum.

The problem of stabilization of the mathematical inverted pendulum is very popular
among the researches (see, for instance [1, 2, 3, 5, 13, 14]). The linearized mathemati-
cal model of the controlled inverted pendulum can be described by the following linear
differential equation of second order

ẍ(t)− ax(t)= u(t), a > 0, t ≥ 0. (1.1)

The classical way of stabilization of system (1.1) uses the control u(t)=−b1x(t)− b2ẋ(t),
where b1 > a, b2 > 0. But this type of control which represents an instantaneous feedback
is quite difficult to realize because usually we need some finite time to make measure-
ments of the coordinates and velocities, to treat the results of the measurements and to
implement them in the control action.

Unlike of the classical way of stabilization in which the stabilized control is a linear
combination of the state and velocity of the pendulum another way of stabilization was
proposed in [4]. There it was supposed that only the trajectory of the pendulum can be
observed and stabilized control depends on the whole trajectory of the pendulum, that is

u(t)=
∫∞

0
dK(τ)x(t− τ), (1.2)
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where the kernel K(τ) is a function of bounded variation on [0,∞] and the integral is
understood in the Stiltjes sense. It means, in particular, that both distributed and dis-
crete delays can be used depending on the concrete choice of the kernel K(τ). The initial
condition for the system (1.1), (1.2) has the form

x(s)= ϕ(s), ẋ(s)= ϕ̇(s), s≤ 0, (1.3)

where ϕ(s) is a given continuously differentiable function.

Definition 1.1. The trivial solution of system (1.1)–(1.3) is called stable if for any ε > 0
there exists δ > 0 such that max{|x(t)|,|ẋ(t)|} < ε for all t ≥ 0 if ‖ϕ‖ = sups≤0(|ϕ(s)|+
|ϕ̇(s)|) < δ. If, besides, limt→∞ x(t) = 0 and limt→∞ ẋ(t) = 0 for every initial function ϕ,
then the trivial solution of system (1.1)–(1.3) is called asymptotically stable.

Put

a1 =−a− k0, ki =
∫∞

0
τidK(τ), i= 0,1, k̂2 =

∫∞
0
τ2
∣∣dK(τ)

∣∣. (1.4)

Theorem 1.2 (see [4]). Let

a1 > 0, k1 > 0, (1.5)

k̂2 < km = 4

1 +
√

1 +
((

1 + a1
)
/k1
)2
. (1.6)

Then the trivial solution of system (1.1)–(1.3) is asymptotically stable.

It is shown also [4] that inequalities (1.5) are necessary conditions for asymptotic sta-
bility of the trivial solution of system (1.1)–(1.3) but inequality (1.6) is only sufficient
one.

Below the mathematical model of the controlled inverted pendulum (1.1)–(1.3) is
considered in the following simple form

ẍ(t)− ax(t)= b1x
(
t−h1

)
+ b2x

(
t−h2

)
, t ≥ 0. (1.7)

Here a > 0, b1, b2, h1 > 0, h2 > 0 are given arbitrary numbers. From (1.4) it follows that
for equation (1.7)

k0 = b1 + b2, k1 = b1h1 + b2h2, k̂2 =
∣∣b1

∣∣h2
1 +
∣∣b2

∣∣h2
2. (1.8)

The main conclusion of our investigation here can be formulated in the following way:
if conditions (1.5), (1.6) hold then the trivial solution of equation (1.7) is asymptotically
stable and there exists enough small step of discretization of this equation that the trivial
solution of the corresponding difference equation is asymptotically stable too.

Note, that the conditions for asymptotic stability are obtained here by virtue of Kol-
manovskii and Shaikhet’s general method of Lyapunov functionals construction [6, 7, 8,
9, 10, 11, 12, 15] which is applicable for both differential and difference equations, both
for deterministic and stochastic systems with delay.
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2. Construction of difference analogue

Transform equation (1.7) to a system of the equations

ẋ(t)= y(t), ẏ(t)= ax(t) +
2∑
l=1

blx(t−hl). (2.1)

To construct a difference analogue of system (2.1) put

xi = x
(
ti
)
, ti = iτ, h1 =m1τ, h2 =m2τ, τ > 0. (2.2)

