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We first study the distribution of the zeros of a fourth-degree exponential polynomial.
Then we apply the obtained results to a simplified bidirectional associated memory
(BAM) neural network with four neurons and multiple time delays. By taking the sum
of the delays as the bifurcation parameter, it is shown that under certain assumptions the
steady state is absolutely stable. Under another set of conditions, there are some critical
values of the delay, when the delay crosses these critical values, the Hopf bifurcation oc-
curs. Furthermore, some explicit formulae determining the stability and the direction of
periodic solutions bifurcating from Hopf bifurcations are obtained by applying the nor-
mal form theory and center manifold reduction. Numerical simulations supporting the
theoretical analysis are also included.
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1. Introduction

In recent years, the interest in investigating the dynamics of neural networks has been
steadily increasing since Hopfield [11] constructed a simplified neural network model.
Based on the Hopfield neural network, Marcus and Westervelt [14] argued that time de-
lays always appear in the signal transmission and therefore they proposed a neural net-
work model with delays. Hereafter, various dynamical models modeling delayed neural
networks have been proposed and investigated widely to understand the dynamics be-
havior of the like-neurons (see [1, 2, 6, 7]) and there has been an extensive literature on
the local and global stability analysis of the delayed neural networks (see [6, 15, 19, 23]
and the references cited therein). It is well known that the study on dynamical systems
not only involve a discussion of stability, but also involve many dynamical behaviors such
as periodic phenomenon, bifurcation and chaos. In particular, the properties of periodic
solutions are of great interest, which can arise through the Hopf bifurcation in delayed
systems, see Hale [8], Liu and Yuan [13], Wei and Ruan [20] and Wei and Velarde [21].
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2 A BAM neural network with multiple delays

As large-scale nonlinear dynamical systems, neural networks are complex while the
dynamics of the delayed neural networks are even richer and more complicated. Neural
networks with delays can exhibit very rich dynamics [22]. Since an exhaustive analysis of
the dynamics of large-scale dynamical systems is quite difficult, Babcock and Westervelt
[1] suggested examining carefully the dynamical behaviors of the simple and lower-order
networks. Consequently, in recent years, there has been an extensive literature about the
studies of the dynamics of some special and simple lower-order neural networks (see
[3–5, 7, 16, 17, 20, 22]). However, the studies of the dynamics regarding higher-order
systems modelling the neural networks with more neurons and multiple delays are rare.
To the best of our knowledge, there is a few literatures have investigated higher-order
neural networks (see [18, 21] for the case of three neurons and multiple delays and [4, 12]
for a ring of four neurons). In fact, in practical applications, the neural networks with
more neurons and multiple delays are of great importance and frequency. Therefore, it is
necessary to investigative the dynamical behaviors of this kind of networks.

In general, in the investigating on a delay model, linearization of the system at its steady
state gives us a transcendental characteristic equation or called an exponential polynomial
equation. It is well known that the steady state is stable if all eigenvalues of the corre-
sponding transcendental characteristic equation have negative real parts, and unstable if
at least one root has positive real part. Thus, a Hopf bifurcation occurs when the real part
of a certain eigenvalue changes from negative to zero and to positive (i.e., the steady state
changes from stability to instability). This is usually caused by the delays. However, there
is a strong possibility that if the coefficients of the exponential polynomial satisfy certain
assumptions, then the real parts of all eigenvalues remain negative for all values of the
delay; that is, independent of the delay. The corresponding delay system is called abso-
lutely stable (see, e.g., Hale et al. [9]). A general result in Hale et al. [9] says that a delay
system is absolutely stable if and only if the corresponding ODE system is asymptotically
stable and the characteristic equation has no purely imaginary roots. Therefore, a first
important step in the study of the dynamics of a delayed model is to analyze in detail
the distribution of zeros of the associated characteristic equation. However, most afore-
mentioned works on the neural network focused mainly on the second-dimensional case
and hence the associated characteristic equation is also second-degree exponential poly-
nomial equation. Thus, the second-degree exponential polynomial equation has been
investigated widely and exhaustively (see [20] and the cited reference therein). As far as
the study of third and fourth-degree exponential polynomial equation, there are also a
few literature (see, e.g., [17, 18] for the case of the third degree and [4, 12] for the case of
the fourth degree).

Among a great deal of artificial neural networks, there exist a class of important two-
layer heteroassociative networks, called bidirectional associative memory (BAM) neural
networks with axonal signal transmission delays, has been proposed and applied in many
fields such as pattern recognition and automatic control (see [6]). If there is only one
neuron on the I-layer and three neurons on the J-layer, the time delay from the I-layer
to another J-layer is τ1 while the delay from the J-layer back to the I-layer is τ2, and the
activation functions are fl (l = 2,3,4) (see Figure 1.1). Then the network model can be
described by the following delayed differential equations, namely, functional differential
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Figure 1.1. Graph of the architecture of the model (1.1).

equations

ẋ1(t)=−μ1x1(t) + c21 f1
(
x2
(
t− τ2

))
+ c31 f1

(
x3
(
t− τ2

))
+ c41 f1

(
x4
(
t− τ2

))
,

ẋ2(t)=−μ2x2(t) + c12 f2
(
x1
(
t− τ1

))
,

ẋ3(t)=−μ3x3(t) + c13 f3
(
x1
(
t− τ1

))
,

ẋ4(t)=−μ4x4(t) + c14 f4
(
x1
(
t− τ1

))
,

(1.1)

where xk (k = 1,2,3,4) denote the state of the kth neuron; μk > 0 (k = 1,2,3,4) describe
respectively the stability of internal neuron processes on the I-layer and the J-layer; the
real constants cl1 (l = 2,3,4) and c1k (k = 2,3,4) denote the connected weights through
the neurons in two layers: the I-layer and the J-layer.

The linearization of the system (1.1) at its steady state leads to a transcendental char-
acteristic equation in the form of

λ4 + a3λ
3 + a2λ

2 + a1λ+ a0 +
(
b2λ

2 + b1λ+ b0
)
e−λτ = 0, (1.2)

which is a fourth-degree exponential polynomial equation.
If b1 = b2 = 0, then (1.1) reduces to

λ4 + a3λ
3 + a2λ

2 + a1λ+ a0 + b0e
−λτ = 0, (1.3)

which was investigated by Li and Wei [12], and applied the obtained results to a ring
of neural network model consisting of four different neurons with instantaneous self-
connection and multiple delays, see Figure 1.2.

Clearly, if b2
1 + b2

2 �= 0, then the results obtained by Li and Wei [12] fail to (1.2). There-
fore, in order to study the dynamics of the neural network (1.1), it is necessary to investi-
gate further the fourth-degree exponential polynomial equation (1.2) with b2

1 + b2
2 �= 0.

In this paper, we first study the distribution of the roots of (1.2) and find that there are
the following two possibilities.

(a) Under certain assumptions on the coefficients, all roots of (1.2) have negative real
parts for all delay value τ ≥ 0.

(b) If the assumptions in (a) are not satisfied, then there is a critical value τ0. When
the delay τ < τ0, the real parts of all roots of (1.2) are still negative; when τ = τ0, there is
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Figure 1.2. A four-neuron ring with delays and self-connection.

a pair of purely imaginary roots and all other roots have negative real parts; when τ > τ0,
there is at least one eigenvalue which has positive real part.

By regarding the sum τ of the two delays τ1 and τ2 as a bifurcation parameter, apply-
ing the obtained results to the BAM neural network (1.2), we show that under a set of
assumptions on the coefficients, the steady state is absolutely stable (i.e., asymptotically
stable independent of the delay τ). Under another set of conditions, the steady state is
conditionally stable; that is, there is a sequence of critical delay values τ0 < τ1 < . . ., and
the steady state is asymptotically stable when τ < τ0, loses its stability when τ = τ0, and
becomes unstable when τ > τ0. Thus, a Hopf bifurcation occurs at the steady state when
τ passes through the critical values τj ( j = 0,1, . . .).

