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The synchronization of two stochastically coupled one-dimensional cellular automata
(CA) is analyzed. It is shown that the transition to synchronization is characterized by a
dramatic increase of the statistical complexity of the patterns generated by the difference
automaton. This singular behavior is verified to be present in several CA rules displaying
complex behavior.

Despite all the efforts devoted to understand the meaning of complexity, we still do not
have an instrument in the laboratories specially designed for quantifying this property.
Maybe this is not the final objective of all those theoretical attempts carried out in the
most diverse fields of knowledge in the last years [1, 4, 5, 7, 10, 11, 12, 19], but, for a
moment, let us think in that possibility.

Similarly to any other device, our hypothetical apparatus will have an input and an
output. The input could be the time evolution of some variables of the system. The in-
strument records those signals, analyzes them with a proper program and finally screens
the result in the form of a complexity measurement. This process is repeated for several
values of the parameters controlling the dynamics of the system. If our interest is focused
in the most complex configuration of the system we have now the possibility of tuning such
an state by regarding the complexity plot obtained at the end of this process.

As a real applicability of this proposal, let us apply it to an à-la-mode problem. The
clusterization or synchronization of chaotic coupled elements was put in evidence at the
beginning of the nineties [8, 9, 14]. Since then, a lot of publications have been devoted to
this subject [2]. Let us consider one particular of these systems to illuminate our proposal.

(1) System: We take two coupled elementary one dimensional cellular automata dis-
playing complex spatio-temporal dynamics [20]. Recently, it has been shown that this
system can undergo through a synchronization transition [17]. The transition to full
synchronization occurs at a critical value pc of a synchronization parameter p. Briefly
the numerical experiment is as follows. Two L-cell cellular automata (CA) with the same
evolution rule Φ are started from different random initial conditions for each automaton.
Then, at each time step, the dynamics of the coupled CA is governed by the successive ap-
plication of two evolution operators; the independent evolution of each CA according to
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its corresponding rule Φ and the application of a stochastic operator that compares the
states σ1

i and σ2
i of all the cells, i= 1, . . . ,L, in each automaton. If σ1

i = σ2
i , both states are

kept invariant. If σ1
i �= σ2

i , they are left unchanged with probability 1− p, but both states
are updated either to σ1

i or to σ2
i with equal probability p/2. It is shown in [17] that there

exists a critical value of the synchronization parameter (pc = 0.193 for the rule 18) above
for which full synchronization is achieved.

(2) Device: We choose a particular instrument to perform our measurements, that is
capable of displaying the value of the LMC complexity (C) [13]. The statistical complexity
C is defined as follows,

C
({
ρi
})=H

({
ρi
}) ·D({ρi})

=−k
[ N∑

i=1

ρi logρi

]
×
[ N∑

i=1

(
ρi− 1

N

)2
]

,
(1)

where {ρi} represents the set of probabilities of the N accessible discrete states of the
system, with ρi ≥ 0, i= 1, . . . ,N , and k is a constant. If k = 1/ logN then we have the nor-
malized complexity. C is a statistical measure of complexity that identifies the entropy or
information stored in a system and its disequilibrium, that is, the distance from its ac-
tual state to the probability distribution of equilibrium, as the two basic ingredients for
calculating the complexity of a system. This quantity vanishes both for completely or-
dered and for completely random systems giving then the correct asymptotic properties
required for a such well-behaved measure. The calculation ofC has been useful to success-
fully discern many situations regarded as complex in discrete systems out of equilibrium
[3, 6, 15, 16, 21].

(3) Input: In particular, the evolution of two coupled CA evolving under the rules 22,
30, 90, and 110 is analyzed. The pattern of the difference automaton will be the input
of our device. In Figure 1, it is shown for a coupling probability p = 0.23, just above the
synchronization transition. The left and the right plots show 250 successive states of the
two automata, whereas the central plot displays the corresponding difference automaton.
Such automaton is constructed by comparing one by one all the sites (L = 100) of both
automata and putting zero when the states σ1

i and σ2
i , i= 1, . . . ,L, are equal or putting one

otherwise. It is worth to observe that the difference automaton shows an interesting com-
plex structure close to the synchronization transition. This complex pattern is only found
in this region of parameter space. When the system is fully synchronized the difference
automaton is composed by zeros in all the sites, while when there is no synchronization
at all the structure of the difference automaton is completely random.

(4) Method of measurement: How to perform the measurement of C for such two-
dimensional patterns has been presented recently in [18]. We let the system evolve until
the asymptotic regime is attained. The variable σdi in each cell of the difference pattern is
successively translated to a unique binary sequence when the variable i covers the spatial
dimension of the lattice, i = 1, . . . ,L, and the time variable n is consecutively increased.
This binary string is analyzed in blocks of no bits, where no can be considered the scale of
observation. The accessible states to the system among the 2no possible states are found as
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Figure 1. Spatio-temporal patterns just above the synchronization transition. The left and the right
plots show 250 successive states of the two coupled automata and the central plot is the corresponding
difference automaton for the rules 22, 30, 90, and 110. The number of sites is L= 100 and the coupling
probability is p = 0.23.

well as their probabilities. Then, the magnitudes H , D and C are directly calculated and
screened by the device.

(5) Output: The results of the measurement are shown in Figure 2. The normalized
complexity C as a function of the synchronization parameter p is plotted for different
coupled one-dimensional CA that evolve under the rules 22, 30, 90 and 110, which are
known to generate complex patterns. All the plots of Figure 2 were obtained using the
following parameters: number of cell of the automata, L = 1000; total evolution time,
T = 600 steps. For all the cases and scales analyzed, the statistical complexity C shows a
dramatic increase close to the synchronization transition. It reflects the complex structure
of the difference automaton and the capability of the measurement device here proposed
for clearly signaling the synchronization transition of two coupled CA.

These results are in agreement with the measurements of C performed in the pat-
terns generated by a one-dimensional logistic coupled map lattice in [18]. There the LMC
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Figure 2. The normalized complexity C versus the coupling probability p for different scales of ob-
servation: no = 1 (◦), no = 4 (�), and no = 6 (�). C has been calculated over the last 300 iterations
of a running of 600 of them for a lattice with L= 1000 sites. The synchronization transition is clearly
depicted around p ≈ 0.2 for the different rules.
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statistical complexity (C) also shows a singular behavior close to the two edges of an ab-
sorbent region where the lattice displays spatio-temporal intermittency. Hence, in our
present case, the synchronization region of the coupled systems can be interpreted as an
absorbent region of the difference system. In fact, the highest complexity is reached on
the border of this region for p ≈ 0.2. The parallelism between both systems is therefore
complete.

Finally, let us remark that the critical parameter for switching synchronization in these
systems is similar for all of them (pc ≈ 0.2). This fact could deserve some operational
explanation in a future work.
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