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The paper considers the boundedness character of positive solutions of the difference
equation xn+1 = A+ x

p
n /xrn−1, n ∈ N0, where A, p, and r are positive real numbers. It is

shown that (a) If p2 ≥ 4r > 4, or p ≥ 1 + r, r ≤ 1, then this equation has positive un-
bounded solutions; (b) if p2 < 4r, or 2

√
r ≤ p < 1 + r, r ∈ (0,1), then all positive solutions

of the equation are bounded. Also, an analogous result is proved regarding positive solu-
tions of the max type difference equation xn+1 =max{A,x

p
n /xrn−1}, where A, p, q ∈ (0,∞).
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1. Introduction

Recently, there has been an intense interest in studying nonlinear and rational difference
equations (cf., [1–15] and the references therein).

In our opinion, it is of paramount importance to investigate not only rational dif-
ference equations, but also those equations which contain powers of arbitrary positive
degrees.

Here, we investigate such an equation, namely, we study positive solutions of the fol-
lowing difference equation:

xn+1 = A+
x
p
n

xr
n−1

, n∈N0, (1.1)

where A, p, and r are positive numbers.
Our aim here is to give a complete picture regarding the boundedness character of the

positive solutions of (1.1). Our results extend those ones in paper [13], in which the case
p = r was considered. Beside some modifications of the main ideas from [13], we also use
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some methods which do not appear in [13] since we have some cases for which this is not
possible, in particular, when 2

√
r ≤ p < 1 + r and r ∈ (0,1).

For some other closely related equations, see, for example, [1–13] and the references
therein.

In the last section we study the boundedness character of the following difference
equation:

xn+1 =max

{
A,

x
p
n

xr
n−1

}
, n∈N0, (1.2)

where A, p,q ∈ (0,∞), which can be considered as a natural counterpart of (1.1) for the
case of max type difference equations.

2. Boundedness character of (1.1)

In this section, we investigate the boundedness character of the positive solutions of (1.1).

2.1. Case p2 ≥ 4r > 4. Here, we investigate the positive solutions of (1.1) for the case
p2 ≥ 4r > 4.

Theorem 2.1. Assume that p2 ≥ 4r > 4. Then (1.1) has positive unbounded solutions.

Proof. First, note that for every solution of (1.1), the following inequality holds:

xn+1 >
x
p
n

xr
n−1

, n∈N0. (2.1)

Let yn = lnxn. Taking the logarithm of (2.1), it follows that

yn+1− pyn + r yn−1 > 0. (2.2)

Notice that the roots of the polynomial

P(λ)= λ2− pλ+ r (2.3)

are

λ1,2 =
p±

√
p2− 4r

2
. (2.4)

Since p2 ≥ 4r > 4, we have that λ1 > 1. On the other hand, we have that

λ2 = 2r

p+
√
p2− 4r

> 0. (2.5)

Hence, if p2 ≥ 4r > 4, both roots of P(λ) are positive.
Now, note that (2.2) can be written in the following form:

yn+1− λ1yn− λ2
(
yn− λ1yn−1

)
> 0. (2.6)
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If we turn back to the variable xn, we obtain

xn+1

xλ1
n

>

(
xn

xλ1
n−1

)λ2

. (2.7)

From (2.7), it follows that

xn

xλ1
n−1

>

(
x0

xλ1
−1

)λn2

. (2.8)

Choose x−1 and x0 so that

x0 > 1, x0 = xλ1
−1. (2.9)

From this and (2.8), it follows that

xn >

(
x0

xλ1
−1

)λn2

xλ1
n−1 = xλ1

n−1 > ··· > x
λn1
0 , (2.10)

and consequently,

xn > x
λn1
0 , n∈N. (2.11)

Letting n→∞ in (2.11), it follows that

xn −→ +∞, as n−→∞, (2.12)

from which the result follows. �

2.2. Case p2 < 4r. Here, we investigate the behavior of the positive solutions of (1.1) for
the case p2 < 4r.

Theorem 2.2. Assume that p2 < 4r. Then all positive solutions of (1.1) are bounded.
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Proof. From (1.1), we have that for every k ∈N, the following holds:

xn+1 = A+
x
p
n

xr
n−1

=A+

(
A

x
r/p
n−1

+
x
p−r/p
n−1

xr
n−2

)p

(2.13)

= A+

⎛
⎝ A

x
r/p
n−1

+

(
xn−1

x
r/(p−r/p)
n−2

)p−r/p⎞⎠
p

= A+

⎛
⎜⎝ A

x
r/p
n−1

+

⎛
⎝ A

x
r/(p−r/p)
n−2

+
x
p−r/(p−r/p)
n−2

xr
n−3

⎞
⎠

p−r/p⎞⎟⎠
p

= A+

⎛
⎜⎝ A

x
r/p
n−1

+

⎛
⎝ A

x
r/(p−r/p)
n−2

+

(
xn−2

x
r/(p−r/(p−r/p))
n−3

)p−r/(p−r/p)
⎞
⎠

p−r/p⎞⎟⎠
p

= ···

= A+

⎛
⎜⎜⎝ A

x
r/p
n−1

+

⎛
⎜⎝ A

x
r/(p−r/p)
n−2

+

(
···+

(
A

x
pk
n−k

+
x
p−pk
n−k

xr
n−k−1

)p−pk−1

···
)p−r/(p−r/p)

⎞
⎟⎠

p−r/p⎞⎟⎟⎠
p

,

(2.14)

where the sequence pk is defined by

pk+1 = r

p− pk
, p0 = 0. (2.15)