This paper is organized as follows. In the next section, we will analyze in detail the dis-
tribution of roots of the fourth exponential polynomial equation (1.1). In Section 3, we
apply the results obtained in Section 2 to (1.2), the absolute stability, conditional stability
of zero equilibrium and the existence of Hopf bifurcation are studied. In Section 4, based
on the normal form theory and the center manifold argument introduced by Hassard et
al. [10], we derive the formulae determining the direction, stability and the period of the
bifurcating periodic solution. In Section 5, by applying the results obtained in Section 4,
we give a result for a special case of (1.1) determining the direction, stability and the
period of the bifurcating periodic solution. Finally, to verify the theoretic analysis, a con-
clusion is also drawn in the end.

2. The fourth-degree transcendental polynomial equation

In this section, we will study in detail the distribution of zeros of the fourth-degree tran-
scendental polynomial equation (1.2).

Consider the following fourth-degree transcendental polynomial equation

λ4 + a3λ
3 + a2λ

2 + a1λ+ a0 +
(
b2λ

2 + b1λ+ b0
)
e−λτ = 0, (2.1)

where ak,bl ∈ R (k = 0,1,2,3; l = 0,1,2) are all real constants and
∑2

l=0 b
2
l �= 0. Clearly,

iω (ω > 0) is a root of (2.1) if and only if ω satisfies the following equation

ω4− ia3ω
3− a2ω

2 + ia1ω+ a0 +
(− b2ω

2 + ib1ω+ b0
)
(cosωτ − isinωτ)= 0. (2.2)
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Separating the real and imaginary parts of the above equation yields the following equa-
tions

ω4− a2ω
2 + a0 =

(
b2ω

2− b0
)

cosωτ − b1ω sinωτ,

−a3ω
3 + a1ω =−

(
b2ω

2− b0
)

sinωτ − b1ωcosωτ.
(2.3)

Adding up the squares of the corresponding sides of the above equations leads to

ω8 +
(
a2

3− 2a2
)
ω6 +

(
2a0 + a2

2− 2a1a3− b2
2

)
ω4

+
(
a2

1− 2a0a2 + 2b0b2− b2
1

)
ω2 + a2

0− b2
0 = 0.

(2.4)

Let z = ω2 and denote

a= a2
3− 2a2, b= 2a0 + a2

2− 2a1a3− b2
2,

c = a2
1− 2a0a2 + 2b0b2− b2

1, d = a2
0− b2

0.
(2.5)

Then, (2.4) can be denoted simply as the following equation:

z4 + az3 + bz2 + cz+d = 0. (2.6)

Let

h(z)= z4 + az3 + bz2 + cz+d. (2.7)

Noting that limz→+∞h(z) = +∞, we conclude that if d < 0, then (2.6) has at least one
positive root.

From (2.7), we have

dh(z)
dz

= 4z3 + 3az2 + 2bz+ c = 4 f (z), (2.8)

where f (z)= z3 + (3/4)az2 + (1/2)bz+ (1/4)c. Let

p = 8b− 3a2

16
, q = a3− 4ab+ 8c

32
, D0 = q2

4
+
p3

27
. (2.9)

Suppose thatD0 > 0, then from the Cardano’s formulae for the third-degree algebra equa-
tion, we know that the equation f (z)= 0 has only one real root

z∗1 =−
a

4
+ 3

√

−q
2

+
√
D0 + 3

√

−q
2
−
√
D0. (2.10)

Noticing that limz→±∞h(z) = +∞, thus we know that z∗1 is a unique minimum value
point of h(z) on R. Therefore, if d ≥ 0 and z∗1 ≤ 0, then (2.6) has no positive roots; if
d ≥ 0, z∗1 > 0 and h(z∗1 ) < 0, then (2.6) has at least one positive roots.

Assume that D0 = 0, then in this case the equation f (z)= 0 has three real roots

z1 =−a4 − 2 3

√
q

2
, z2 = z3 =−a4 + 3

√
q

2
. (2.11)
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Let

z∗2 =max

{

− a

4
− 2 3

√
q

2
, −a

4
+ 3

√
q

2

}

, (2.12)

it is easy to know that h(z) is strictly monotonously increasing when z > z∗2 . Therefore,
if d ≥ 0 and z∗2 ≤ 0, then (2.6) has no positive roots; if d ≥ 0, z∗2 > 0 and h(z∗2 ) < 0, then
(2.6) has at least one positive root.

If D0 < 0, then we know that the equation f (z)= 0 has three real roots

r∗1 =−
a

4
+ 2Re{α}, r∗2 =−

a

4
+ 2Re{αε}, r∗3 =−

a

4
+ 2Re{αε̄}, (2.13)

where α is one of cubic roots of the complex number−q/2 +
√
D0 and ε =−1/2 + (

√
3/2)i.

Let z∗3 =max{r∗1 ,r∗2 ,r∗3 }, we can see that if d ≥ 0 and z∗3 ≤ 0, then (2.6) has no positive
roots; if d ≥ 0, z∗3 > 0 and h(z∗3 ) < 0, then (2.6) has at least one positive root.

Summarizing these remarks, we have the following result.

Lemma 2.1. (i) If d < 0, then (2.6) has at least one positive root.
(ii) Suppose that d ≥ 0, then (2.6) has no positive root if one of the following conditions

holds:
(1) D0 > 0 and z∗1 < 0;
(2) D0 = 0 and z∗2 < 0;
(3) D0 < 0 and z∗3 < 0.

(iii) Suppose that d ≥ 0, then (2.6) has at least a positive root if one of the following
conditions holds:

(1) D0 > 0, z∗1 > 0 and h(z∗1 ) < 0;
(2) D0 = 0, z∗2 > 0 and h(z∗2 ) < 0;
(3) D0 < 0, z∗3 > 0 and h(z∗3 ) < 0.

Suppose now that (2.6) has positive roots. Without loss of generality, we may assume
that (2.6) has four positive roots denoted respectively as z1, z2, z3 and z4. Then (2.4) has
four positive roots ωk =√zk (k = 1,2,3,4). In view of (2.3), we can get

cosωkτ = Δ1

Δ
, (2.14)

where

Δ1 = b2ω
6
k +

(
a3b1− a2b2− b0

)
ω4
k +

(
a0b2 + a2b0− a1b1

)
ω2
k − a0b0,

Δ= b2
2ω

4
k +

(
b2

1− 2b0b2
)
ω2
k + b2

0.
(2.15)

Therefore, if we define

τ(k)
j = 1

ωk

[
arccos

(
Δ1

Δ

)
+ 2 jπ

]
, k = 1,2,3,4, j = 0,1,2, . . . , (2.16)

then (2.1) with τ = τ(k)
j has a pair of purely imaginary roots ±iωk. Let

τ0 = τ(k0)
0 = min

k∈{1,2,3,4}

{
τ(k)

0

}
, ω0 = ωk0 . (2.17)
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In what follows, we use a result due to Ruan and Wei [17] to analyze (2.1), which is
stated as follows.

Lemma 2.2. Consider the exponential polynomial

P
(
λ,e−λτ1 ,e−λτ2 , . . . ,e−λτm

)= λn + p(0)
1 λn−1 + ···+ p(0)

n−1λ+ p(0)
n

+
[
p(1)

1 λn−1 + ···+ p(1)
n−1λ+ p(1)

n

]
e−λτ1

+ ···+
[
p(m)

1 λn−1 + ···+ p(m)
n−1λ+ p(m)

n

]
e−λτm ,

(2.18)

where τk ≥ 0 (k = 1,2, . . . ,m) and p(k)
j (k = 0,1,2, . . . ,m, j = 1,2, . . . ,n) are real constants.

As (τ1,τ2, . . . ,τm) vary, the sum of the order of the zeros of P(λ,e−λτ1 ,e−λτ2 , . . . ,e−λτm) on the
open right half-plane can change only if a zero appears on or crosses the imaginary axis.

Note that when τ = 0, (2.1) becomes the following fourth-degree algebra equation

λ4 + a3λ
3 +

(
a2 + b2

)
λ2 +

(
a1 + b1

)
λ+ a0 + b0 = 0. (2.19)

It is easily to get the following result regarding the distribution of roots of the exponential
polynomial equation (2.1) by using Lemmas 2.1 and 2.2.

Lemma 2.3. For the exponential polynomial equation (2.1), the following states are true.
(i) If d ≥ 0 and one of the following conditions holds,

(1) D0 > 0 and z∗1 < 0;
(2) D0 = 0 and z∗2 < 0;
(3) D0 < 0 and z∗3 < 0,
then the order of all roots with positive real parts of (2.1) has the same sum as that of
all roots with positive real parts of (2.19) for all τ ≥ 0.