A difference analogue of system (2.1) can be considered in the form

xi+1 = xi + τ yi, yi+1 = yi + τ
(
axi +

2∑
l=1

blxi−ml

)
. (2.3)

From the first equation of system (2.3) we have

xi = xi−ml + τ
i−1∑

j=i−ml

yi, l = 1,2. (2.4)

From here and (1.8) it follows

2∑
l=1

blxi−ml = k0xi− τ
2∑
l=1

bl

i−1∑
j=i−ml

yi. (2.5)

Substituting (2.5) into the second equation of system (2.3) and using (1.4) we obtain

yi+1 = yi− τa1xi− τ2
2∑
l=1

bl

i−1∑
j=i−ml

y j . (2.6)

Put

Fi = τ2
2∑
l=1

bl

i−1∑
j=i−ml

(
j− i+ 1 +ml

)
yj , q1 = b1m1 + b2m2 = τ−1k1. (2.7)

Calculating ∆Fi = Fi+1−Fi, we have

∆Fi = τ2
2∑
l=1

bl

[ i∑
j=i+1−ml

(
j− i+ml

)
yj −

i−1∑
j=i−ml

(
j− i+ 1 +ml

)
yj

]

= τ2
2∑
l=1

bl

(
mlyi−

i−1∑
j=i−ml

yi

)
= τ

(
k1yi− τ

2∑
l=1

bl

i−1∑
j=i−ml

y j

)
.

(2.8)

From here and (2.6) it follows

yi+1 =−τa1xi +
(
1− τk1

)
yi +∆Fi. (2.9)
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So, system (2.3) can be written in the matrix form

z(i+ 1)=Az(i) +∆F(i), (2.10)

where

z(i)=
(
xi
yi

)
, F(i)=

(
0
Fi

)
, A=

(
1 τ

−τa1 1− τk1

)
. (2.11)

3. Stability conditions of the auxiliary equation

Following the general method of Lyapunov functionals construction [7] at first consider
the auxiliary equation

z(i+ 1)= Az(i) (3.1)

which can be written in a scalar form

xi+2 =A0xi+1 +A1xi (3.2)

with

A0 = 2− τk1, A1 = τ(k1− τa1)− 1. (3.3)

It is well known [15] that necessary and sufficient conditions for asymptotic stability
of the trivial solution of equation (3.2) have the form

|A1| < 1, |A0| < 1−A1. (3.4)

For A1 from (3.3), (3.4) it follows 0 < τ(k1− τa1) < 2. It means that

τ ∈
(

0,
k1

a1

)
, if k2

1 < 8a1,

τ ∈
(

0,
k1−

√
k2

1 − 8a1

2a1

)
∪
(
k1 +

√
k2

1 − 8a1

2a1
,
k1

a1

)
, if k2

1 ≥ 8a1.

(3.5)

For A0 from (3.3), (3.4) it follows a1τ2− 2k1τ + 4 > 0. It means that

τ ∈ (0,∞) , if k2
1 < 4a1,

τ ∈
(

0,
k1−

√
k2

1 − 4a1

a1

)
∪
(
k1 +

√
k2

1 − 4a1

a1
,∞
)

, if k2
1 ≥ 4a1.

(3.6)

As a result we obtain necessary and sufficient conditions for asymptotic stability of the
trivial solution of auxiliary equation (3.2) in the form

0 < τ <


a−1

1 k1, k2
1 < 4a1,

a−1
1

(
k1−

√
k2

1 − 4a1

)
, k2

1 ≥ 4a1.
(3.7)
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Note that if for arbitrary positive definite matrix C the matrix equation

A′DA−D =−C. (3.8)

has a positive definite solution D then the function v(i)= z′(i)Dz(i) is a Lyapunov func-
tion for equation (3.1), that is ∆v(i)=−z′(i)Cz(i).