(ii) If d < 0 or d ≥ 0 and one of the following conditions holds,
(1) D0 > 0, z∗1 > 0 and h(z∗1 ) < 0;
(2) D0 = 0, z∗2 > 0 and h(z∗2 ) < 0;
(3) D0 < 0, z∗3 > 0 and h(z∗3 ) < 0,
then the order of all roots with positive real parts of (2.19) has the same sum as that
of all roots with positive real parts of (2.19) for all τ ∈ [0,τ0).

Let

λk(τ)= αk(τ)± iωk(τ), k = 1,2,3,4, (2.20)

be the root of (2.1) near τ = τ(k)
j satisfying

αk
(
τ(k)
j

)
= 0, ωk

(
τ(k)
j

)
= ωk, k = 1,2,3,4, j = 0,1,2, . . . . (2.21)
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Lemma 2.4. Suppose that zk = ω2
k and dh(zk)/dz �= 0. Then the following transversality

conditions hold:

Re

[
dλk(τ)
dτ

∣
∣
∣
∣
τ=τ(k)

j

]

�= 0, (2.22)

and the sign of Re[dλk(τ)/dτ|τ=τ(k)
j

] is the same as that of dh(zk)/dz.

Proof. Differentiating the two sides of (2.1) with respect to τ and noticing that λ is the
function of τ, one can obtain

{
4λ3 + 3a3λ

2 + 2a2λ+ a1 +
[(

2b2λ+ b1
)− τ(b2λ

2 + b1λ+ b0
)]
e−λτ

}dλ

dτ

= (
b2λ

2 + b1λ+ b0
)
λe−λτ .

(2.23)

Thus, we have

(
dλ

dτ

)−1

=
(
4λ3 + 3a3λ2 + 2a2λ+ a1

)
eλτ

(
b2λ2 + b1λ+ b0

)
λ

+
2b2λ+ b1(

b2λ2 + b1λ+ b0
)
λ
− τ

λ
. (2.24)

Notice that λ=±iωk when τ = τ(k)
j (k = 1,2,3,4, j = 0,1,2, . . .) and we only need to con-

sider the case that λ = iωk because the case λ = −iωk can be obtained similarly. Accord-

ingly, when τ = τ(k)
j (k = 1,2,3,4, j = 0,1,2, . . .), we have

[(
b2λ

2 + b1λ+ b0
)
λ
]
τ=τ(k)

j

= (− b2ω
2
k + ib1ωk + b0

)
iωk =−b1ω

2
k + i

(
b0− b2ω

2
k

)
ωk,

[
2b2λ+ b1

]
τ=τ(k)

j
= b1 + 2ib2ωk,

[(
4λ3 + 3a3λ

2 + 2a2λ+ a1
)
eλτ

]
τ=τ(k)

j

= (− 4iω3
k − 3a3ω

2
k + 2ia2ωk + a1

)(
cosωkτ

(k)
j + isinωkτ

(k)
j

)

=
[(
a1− 3a3ω

2
k

)
cosωkτ

(k)
j − 2ωk

(
a2− 2ω2

k

)
sinωkτ

(k)
j

]

+ i
[

2ωk
(
a2− 2ω2

k

)
cosωkτ

(k)
j +

(
a1− 3a3ω

2
k

)
sinωkτ

(k)
j

]
.

(2.25)

Let

M = ∣
∣− b1ω

2
k + i

(
b0− b2ω

2
k

)
ωk

∣
∣2 = b2

1ω
4
k +

(
b0− b2ω

2
k

)2
ω2
k. (2.26)
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Then it follows from (2.3) and (2.25) that

Re
[(

4λ3 + 3a3λ2 + 2a2λ+ a1
)
eλτ

(
b2λ2 + b1λ+ b0

)
λ

]

τ=τ(k)
j

= 1
M

{
− b1ω

2
k

[(
a1− 3a3ω

2
k

)
cosωkτ

(k)
j − 2ωk

(
a2− 2ω2

k

)
sinωkτ

(k)
j

]

+
(
b0− b2ω

2
k

)
ωk

[
2ωk

(
a2− 2ω2

k

)
cosωkτ

(k)
j +

(
a1− 3a3ω

2
k

)
sinωkτ

(k)
j

]}

= 1
M

{(
a1− 3a3ω

2
k

)
ωk

[
− (

b2ω
2
k − b0

)
sinωkτ

(k)
j − b1ωk cosωkτ

(k)
j

]

+ 2
(
a2− 2ω2

k

)
ω2
k

[
− (

b2ω
2
k − b0

)
cosωkτ

(k)
j + b1ωk sinωkτ

(k)
j

]}

= 1
M

[(
a1− 3a3ω

2
k

)
ωk

(− a3ω
3
k + a1ωk

)− 2
(
a2− 2ω2

k

)
ω2
k

(
ω4
k − a2ω

2
k + a0

)]

= ω2
k

M

{
4ω6

k + 3
(
a2

3− 2a2
)
ω4
k + 2

(
2a0 + a2

2− 2a1a3
)
ω2
k + a2

1− 2a0a2

}
,

Re
[

2b2λ+ b1(
b2λ2 + b1λ+ b0

)
λ

]

τ=τ(k)
j

= 1
M

[− b2
1ω

2
k + 2b2ωk

(
b0− b2ω

2
k

)
ωk

]= ω2
k

M

(− 2b2
2ω

2
k + 2b0b2− b2

1

)
.

(2.27)

Therefore, from (2.5) and (2.27), we can get

Re

[(
dλk(τ)
dτ

∣
∣
∣
∣
τ=τ(k)

j

)−1
]

= Re

{[(
4λ3 + 3a3λ2 + 2a2λ+ a1

)
eλτ

(
b2λ2 + b1λ+ b0

)
λ

]

τ=τ(k)
j

}

+ Re

{[ (
2b2λ+ b1

)

(
b2λ2 + b1λ+ b0

)
λ

]

τ=τ(k)
j

}

= ω2
k

M

{
4ω6

k + 3
(
a2

3− 2a2
)
ω4
k + 2

(
2a0 + a2

2− 2a1a3− b2
2

)
ω2
k + a2

1− 2a0a2 + 2b0b2− b2
1

}

= zk
M

(
4z3

k + 3az2 + 2bzk + c
)= zk

M

dh
(
zk
)

dz
�= 0.

(2.28)

Thus, Re[dλk(τ)/dτ|τ=τ(k)
j

] �= 0. In addition, since zk > 0, we conclude that Re[dλk(τ)/

dτ|τ=τ(k)
j

] and dh(zk)/dz have the same sign. This completes the proof. �



10 A BAM neural network with multiple delays

3. The simplified delayed four-neuron BAM neural network

In this section, we will apply the results obtained in Section 2 to study the stability and
bifurcation of the simplified BAM neural network (1.1).

Throughout this section, we will assume that the activation functions fk (k = 1,2,3,4)
of BAM network model (1.1) satisfy the following conditions:

(H1) fk ∈ C1(R,R), fk(0)= 0.
Under the assumption (H1), we know easily that (0,0,0,0) is an equilibrium of sys-

tem (1.1) and let uk(t) (k = 1,2,3,4) be defined respectively by u1(t)= x1(t− τ1), uk(t)=
xk(t) (k = 2,3,4) and τ = τ1 + τ2, then system (1.1) is equivalent to the following sys-
tem

u̇1(t)=−μ1u1(t) + c21 f1
(
u2(t− τ)

)
+ c31 f1

(
u3(t− τ)

)
+ c41 f1

(
u4(t− τ)

)
,

u̇2(t)=−μ2u2(t) + c12 f2
(
u1(t)

)
,

u̇3(t)=−μ3u3(t) + c13 f3
(
u1(t)

)
,

u̇4(t)=−μ4u4(t) + c14 f4
(
u1(t)

)
.

(3.1)

Linearized system of (3.1) near the equilibrium (0,0,0,0) gives the following linear sys-
tem

u̇1(t)=−μ1u1(t) +α21u2(t− τ) +α31u3(t− τ) +α41u4(t− τ),

u̇2(t)=−μ2u2(t) +α12u1(t),

u̇3(t)=−μ3u3(t) +α13u1(t),

u̇4(t)=−μ4u4(t) +α14u1(t),

(3.2)

where αk1 = ck1 f
′

1 (0) (k = 2,3,4) and α1l = c1l f
′
l (0) (l = 2,3,4). The corresponding char-

acteristic equation of system (3.2) is given by

det

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λ+μ1 −α21e−λτ −α31e−λτ −α41e−λτ

−α12 λ+μ2 0 0

−α13 0 λ+μ3 0

−α14 0 0 λ+μ4

⎤

⎥
⎥
⎥
⎥
⎥
⎦
= 0, (3.3)

that is

λ4 +
(
μ1 +μ2 +μ3 +μ4

)
λ3 +

(
μ1μ2 +μ1μ3 +μ1μ4 +μ2μ3 +μ2μ4 +μ3μ4

)
λ2

+
(
μ1μ2μ3 +μ1μ2μ4 +μ1μ3μ4 +μ2μ3μ4

)
λ+μ1μ2μ3μ4

− {(
α12α21 +α13α31 +α14α41

)
λ2

+
[
α12α21

(
μ3 +μ4

)
+α13α31

(
μ2 +μ4

)
+α14α41

(
μ2 +μ3

)]
λ

+α12α21μ3μ4 +α13α31μ2μ4 +α14α41μ2μ3
}
e−λτ = 0.

(3.4)
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In the sequel, we apply the results obtained in Section 2 to investigate (3.4), and obtain
the sufficient conditions ensuring the stability of the equilibrium (0,0,0,0) and Hopf
bifurcation of system (1.1). From (2.1) and (3.4), one can see easily that

a3 = μ1 +μ2 +μ3 +μ4 > 0,

a2 = μ1μ2 +μ1μ3 +μ1μ4 +μ2μ3 +μ2μ4 +μ3μ4 > 0,

a1 = μ1μ2μ3 +μ1μ2μ4 +μ1μ3μ4 +μ2μ3μ4 > 0,

a0 = μ1μ2μ3μ4 > 0,

b2 =−
(
α12α21 +α13α31 +α14α41

)
,

b1 =−
[
α12α21

(
μ3 +μ4

)
+α13α31

(
μ2 +μ4

)
+α14α41

(
μ2 +μ3

)]
,

b0 =−
(
α12α21μ3μ4 +α13α31μ2μ4 +α14α41μ2μ3

)
,

(3.5)

which, together with (2.5), means that

a= a2
3− 2a2 = μ2

1 +μ2
2 +μ2

3 +μ2
4 > 0,

b= 2a0 + a2
2− 2a1a3− b2

2 = μ2
1μ

2
2 +μ2

1μ
2
3 +μ2

1μ
2
4 +μ2

2μ
2
3 +μ2

2μ
2
4 +μ2

3μ
2
4

− (
α12α21 +α13α31 +α14α41

)2
,

c = a2
1− 2a0a2 + 2b0b2− b2

1 = μ2
1μ

2
2μ

2
3 +μ2

1μ
2
2μ

2
4 +μ2

1μ
2
3μ

2
4 +μ2

2μ
2
3μ

2
4

+ 2
(
α12α21 +α13α31 +α14α41

)(
α12α21μ3μ4 +α13α31μ2μ4 +α14α41μ2μ3

)

− [
α12α21

(
μ3 +μ4

)
+α13α31

(
μ2 +μ4

)
+α14α41

(
μ2 +μ3

)]2
,

d = a2
0− b2

0 = μ2
1μ

2
2μ

2
3μ

2
4−

(
α12α21μ3μ4 +α13α31μ2μ4 +α14α41μ2μ3

)2
.

(3.6)

Thus, we can calculate (2.7) and (2.9). Furthermore, from the sign of D0, we can also
know z∗1 (D0 > 0), z∗2 (D0 = 0) or z∗3 (D0 < 0). In addition, in view of Routh-Hurwitz cri-
teria, we can easily know that all roots of (3.4) with τ = 0 have negative real parts if the
following condition holds:

(H2) a0 + b0 > 0, a1 + b1 > 0, a3 > 0 and a3[(a1 + b1)(a2 + b2)− a3(a0 + b0)] > (a1 +
b1)2.

By Lemmas 2.3 and 2.4, we have the following result regarding on stability and bifur-
cation of system (1.1).

Theorem 3.1. Let ak, bl (k = 0,1,2,3; l = 0,1,2), a, b, c, d, and τ(k)
j be defined, respectively,

by (3.5), (3.6), and (2.16). Suppose that (H1) and (H2) hold. Then, for system (3.1), the
following statements are true.

(i) All roots of (3.4) have negative real parts and the zero solution of system (3.1) is
absolutely stable if d ≥ 0 and one of the following conditions is satisfied:
(1) D0 > 0 and z∗1 < 0;
(2) D0 = 0 and z∗2 < 0;
(3) D0 < 0 and z∗3 < 0.
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(ii) All roots of (3.4) have negative real parts and hence the zero solution of system (3.1)
is asymptotically stable for τ ∈ [0,τ0) if d < 0 or d ≥ 0 and one of the following con-
ditions holds:
(1) D0 > 0, z∗1 > 0 and h(z∗1 ) < 0;
(2) D0 = 0, z∗2 > 0 and h(z∗2 ) < 0;
(3) D0 < 0, z∗3 > 0 and h(z∗3 ) < 0.

(iii) h(z) has at least a positive root zk and τ ∈ {τ(k)
j }, k = 1,2,3,4; j = 0,1,2, . . . , are

Hopf bifurcation values for system (3.1) if the conditions as stated in (ii) are satisfied
and h′(zk) �= 0.

4. Direction and stability of the Hopf local bifurcation

In the above section, we have already obtained some sufficient conditions ensuring sys-
tem (3.1) undergoes a Hopf bifurcation at the equilibrium (0,0,0,0) when τ takes some
certain critical values. In this section, we suppose that a Hopf bifurcation for system (3.1)
will occur at the zero equilibrium when τ = τj ( j = 0,1,2, . . .), that is, a family of periodic
solutions bifurcate from the zero equilibrium and will establish the explicit formulae de-
termining the direction, stability, and period of these periodic solutions bifurcating from
the zero equilibrium at these critical values τj ( j = 0,1,2, . . .) of τ by using the normal
theory and the center manifold argument developed by Hassard et al. [10]. Without loss
of generality, we denote any one of these critical values τ = τj ( j = 0,1,2, . . .) by τ̃, at
which (3.4) has a pair of purely imaginary roots ±iω and system (3.1) undergoes a Hopf
bifurcation from the zero equilibrium.

Throughout this section, we make also the following for the conditions in (H1):
(H3) fk ∈ C3(R,R), k = 1,2,3,4.
For the sake of simplicity, we denote τ as τ = τ̃ + μ, μ ∈ R. Then μ = 0 is the Hopf

bifurcation value of system (3.1). Let yk(t)= uk(τt) (k = 1,2,3,4). Then system (3.1) can
be rewritten an functional differential equation in C([−1,0],R4) as

ẏ1(t)= τ[−μ1y1(t) + c21 f1
(
y2(t− 1)

)
+ c31 f1

(
y3(t− 1)

)
+ c41 f1

(
y4(t− 1)

)]
,

ẏ2(t)= τ[−μ2y2(t) + c12 f2
(
y1(t)

)]
,

ẏ3(t)= τ[−μ3y3(t) + c13 f3
(
y1(t)

)]
,

ẏ4(t)= τ[−μ4y4(t) + c14 f4
(
y1(t)

)]
.

(4.1)

Let y = (y1, y2, y3, y4)T and substitute the Taylor expansion of fk (k = 1,2,3,4) at the
zero point into system (4.1), one can get the linearization of system (4.1) at the zero
equilibrium y = 0 as

ẏ1(t)= (τ̃ +μ)
[−μ1y1(t) +α21y2(t− 1) +α31y3(t− 1) +α41y4(t− 1)

]
,

ẏ2(t)= (τ̃ +μ)
[−μ2y2(t) +α12y1(t)

]
,

ẏ3(t)= (τ̃ +μ)
[−μ3y3(t) +α13y1(t)

]
,

ẏ4(t)= (τ̃ +μ)
[−μ4y4(t) +α14y1(t)

]
.