Let matrix C be a diagonal matrix with positive elements c1 and c2. Then the elements
di j of the matrix D satisfy the system of the equation

τ2a2
1d22− 2τa1d12 =−c1,

d11−
(
τa1 + k1

)
d12− a1

(
1− τk1

)
d22 = 0,

τ2d11 + 2τ
(
1− τk1

)
d12− τk1

(
2− τk1

)
d22 =−c2,

(3.9)

with the solution

d11 = c1
(
a1τ + k1

)
2a1τ

+
2− τ

(
k1− a1τ

)
2

a1d22,

d12 = c1

2τa1
+
τa1

2
d22, d22 = c1

[
2− τ

(
k1− a1τ

)]
+ 2a1c2

τa1
(
k1− a1τ

)[
4− τ

(
2k1− a1τ

)] . (3.10)

Remark 3.1. Note that without loss of generality in (3.10) we can put c1 = 1, c2 = c. Really,
if it is not so we can divide matrix equation (3.8) on c1. As a result we obtain a new
diagonal matrixC with the elements 1 and c = c2/c1 and a new matrixD with the elements

d11 = a1τ + k1

2a1τ
+

2− τ
(
k1− a1τ

)
2

a1d22,

d12 = 1
2τa1

+
τa1

2
d22, d22 = 2− τ

(
k1− a1τ

)
+ 2a1c

τa1
(
k1− a1τ

)[
4− τ

(
2k1− a1τ

)] . (3.11)

Remark 3.2. It is easy to check that by condition (3.7) the matrix D with elements (3.11)
is a positive definite one.

4. Stability conditions of the difference analogue

Let us obtain now a sufficient condition for asymptotic stability of the trivial solution of
(2.10). Transform this equation to the form

z(i+ 1)−F(i+ 1)= Az(i)−F(i). (4.1)

Following the general method of Lyapunov functionals construction [7] we will construct
Lyapunov functional Vi for equation (2.10) in the form Vi =V1i +V2i, where

V1i =
(
z(i)−F(i)

)′
D
(
z(i)−F(i)

)
(4.2)

and the matrix D is a positive definite solution of matrix equation (3.8).
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Calculating ∆V1i via (4.2), (4.1), (3.8) we have

∆V1i =
(
z(i+ 1)−F(i+ 1)

)′
D
(
z(i+ 1)−F(i+ 1)

)
− (z(i)−F(i)

)′
D
(
z(i)−F(i)

)
= (Az(i)−F(i)

)′
D
(
Az(i)−F(i)

)− (z(i)−F(i)
)′
D
(
z(i)−F(i)

)
=−z′(i)Cz(i)− 2F′(i)D(A− I)z(i).

(4.3)

Note that

2F′(i)D(A− I)z(i)

= 2
(

0 Fi
)(d11 d12

d12 d22

)(
0 τ

−τa1 −τk1

)(
xi
yi

)

= 2Fi
(
d12 d22

)( τ yi
−τ(a1xi + k1yi

))
= 2Fi

(− τa1d22xi + τ
(
d12− k1d22

)
yi
)

=−2τa1d22xiFi + 2τ
(
d12− k1d22

)
yiFi.

(4.4)

Put

α= 2− τ
(
k1− a1τ

)
+ 2a1c(

k1− a1τ
)[

4− τ
(
2k1− a1τ

)] . (4.5)

Then from (3.11), (4.5) it follows

d22 = α

τa1
. (4.6)

Using (3.11), (4.5), (4.6) we obtain

τ
(
d12− k1d22

)= 1
2a1

(
1−α

(
2k1− a1τ

))
= 1

2a1

(
1−

(
2k1− a1τ

)[
2− τ

(
k1− a1τ

)
+ 2a1c

](
k1− a1τ

)[
4− τ

(
2k1− a1τ

)] )
=−β,

(4.7)

where

β = τ + c
(
2k1− a1τ

)(
k1− a1τ

)[
4− τ

(
2k1− a1τ

)] . (4.8)

So, via Remark 3.1, (4.3), (4.4), (4.6), (4.7)

∆V1i =−x2
i − cy2

i − 2αxiFi− 2βyiFi. (4.9)

Put now

q2 = 1
2

2∑
l=1

∣∣bl∣∣ml
(
ml + 1

)
, Si =

2∑
l=1

∣∣bl∣∣ i−1∑
j=i−ml

(
j− i+ 1 +ml

)
y2
j . (4.10)
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Using (2.7) and λ1 > 0 we have