(4.2)
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Rewrite (4.2) as the following matrix vector form:

ẏ(t)= (τ̃ +μ)
[
B0y(t) +B1y(t− 1)

]= Lμ
(
yt
)
, (4.3)

where

B0 =

⎡

⎢
⎢
⎢
⎣

−μ1 0 0 0
α12 −μ2 0 0
α13 0 −μ3 0
α14 0 0 −μ4

⎤

⎥
⎥
⎥
⎦

, B1 =

⎡

⎢
⎢
⎢
⎣

0 α21 α31 α41

0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎥
⎦
. (4.4)

For any φ= (φ1,φ2,φ3,φ4)T ∈ C([−1,0],R4),

Lμ(φ)= (τ̃ +μ)
[
B0φ(0) +B1φ(−1)

]
. (4.5)

Then Lμ is a continuous linear function mapping C([−1,0],R4) into R4. By the Rieze
representation theorem, there exists a 4× 4 matrix function η(θ,μ), −1 ≤ θ ≤ 0, whose
elements are of bounded variation such that

Lμ(φ)=
∫ 0

−1
dη(θ,μ)φ(θ) for φ∈ C([−1,0],R4). (4.6)

In fact, we can choose

η(θ,μ)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(τ̃ +μ)B0, θ = 0,

0, θ ∈ (−1,0),

−(τ̃ +μ)B1, θ =−1.

(4.7)

Then (4.6) is satisfied.
For φ∈ C1([−1,0],R4), define the operator A(μ) as

A(μ)φ(θ)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dφ(θ)
dθ

, θ ∈ [−1,0),

Lμ(φ)
def=

∫ 0

−1
dη(ξ,μ)φ(ξ), θ = 0.

(4.8)

For φ= (φ1,φ2,φ3,φ4)T ∈ C([−1,0],R4), let

f (μ,φ)= (τ̃ +μ)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

k1φ
2
2(−1) + k2φ

3
2(−1) + k3φ

2
3(−1) + k4φ

3
3(−1)

+k5φ
2
4(−1) + k6φ

3
4(−1) + ···

l1φ
2
1(0) + l2φ3

1(0) + ···
m1φ

2
1(0) +m2φ

3
1(0) + ···

n1φ
2
1(0) +n2φ

3
1(0) + ···

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.9)
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where

k1 = c21 f
′′

1 (0)
2!

, k2 = c21 f
′′′

1 (0)
3!

, k3 = c31 f
′′

1 (0)
2!

, k4 = c31 f
′′′

1 (0)
3!

,

k5 = c41 f
′′

1 (0)
2!

, k6 = c41 f
′′′

1 (0)
3!

, l1 = c12 f
′′

2 (0)
2!

, l2 = c12 f
′′′

2 (0)
3!

,

m1 = c13 f
′′

3 (0)
2!

, m2 = c13 f
′′′

3 (0)
3!

, n1 = c14 f
′′

4 (0)
2!

, n2 = c14 f
′′′

4 (0)
3!

.

(4.10)

If we further define the operator R(μ) as

R(μ)φ(θ)=
⎧
⎨

⎩

0, θ ∈ [−1,0),

f (μ,φ), θ = 0,
(4.11)

then system (4.1) is equivalent to

ẏt = A(μ)yt +R(μ)yt. (4.12)

For ψ ∈ C1([0,1],(R4)∗), define

A∗ψ(s)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−dψ(s)
ds

, s∈ (0,1],

∫ 0

−1
ψ(−ξ)dη(ξ,0), s= 0,

(4.13)

and a bilinear inner product

〈
ψ(s),φ(θ)

〉= ψ(0)φ(0)−
∫ 0

−1

∫ θ

ξ=0
ψ(ξ − θ)dη(θ)φ(ξ)dξ, (4.14)

where η(θ)= η(θ,0). Then A(0) and A∗ are adjoint operators.
From the discussion in Section 2, we know that ±iωτ̃ are eigenvalues of A(0) and

therefore they are also eigenvalues of A∗. It is not difficult to verify the vector

q(θ)=
(

1,
α12

μ2 + iω
,

α13

μ3 + iω
,

α14

μ4 + iω

)T
eiωτ̃θ , θ ∈ [−1,0] (4.15)

is the eigenvector of A(0) corresponding to the eigenvalue iωτ̃, and

q∗(s)=Q
(

1,
α21eiωτ̃

μ2− iω ,
α31eiωτ̃

μ3− iω ,
α41eiωτ̃

μ4− iω
)
eiωτ̃s, s∈ [0,1], (4.16)

is the eigenvector of A∗ corresponding to the eigenvalue−iωτ̃. Moreover, 〈q∗(s),q(θ)〉 =
1, where

Q=
[

e−iωτ̃ +
α12α21

(
μ2−iω

)2 +
α12α21τ̃

μ2−iω +
α13α31

(
μ3−iω

)2 +
α13α31τ̃

μ3−iω +
α14α41

(
μ4− iω

)2 +
α14α41τ̃

μ4−iω

]−1

e−iωτ̃ .

(4.17)
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Using the same notations as in Hassard et al. [10], we first compute the coordinates to

describe the center manifold C0 at μ= 0. Let yt = (y(1)
t , y(2)

t , y(3)
t , y(4)

t )T be the solution of
system (4.1) when μ= 0. Define

z(t)= 〈
q∗(s), yt(θ)

〉
, (4.18)

W(t,θ)= yt(θ)− 2Re
{
z(t)q(θ)

}
. (4.19)

On the center manifold C0, we have

W(t,θ)=W(
z(t),z(t),θ

)
, (4.20)

where

W(z,z,θ)=W20(θ)
z2

2
+W11(θ)zz+W02(θ)

z2

2
+W30(θ)

z3

6
+ ··· , (4.21)

z and z are local coordinates for center manifold C0 in the direction of q and q∗. Note
that W is real if yt is real. We only consider real solution.

For solution yt ∈ C0 of system (4.1), we from (4.12) get ẏt = A(0)yt + R(0)yt since
μ= 0. Therefore, from the definition of R(μ) and (4.19), we have

ż(t)= 〈
q∗(s), ẏt

〉= 〈
q∗(s),A(0)yt +R(0)yt

〉

= 〈
q∗(s),A(0)yt

〉
+
〈
q∗(s),R(0)yt

〉

= 〈− iωτ̃q∗(s), yt
〉

+ q∗(0) f
(
0, yt(θ)

)

def= iωτ̃z(t) + q∗(0) f0
(
z(t),z(t)

)
.

(4.22)

We rewrite this as

ż(t)= iωτ̃z(t) + g
(
z(t),z(t)

)
, (4.23)

where

g(z,z)= g20
z2

2
+ g11zz+ g02

z2

2
+ g21

z2z

2
+ ··· . (4.24)

For the sake of simplicity, let

α= α12

μ2 + iω
, β = α13

μ3 + iω
, γ = α14

μ4 + iω
,

α∗ = α21eiωτ̃

μ2− iω , β∗ = α31eiωτ̃

μ3− iω , γ∗ = α41eiωτ̃

μ4− iω .
(4.25)

Then (4.19) leads to

yt(θ)=W(t,θ) + 2Re
{
z(t)q(θ)

}=W(t,θ) + z(t)q(θ) + z(t)q(θ)

=W20(θ)
z2

2
+W11(θ)zz+W02(θ)

z2

2
+ (1,α,β,γ)Teiωτ̃θz+ (1, ᾱ, β̄, γ̄)Te−iωτ̃θz+ ··· .

(4.26)
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Thus, we can easily obtain

y(1)
t (0)=W (1)

20 (0)
z2

2
+W (1)

11 (0)zz+W (1)
02 (0)

z2

2
+ z+ z+ ··· ,

y(2)
t (−1)=W (2)

20 (−1)
z2

2
+W (2)

11 (−1)zz+W (2)
02 (−1)

z2

2
+αze−iωτ̃ + ᾱzeiωτ̃ + ··· ,

y(3)
t (−1)=W (3)

20 (−1)
z2

2
+W (3)

11 (−1)zz+W (3)
02 (−1)

z2

2
+βze−iωτ̃ + β̄zeiωτ̃ + ··· ,

y(4)
t (−1)=W (4)

20 (−1)
z2

2
+W (4)

11 (−1)zz+W (4)
02 (−1)

z2

2
+ γze−iωτ̃ + γ̄zeiωτ̃ + ··· .

(4.27)

Therefore, it follows from (4.9) that

f0
(
z(t),z(t)

)

= τ̃

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2
(
k1α2 + k3β2 + k5γ2

)
e−2iωτ̃ z

2

2
+ 2

(
k1|α|2 + k3|β|2 + k5|γ|2

)
zz

+2
(
k1ᾱ2 + k3β̄2 + k5γ̄2

)
e2iωτ̃ z

2

2

+2
[(
k1W

(2)
20 (−1)ᾱ+ k3W

(3)
20 (−1)β̄+ k5W

(4)
20 (−1)γ̄

)
eiωτ̃

+2
(
k1W

(2)
11 (−1)α+ k3W

(3)
11 (−1)β+ k5W

(4)
11 (−1)γ

)
e−iωτ̃

+3
(
k2α2ᾱ+ k4β2β̄+ k6γ2γ̄

)
e−iωτ̃

]z2z

2
+ ···

2
{
l1
z2

2
+ l1zz+ l1

z2

2
+
[
l1
(
W (1)

20 (0) + 2W (1)
11 (0)

)
+ 3l2

]z2z

2

}
+ ···

2
{
m1

z2

2
+m1zz+m1

z2

2
+
[
m1

(
W (1)

20 (0) + 2W (1)
11 (0)

)
+ 3m2

]z2z

2

}
+ ···

2
{
n1
z2

2
+n1zz+n1

z2

2
+
[
n1

(
W (1)

20 (0) + 2W (1)
11 (0)

)
+ 3n2

]z2z

2

}
+ ···

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(4.28)

Thus one can obtain

g(z,z)= g20
z2

2
+ g11zz+ g02

z2

2
+ g21

z2z

2
+ ···

= q∗(0) f0
(
z(t),z(t)

)

= 2Qτ̃
{(
k1α

2 + k3β
2 + k5γ

2)e−2iωτ̃ + l1α∗ +m1β∗ +n1γ∗
}z2

2

+ 2Qτ̃
{(
k1|α|2 + k3|β|2 + k5|γ|2

)
+ l1α∗ +m1β∗ +n1γ∗

}
zz

+ 2Qτ̃
{(
k1ᾱ

2 + k3β̄
2 + k5γ̄

2)e2iωτ̃ + l1α∗ +m1β∗ +n1γ∗
}z2

2
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+ 2Qτ̃
{(
k1W

(2)
20 (−1)ᾱ+ k3W

(3)
20 (−1)β̄+ k5W

(4)
20 (−1)γ̄

)
eiωτ̃

+ 2
(
k1W

(2)
11 (−1)α+ k3W

(3)
11 (−1)β+ k5W

(4)
11 (−1)γ

)
e−iωτ̃

+ 3
(
k2α

2ᾱ+ k4β
2β̄+ k6γ

2γ̄
)
e−iωτ̃ +α∗

[
l1
(
W (1)

20 (0) + 2W (1)
11 (0)

)
+ 3l2

]

+β∗
[
m1

(
W (1)

20 (0) + 2W (1)
11 (0)

)
+ 3m2

]

+ γ∗
[
n1

(
W (1)

20 (0) + 2W (1)
11 (0)

)
+ 3n2

]}
× z2z

2
+ ··· .

(4.29)

Comparing the coefficients of two sides of (4.29), we have

g20 = 2Qτ̃
[(
k1α

2 + k3β
2 + k5γ

2)e−2iωτ̃ + l1α∗ +m1β∗ +n1γ∗
]
,

g11 = 2Qτ̃
[(
k1|α|2 + k3|β|2 + k5|γ|2

)
+ l1α∗ +m1β∗ +n1γ∗

]
,

g02 = 2Qτ̃
[(
k1ᾱ

2 + k3β̄
2 + k5γ̄

2)e2iωτ̃ + l1α∗ +m1β∗ +n1γ∗
]
,

g21 = 2Qτ̃
{(
k1W

(2)
20 (−1)ᾱ+ k3W

(3)
20 (−1)β̄+ k5W

(4)
20 (−1)γ̄

)
eiωτ̃

+ 2
(
k1W

(2)
11 (−1)α+ k3W

(3)
11 (−1)β+ k5W

(4)
11 (−1)γ

)
e−iωτ̃

+ 3
(
k2α

2ᾱ+ k4β
2β̄+ k6γ

2γ̄
)
e−iωτ̃ +α∗

[
l1
(
W (1)

20 (0) + 2W (1)
11 (0)

)
+ 3l2

]

+β∗
[
m1

(
W (1)

20 (0) + 2W (1)
11 (0)

)
+ 3m2

]
+ γ∗

[
n1

(
W (1)

20 (0) + 2W (1)
11 (0)

)
+ 3n2

]}
.

(4.30)

Since W20(θ) and W11(θ) for θ ∈ [−1,0] appear in g21, we still need to compute them.
From (4.12), (4.19), and (4.22), we have

Ẇ = ẏt − 2Re
{
ż(t)q(θ)

}

=
⎧
⎪⎨

⎪⎩

A(0)W(t,θ)− 2Re
{
q∗(0) f0

(
z(t),z(t)

)
q(θ)

}
, θ ∈ [−1,0),

A(0)W(t,θ)− 2Re
{
q∗(0) f0

(
z(t),z(t)

)
q(0)

}
+ f0

(
z(t),z(t)

)
, θ = 0,

def= A(0)W(t,θ) +H
(
z(t),z(t),θ

)
,

(4.31)

where

H(z,z,θ)=H20(θ)
z2

2
+H11(θ)zz+H02(θ)

z2

2
+ ··· . (4.32)
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From (4.31) and (4.32), we have

A(0)W(t,θ)− Ẇ =−H(z,z,θ)=−H20(θ)
z2

2
−H11(θ)zz−H02(θ)

z2

2
−··· . (4.33)

In view of (4.21), one can obtain

A(0)W(t,θ)= A(0)W20(θ)
z2

2
+A(0)W11(θ)zz+ ··· ,

Ẇ =Wzż+Wzż = 2iωτ̃W20(θ)
z2

2
+ ··· .

(4.34)

It follows from (4.34) that

A(0)W(t,θ)− Ẇ = [
A(0)− 2iωτ̃I

]
W20(θ)

z2

2
+A(0)W11(θ)zz+ ··· . (4.35)

Thus, (4.33) and (4.35) imply that

[
A(0)− 2iωτ̃I

]
W20(θ)

z2

2
+A(0)W11(θ)zz+ ···

= −H20(θ)
z2

2
−H11(θ)zz−H02(θ)

z2

2
−··· .

(4.36)

Comparing the coefficients of two sides of (4.36), we have

[
A(0)− 2iωτ̃I

]
W20(θ)=−H20(θ), A(0)W11(θ)=−H11(θ), . . . . (4.37)

From (4.31), we know that for θ ∈ [−1,0),

H(z,z,θ)=−2Re
{
q∗(0) f0

(
z(t),z(t)

)
q(θ)

}

=−q∗(0) f0
(
z(t),z(t)

)
q(θ)− q∗(0) f0

(
z(t),z(t)

)
q(θ)

=−g(z,z)q(θ)− g(z,z)q(θ)

=−(g20q(θ) + g02q(θ)
)z2

2
− (

g11q(θ) + g11q(θ)
)
zz+ ··· .

(4.38)

Comparing the coefficients with (4.32) gives that

H20(θ)=−(g20q(θ) + g02q(θ)
)
, (4.39)

H11(θ)=−(g11q(θ) + g11q(θ)
)
. (4.40)

From (4.37), (4.39) and the definition of A(0), we have

Ẇ20(θ)= 2iωτ̃W20(θ) + g20q(θ) + g02q(θ). (4.41)
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Note that q(θ)= q(0)eiωτ̃θ , hence

W20(θ)= ig20

ωτ̃
q(θ) +

ig02

3ωτ̃
q(θ) +E1e

2iωτ̃θ. (4.42)

Similarly, from (4.37), (4.40), and the definition of A(0), we have

Ẇ11(θ)= g11q(θ) + g
11
q(θ),

W11(θ)=− ig11

ωτ̃
q(θ) +

ig
11

ωτ̃
q(θ) +E2.