2xiFi = 2τ2
2∑
l=1

bl

i−1∑
j=i−ml

(
j− i+ 1 +ml

)
xi y j

≤ τ2
2∑
l=1

∣∣bl∣∣ i−1∑
j=i−ml

(
j− i+ 1 +ml

)(
λ1x

2
i +

1
λ1

y2
j

)
= λ1τ

2q2x
2
i +

τ2

λ1
Si

(4.11)

and analogously

2yiFi ≤ λ2τ
2q2y

2
i +

τ2

λ2
Si, λ2 > 0. (4.12)

As a result we obtain

∆V1i ≤−
(
1−ατ2λ1q2

)
x2
i −

(
c−βτ2λ2q2

)
y2
i + ρSi, (4.13)

where

ρ= τ2
(
α

λ1
+

β

λ2

)
. (4.14)

To neutralize the positive component in the estimate for ∆V1i choose V2i in the form

V2i = ρ

2

2∑
l=1

∣∣bl∣∣ i−1∑
j=i−ml

(
j− i+

3
2

+ml

)2

y2
j , q3 = 1

2

2∑
l=1

∣∣bl∣∣(1
2

+ml

)2

. (4.15)

Calculating ∆V2i, we obtain

∆V2i = ρ

2

2∑
l=1

∣∣bl∣∣
[ i∑

j=i+1−ml

(
j− i+

1
2

+ml

)2

y2
j −

i−1∑
j=i−ml

(
j− i+

3
2

+ml

)2

y2
j

]

= ρ

2

2∑
l=1

∣∣bl∣∣[(1
2

+ml

)2

y2
i −

1
4
y2
i−ml

+
i−1∑

j=i−ml

((
j− i+

1
2

+ml

)2

−
(
j− i+

3
2

+ml

)2)
y2
j

]

= ρ

2

2∑
l=1

∣∣bl∣∣
[(

1
2

+ml

)2

y2
i −

1
4
y2
i−ml

− 2
i−1∑

j=i−ml

(
j− i+ 1 +ml

)
y2
j

]

= ρq3y
2
i − ρ

2∑
l=1

∣∣bl∣∣[1
8
y2
i−ml

+
i−1∑

j=i−ml

(
j− i+ 1 +ml

)
y2
j

]
≤ ρq3y

2
i − ρSi.

(4.16)

Thus, for the functional Vi =V1i +V2i we have

∆Vi ≤−
(
1−ατ2λ1q2

)
x2
i −

(
c−βτ2λ2q2− ρq3

)
y2
i . (4.17)
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Using (4.14) we obtain the stability conditions in the form

τ2αλ1q2 < 1, τ2βλ2q2 + τ2q3

(
α

λ1
+

β

λ2

)
< c. (4.18)

To minimize the left-hand part of the second condition (4.18) put λ2 =
√
q3/q2. Then

(4.18) takes the form

τ2αλ1q2 < 1,
τ2

c

(
2β
√
q2q3 +

αq3

λ1

)
< 1. (4.19)

Choosing λ1 > 0 from the condition

αλ1q2 = 1
c

(
2β
√
q2q3 +

αq3

λ1

)
, (4.20)

we obtain

λ1 =
√
q3

(
β+

√
β2 +α2c

)
αc
√
q2

. (4.21)

Substituting (4.21) into (4.19) we get stability condition in the form

γ
(
β+

√
β2 +α2c

)
< c, γ = τ2√q2q3. (4.22)

From here it follows

γ
(
γα2 + 2β

)
< c. (4.23)

Put

k̂i =
2∑
l=1

∣∣bl∣∣hil, i= 0,1,2. (4.24)

Then

q2τ
2 = 1

2

2∑
l=1

∣∣bl∣∣hl(τ +hl
)= 1

2

(
τk̂1 + k̂2

)
,

q3τ
2 = 1

2

2∑
l=1

∣∣bl∣∣(τ2 +hl

)2

= 1
2

(
τ2

4
k̂0 + τk̂1 + k̂2

)
.