(4.43)

In what follows, we will seek appropriate E1 and E2 in (4.42) and (4.43), respectively.
It follows from the definition of A(0) and (4.37) that

∫ 0

−1
dη(θ)W20(θ)= 2iωτ̃W20(0)−H20(0), (4.44)

∫ 0

−1
dη(θ)W11(θ)=−H11(0). (4.45)

Note that q(θ) is the eigenvector of A(0) and from (4.42) and the definition of A(0), we
know that

∫ 0

−1
dη(θ)W20(θ)=−g20q(0) +

g02

3
q(0) +

∫ 0

−1
dη(θ)e2iωτ̃θE1,

2iωτ̃W20(0)=−2g20q(0)− 2g02

3
q(0) + 2iωτ̃E1.

(4.46)

Thus, (4.44) becomes

−g20q(0)− g02q(0) +
(

2iωτ̃I −
∫ 0

−1
dη(θ)e2iωτ̃θ

)
E1 =H20(0). (4.47)

Similarly, from (4.43), we have

∫ 0

−1
dη(θ)W11(θ)= g11q(0) + g

11
q(0) +

∫ 0

−1
dη(θ)E2. (4.48)

Hence (4.45) becomes

−(g11q(0) + g
11
q(0)

)−
∫ 0

−1
dη(θ)E2 =H11(0). (4.49)

From (4.31) and (4.32), we know that

H(z,z,0)=H20(0)
z2

2
+H11(0)zz+H02(0)

z2

2
+ ···

= −2Re
{
q∗(0) f0

(
z(t),z(t)

)
q(0)

}
+ f0

(
z(t),z(t)

)

=−(g20q(0) + g02q(0)
)z2

2
− (

g11q(0) + g11q(0)
)
zz+ f0

(
z(t),z(t)

)
+ ··· .

(4.50)
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It follows together with (4.28) that

H20(0)=−(g20q(0) + g02q(0)
)

+ 2τ̃h20, (4.51)

H11(0)=−(g11q(0) + g11q(0)
)

+ 2τ̃h11, (4.52)

where

h20 =
((
k1α

2 + k3β
2 + k5γ

2)e−2iωτ̃ , l1,m1,n1
)T

,

h11 =
(
k1|α|2 + k3|β|2 + k5|γ|2, l1,m1,n1

)T
.

(4.53)

Substituting (4.51) into (4.47), we obtain

(
2iωτ̃I −

∫ 0

−1
dη(θ)e2iωτ̃θ

)
E1 = 2τ̃h20, (4.54)

that is,

⎡

⎢
⎢
⎢
⎣

2iω+μ1 −α21e−2iωτ̃ −α31e−2iωτ̃ −α41e−2iωτ̃

−α12 2iω+μ2 0 0
−α13 0 2iω+μ3 0
−α14 0 0 2iω+μ4

⎤

⎥
⎥
⎥
⎦
E1 = 2h20. (4.55)

Solving this equation, one can obtain E1.
Similarly, substituting (4.52) into (4.48), we get

∫ 0

−1
dη(θ)E2 =−2τ̃h11, (4.56)

which means that
⎡

⎢
⎢
⎢
⎣

μ1 −α21 −α31 −α41

−α12 μ2 0 0
−α13 0 μ3 0
−α14 0 0 μ4

⎤

⎥
⎥
⎥
⎦
E2 = 2h11. (4.57)

From this equation, we can get E2.
Consequently, g21 can be expressed explicitly. Thus, we can compute the following val-

ues:

c1(0)= i

2ωτ̃

(

g11g20− 2
∣
∣g11

∣
∣2−

∣
∣g02

∣
∣2

3

)

+
g21

2
,

ρ2 =− Re
(
c1(0)

)

Re
(
λ′k
(
τj
)) , σ2 = 2Re

(
c1(0)

)
,

T2 =−
Im

(
c1(0)

)
+ σ2 Im

(
λ′k
(
τj
))

ω
, j = 0,1,2, . . . ,

(4.58)

which determine the properties of bifurcating periodic solutions at the critical value τj ,
that is, ρ2 determines the directions of the Hopf bifurcation: if ρ2 > 0 (ρ2 < 0), then the
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Hopf bifurcation is supercritical (subcritical) and the bifurcating periodic solutions exist
for τ > τj (τ < τj); σ2 determines the stability of the bifurcating periodic solutions: the bi-
furcating periodic solutions on the center manifold are stable (unstable) if σ2 < 0 (σ2 > 0);
and T2 determines the period of the bifurcating periodic solutions: the period increases
(decreases) if T2 > 0 (T2 < 0).

5. Applications and numerical simulations

In this section, we will apply the results obtained in Sections 3 and 4 to investigate a speci-
al four-neuron BAM neural network with two delays and give numerical simulations sup-
porting our theoretical analysis.

5.1. Application to a special BAM neural network. Consider the four-neuron BAM
neural network with two delays described by the following functional differential equa-
tions:

ẋ1(t)=−μx1(t) + c21 f
(
x2
(
t− τ2

))
+ c31 f

(
x3
(
t− τ2

))
+ c41 f

(
x4
(
t− τ2

))
,

ẋ2(t)=−μx2(t) + c12 f
(
x1
(
t− τ1

))
,

ẋ3(t)=−μx3(t) + c13 f
(
x1
(
t− τ1

))
,

ẋ4(t)=−μx4(t) + c14 f
(
x1
(
t− τ1

))
,

(5.1)

with μ > 0, ck1 (k = 2,3,4) > 0, and c1l (l = 2,3,4) < 0. In addition, the activation function
f satisfies the following condition:

(H4) f ∈ C3(R,R), f (0)= 0, f ′(0) �= 0, f ′′(0)= 0 and f ′′′(0) �= 0.
For instance, the nonlinear activation function commonly used in the studies and ap-

plications on neural network given by f (u)= tanh(u) posses the above property. Adopt-
ing the same notations as in Sections 3 and 4, for system (5.1), we have

αk1 = ck1 f
′(0), α1l = c1l f

′(0), k, l = 2,3,4. (5.2)

From (3.5) and (3.6), one can get that

a3 = 4μ > 0, a2 = 6μ2 > 0, a1 = 4μ3 > 0, a0 = μ4 > 0,

b2 =−
(
c12c21 + c13c31 + c14c41

)
f ′2(0) > 0,

b1 =−2μ
(
c12c21 + c13c31 + c14c41

)
f ′2(0) > 0,

b0 =−μ2(c12c21 + c13c31 + c14c41
)
f ′2(0) > 0,

(5.3)

which implies the condition (H2) holds and a, b, c, d defined by (3.6) are

a= 4μ2, b = 6μ4− (
c12c21 + c13c31 + c14c41

)2
f ′4(0),

c = 4μ6− 2μ2(c12c21 + c13c31 + c14c41
)2
f ′4(0),

d = μ8−μ4(c12c21 + c13c31 + c14c41
)2
f ′4(0).

(5.4)
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Therefore, we have b > 0, c > 0, d < 0 provided that

μ4 <
(
c12c21 + c13c31 + c14c41

)2
f ′4(0) < 2μ4. (5.5)

Thus, dh(z)/dz > 0 for all z > 0, that is, h(z) is strictly monotonous increasing on [0,∞).
Noticing that d < 0, it follows that h(z) has only a positive root, say z0. Let ω0 = √z0,
τ = τ1 + τ2. From (2.16) and (5.3), we have

τj = 1
ω0

{

arccos

(
μ2−ω2

0(
c12c21 + c13c31 + c14c41

)
f ′2(0)

)

+ 2 jπ

}

, j = 0,1, . . . . (5.6)

By Theorem 3.1, we can get the following result.

Theorem 5.1. Suppose that the condition (H4) and (5.5) hold and τj is defined by (5.6).
(i) When τ ∈ [0,τ0), all roots of the corresponding characteristic equation of (5.1) have

negative real parts. Meanwhile, when τ = τ0, the corresponding characteristic equation of
(5.1) has only a pair of simple purely imaginary roots±iω0, and all other roots have negative
real parts. However, when τ > τ0, the corresponding characteristic equation of (5.1) has at
least one root with positive real part.

(ii) The zero steady state of system (5.1) is asymptotically stable when τ ∈ [0,τ0), and
unstable when τ > τ0.

(iii) System (5.1) undergoes a Hopf bifurcation at the zero steady state when τ = τj , j =
0,1,2, . . ..

Theorem 5.2. Assume the conditions of Theorem 5.1 hold, and τj is defined by (5.6). Then,
the direction of Hopf bifurcation and stability of the bifurcating periodic solutions at τj
( j = 0,1,2, . . .) are determined by sign of f ′′′(0)/ f ′(0). More specifically, if f ′′′(0)/ f ′(0) <
0(> 0), then the Hopf bifurcation is supercritical (subcritical) and the bifurcating periodic
solutions are orbitally asymptotically stable (unstable) on the center manifold.

Proof. For system (5.1), from the assumption (H4), we know that

k1 = c21 f ′′(0)
2!

= 0, k2 = c21 f ′′′(0)
3!

, k3 = c31 f ′′(0)
2!

= 0,

k4 = c31 f ′′′(0)
3!

, k5 = c41 f ′′(0)
2!

= 0, k6 = c41 f ′′′(0)
3!

,

l1 = c12 f ′′(0)
2!

= 0, l2 = c12 f ′′′(0)
3!

, m1 = c13 f ′′(0)
2!

= 0,

m2 = c13 f ′′′(0)
3!

, n1 = c14 f ′′(0)
2!

= 0, n2 = c14 f ′′′(0)
3!

,

α= c12 f ′(0)
μ+ iω0

, β = c13 f ′(0)
μ+ iω0

, γ = c14 f ′(0)
μ+ iω0

,

α∗ = c21 f ′(0)
μ− iω0

eiω0τj , β∗ = c31 f ′(0)
μ− iω0

eiω0τj , γ∗ = c41 f ′(0)
μ− iω0

eiω0τj .

(5.7)
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From (5.7) and (4.30), we can observe

g20 = g11 = g02 = 0,

g21 = 6Qτj
[(
k2α

2ᾱ+ k4β
2β̄+ k6γ

2γ̄
)
e−iω0τj + l2α∗ +m2β∗ +n2γ∗

]

=
[
c12c21

(|α|2 + 1
)

+ c13c31
(|β|2 + 1

)
+ c14c41

(|γ|2 + 1
)]

μ+ iω0
×Qτj f ′(0) f ′′′(0)e−iω0τj .

(5.8)

From the discussion in Section 4, we know that

(
μ+ iω0

)2 = 1
3

(
α12α21 +α13α31 +α14α41

)
e−iω0τj . (5.9)

Therefore, we have

Q =
[

eiω0τj +
α12α21 +α13α31 +α14α41

(
μ+ iω0

)2 +

(
α12α21 +α13α31 +α14α41

)
τj

μ+ iω0

]−1

eiω0τj

=
(
μ+ iω0

)2
eiω0τj

(
μ+ iω0

)2
eiω0τj +

(
α12α21 +α13α31 +α14α41

)[
1 +

(
μ+ iω0

)
τj
]

= 3
(
μ+ iω0

)2
eiω0τj

(
c12c21 + c13c31 + c14c41

)(
4 + 3μτj + i3ω0τj

)
f ′2(0)

.

(5.10)

Substituting (5.10) into (5.8), one can get

g21 = 3τj
f ′′′(0)
f ′(0)

μ
(
4 + 3μτj

)
+ 3ω2

0τj + 4ω0i
(
c12c21 + c13c31 + c14c41

)[(
4 + 3μτj

)2
+ 9ω2

0

]

× [
c12c21

(|α|2 + 1
)

+ c13c31
(|β|2 + 1

)
+ c14c41

(|γ|2 + 1
)]
.

(5.11)

Noticing that g20 = g11 = g02 = 0 and from (4.58), we have

Re
{
c1(0)

}= 1
2

Re
{
g21

}

= 3τj
f ′′′(0)
2 f ′(0)

μ
(
4 + 3μτj

)
+ 3ω2

0τj
(
c12c21 + c13c31 + c14c41

)[(
4 + 3μτj

)2
+ 9ω2

0

]

× [
c12c21

(|α|2 + 1
)

+ c13c31
(|β|2 + 1

)
+ c14c41

(|γ|2 + 1
)]
.

(5.12)
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In addition, when μ4 < (c12c21 + c13c31 + c14c41)2 f ′4(0) < 2μ4, we know that a > 0, b > 0,
c > 0, it follows that dh(z)/dz > 0 for all z ≥ 0. Therefore, we have Re{λ′(τj)} > 0. Noticing
that μ,ω0,τj > 0 ( j = 0,1,2, . . .), ak1 > 0 (k = 2,3,4), and a1l < 0 (l = 2,3,4), we can easily
obtain

ρ2 =− Re
{
c1(0)

}

Re
{
λ′
(
τj
)} > 0(< 0) if

f ′′′(0)
f ′(0)

< 0(> 0),

σ2 = 2Re
{
c1(0)

}
< (> 0) if

f ′′′(0)
f ′(0)

< 0(> 0).

(5.13)

By the general result of Hassard et al. [10], the conclusion of the theorem follows. �

5.2. Numerical simulations. In this section, we give numerical simulations supporting
our theoretical analysis. As a example, we consider the following system:

ẋ1(t)=−2x1(t) + 2tanh
(
x2
(
t− τ2

))
+ tanh

(
x3
(
t− τ2

))
+ tanh

(
x4
(
t− τ2

))
,

ẋ2(t)=−2x2(t)− tanh
(
x1
(
t− τ1

))
,

ẋ3(t)=−2x3(t)− 2tanh
(
x1
(
t− τ1

))
,

ẋ4(t)=−2x4(t)− tanh
(
x1
(
t− τ1

))
,

(5.14)

which has a equilibrium (0,0,0,0). It follows from (5.4) that a = 16, b = 71, c = 56, d =
−144 since f ′(0)= tanh′(0)= 1. Thus, in this case h(z)= z4 + 16z3 + 71z2 + 56z− 144, it
is easily to see that equation h(z)= 0 has only a positive root z0 = 1, and so ω0 = 1. From
(5.6), we have

τj = arccos
(
− 3

5

)
+ 2 jπ, j = 0,1, . . . , (5.15)

where τj = τ1 j + τ2 j . From Theorem 5.1, we know that the zero equilibrium of system
(5.14) is asymptotically stable when τ1 + τ2 ∈ [0,2.2143), this fact is illustrated by the
numerical simulation in Figures 5.1-5.2 with τ1 = 1.2, τ2 = 0.8.

When τ1 + τ2 is increased to the critical value 2.2143, the origin losses its stability
and Hopf bifurcation occurs. In addition, since f ′′′(0) = tanh′′′(0) = −1/4, it follows
from Theorem 5.2 that the Hopf bifurcation is supercritical and the projection of the bi-
furcating periodic solution on the center manifold is asymptotically stable, that is, the
bifurcating periodic solution is orbitally asymptotically stable. In addition, all roots of
(2.5) with τ = τ0 = 2.2143, except ±i, have negative real parts. Thus, the center manifold
theory implies that the stability of the periodic solutions projected in the center mani-
fold coincide with the stability of the periodic solutions in the whole phase space, this
property is depicted in the numerical simulation Figures 5.3, 5.4, and 5.5 with τ1 = 1.2,
τ2 = 1.3.
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Figure 5.1. The trajectories graphs of system (5.14) with τ1 = 1.2, τ2 = 0.8, and initial data x1(t) =
x2(t)= x3(t)= x4(t)= 0.3, t ∈ [−1.2,0].
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Figure 5.2. The projections in the space with dimension 3 of the orbit of system (5.14) with τ1 = 1.2,
τ2 = 0.8, and initial data x1(t)= x2(t)= x3(t)= x4(t)= 0.3, t ∈ [−1.2,0].
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Figure 5.3. The trajectories graphs of system (5.14) with τ1 = 1.2, τ2 = 1.3, and initial data x1(t) =
x2(t)= x3(t)= x4(t)= 0.3, t ∈ [−1.3,0].
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Figure 5.4. The trajectories graphs of system (5.14) with τ1 = 1.2, τ2 = 1.3, and initial data x1(t) =
x2(t)= x3(t)= x4(t)= 0.09, t ∈ [−1.3,0].
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Figure 5.5. The projections in three-dimensional spaces of the orbit of system (5.14) with τ1 = 1.2,
τ2 = 1.3, and initial data x1(t)= x2(t)= x3(t)= x4(t)= 0.3, and 0.09, t ∈ [−1.3,0].
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