(4.25)
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Therefore,

γ = 1
2

√(
τk̂1 + k̂2

)(τ2

4
k̂0 + τk̂1 + k̂2

)
. (4.26)

Using dependence α and β on c put

α= B−1(A+ 2a1c
)
, β = B−1(τ +Gc), (4.27)

where

A= 2− τ
(
k1− a1τ

)
, B = (k1− a1τ

)
(4−Gτ), G= 2k1− a1τ. (4.28)

Substituting (4.27) into (4.23) we obtain

γB−2
(
A2γ+ 2Bτ

c
+ 4γa2

1c+ 4Aγa1 + 2BG
)
< 1. (4.29)

After minimization of the left-hand part of (4.29) with respect to c > 0 one can rewrite
(4.29) in the form

δ(τ)= 2γB−2
(

2a1

√
γ(A2γ+ 2Bτ) + 2Aγa1 +BG

)
< 1. (4.30)

One has remember that in condition (4.30) a1 is defined by (1.2), A, B, G are defined by
(4.28) and γ is defined by (4.26), (4.24). So, A, B, G and γ depend on τ.

Thus, the following theorem is proven.

Theorem 4.1. Let conditions (1.5) hold and the step of quantization τ > 0 satisfies condition
(4.30). Then the trivial solution of system (2.3) is asymptotically stable.

Lemma 4.2. If condition (1.6) holds then there exists enough small τ > 0 that condition
(4.30) holds too.

Proof. For τ = 0 condition (4.30) takes the form

k̂2 < 4
(

1 +

√
1 +

4a1

k2
1

)−1

. (4.31)

It is easy to see that if condition (1.6) holds then condition (4.31) (or condition (4.30)
for τ = 0) holds too. Since the function δ(τ) is continuous in the point τ = 0 then if
condition (4.30) holds for τ = 0 then it holds for enough small τ > 0 also. The proof is
completed. �

Corollary 4.3. Let conditions (1.5), (1.6) hold then there exists enough small τ > 0 that
the trivial solution of system (2.3) is asymptotically stable.

5. Numerical analysis

Here we consider some numerical examples which illustrate the theoretical results ob-
tained above. For illustration of Corollary 4.3 consider the following example.
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Example 5.1. Put in equation (1.7) a= 9.5, b1 = 10, b2 =−20, h1 = 0.4, h2 = 0.02. Then

a1 = 0.5 > 0, k1 = 3.6 > 0, k̂2 = 1.608 < km = 1.92. Conditions (1.5), (1.6) hold, there-
fore (Theorem 1.2), the trivial solution of equation (1.7) is asymptotically stable. Besides
there exists enough small τ > 0 that condition (4.30) holds. Using τ = 0.01 we obtain
δ(0.01)= 0.869 < 1, that is condition (4.30) holds. Therefore, the trivial solution of dif-
ference system (2.3) is asymptotically stable. On Figure 5.1 it is shown that the trajectory
of solution of system (2.3) with the initial condition xj = 33, j ≤ 0, y0 = 0 goes to zero.

If conditions (1.5) hold but condition (1.6) does not hold then the trivial solution
of equation (1.7) can be asymptotically stable or unstable. If in this case for some τ > 0
condition (4.30) does not hold too then the trivial solution of difference system (2.3) can
be also asymptotically stable or unstable. In the following two examples one can see the
both situations.

Example 5.2. Put in equation (1.7) a= 3, b1 = 1, b2 =−5, h1 = 0.55, h2 = 0.1. Then a1 =
1 > 0, k1 = 0.05 > 0, k̂2 = 0.3525 > km = 0.0975, δ(0.01)= 20.83 > 1. So, conditions (1.5)
hold but conditions (1.6) and (4.30) do not hold. On Figure 5.2 it is shown that the
trajectory of solution of system (2.3) with the initial condition xj = 12, j ≤ 0, y0 = 0 goes
to zero.
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Example 5.3. Putting in the previous example h1 = 0.53 (without changing the values

of the other parameters) we obtain a1 = 1 > 0, k1 = 0.03 > 0, k̂2 = 0.3309 > km = 0.0591,
δ(0.01) = 73.06 > 1. As in the previous example conditions (1.5) hold, conditions (1.6)
and (4.30) do not hold but in this case the trajectory of solution of system (2.3) with the
initial condition xj = 12, j ≤ 0, y0 = 0 goes to infinity (Figure 5.3).
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