First, assume that p2 ≤ r, then from (2.13), it follows that for n≥ 3,

xn+1 =A+

(
A

x
r/p
n−1

+
1

x
r/p−p
n−1 xr

n−2

)p

≤ A+
(

1
Ar/p−1 +

1
Ar/p−p+r

)p

, (2.16)

from which the boundedness follows in this case.
Now, assume that p2 > r. We show that there is a k0 ∈N such that pk0−1 < p and pk0 ≥

p. Assume, to the contrary, that pk < p for every k ∈N0. Since 0= p0 < p1 = r/p, and the
function f (x)= r/(p− x) is strictly increasing for x < p, we have that the sequence pk is
strictly increasing. Since the sequence pk is bounded above by p, it converges, say, to p∗,
and it is a solution of the equation

x2− px+ r = 0. (2.17)

However, in view of the assumption p2 < 4r, the equation does not have real solutions.
Hence, there is the least k0 ∈ N such that pk0−1 < p and pk0 ≥ p. From this, (2.14) with
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k = k0, and by using the fact xn > A for n≥ 1, it follows that

xn+1

=A+

(
A

x
r/p
n−1

+

(
A

x
r/(p−r/p)
n−2

+

(
···+

(
A

x
pk0
n−k0

+
1

x
pk0−p
n−k0

xr
n−k0−1

)p−pk0−1

···
)p−r/(p−r/p))p−r/p)p

≤A+

(
1

Ar/p−1 +

(
1

Ar/(p−r/p)−1 +

(
···+

(
1

Apk0−1 +
1

Apk0−p+r

)p−pk0−1

···
)p−r/(p−r/p))p−r/p)p

,

(2.18)

for n≥ k0 + 2, finishing the proof of the theorem. �

2.3. Case p2 ≥ 4r, r ≤ 1. Here, we study the case p2 ≥ 4r, r ≤ 1.
Assume first that p > 1 + r. Then

λ1 =
p+

√
p2− 4r

2
>

1 + r + |1− r|
2

= 1. (2.19)

Hence, similar to the proof of Theorem 2.1, we can obtain the following result.

Theorem 2.3. Assume that p > 1 + r, r ≤ 1. Then (1.1) has positive unbounded solutions.

The next theorem concerns the case p = r + 1, r ∈ (0,1].

Theorem 2.4. Assume that p = r + 1 and r ∈ (0,1]. Then (1.1) has positive unbounded
solutions.

Proof. Let x0 > x−1. Note that (1.1) in this case is

xn+1 =A+
xr+1
n

xr
n−1

. (2.20)

Equation (2.20) can be written in the form

xn+1

xn
= A

xn
+
(

xn
xn−1

)r

, (2.21)

from which it follows that

xn+1

xn
>
(

xn
xn−1

)r

> ··· >
(
x0

x−1

)rn+1

> 1, n∈N0. (2.22)

Hence, xn+1 > xn for n ∈ N0. Assume that xn is bounded. Then, there is a finite posi-
tive limn→∞xn = c. Letting n→∞ in (2.20), we obtain c = A+ c, which is a contradiction.
Hence, all the solutions of (2.20) with x0 > x−1 are unbounded. �

Now, we assume that 2
√
r ≤ p < 1 + r and r ∈ (0,1). The following theorem holds true.

Theorem 2.5. Assume that 2
√
r ≤ p < 1 + r and r ∈ (0,1). Then, every positive solution of

(1.1) is bounded.
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Proof. First, note that in this case, both roots of the polynomial P(λ) are real, and more-
over,

0 < λ2 < λ1 < 1. (2.23)

Further, (1.1) can be written in the following form:

xn+1 = A+
xλ1+λ2
n

xλ1λ2
n−1

. (2.24)

From (2.24), it follows that

xn+1

xλ1
n

= A

xλ1
n

+

(
xn

xλ1
n−1

)λ2

≤A1−λ1 +

(
xn

xλ1
n−1

)λ2

, (2.25)

for n∈N.
Let

yn = xn

xλ1
n−1

. (2.26)

Let (zn)n∈N be the solution of the difference equation

zn = A1−λ1 + zλ2
n−1, (2.27)

with z0 = y0. By (2.27) and induction, we see that yn ≤ zn, n∈N. Hence, it is enough to
prove that the sequence (zn)n∈N is bounded. Since the function

f (x)=A1−λ1 + xλ2 , x ∈ (0,∞), (2.28)

is increasing and concave (we use here the condition λ2 ∈ (0,1)), it follows that there is
a unique fixed point x∗ of the equation f (x) = x and that the function f satisfies the
condition

(
f (x)− x

)(
x− x∗

)
< 0, x ∈ (0,∞) \ {x∗}. (2.29)

Using this fact, it is easy to see that if z0 ∈ (0,x∗], the sequence (zn)n∈N is nondecreas-
ing and bounded above by x∗, and if z0 ≥ x∗, it is nonincreasing and bounded below
by x∗. Thus, for every z0 ∈ (0,∞), the sequence (zn)n∈N is bounded. Hence, there is a
positive constant M such that

xn ≤Mxλ1
n−1, n∈N. (2.30)

From (2.30), it follows that

xn ≤M(1−λn1 )/(1−λ1)x
λn1
0 ≤max{1,M}1/(1−λ1) max

{
1,x0

}
, (2.31)

from which the result follows. �
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In the next theorem, we summarize Theorems 2.1–2.5 into a result regarding the
boundedness character of positive solutions of (1.1).

Theorem 2.6. Consider (1.1) where A, p, and r are positive real numbers. The following
statements are true.

(a) If p2 ≥ 4r > 4, or p ≥ 1 + r, r ∈ (0,1], then (1.1) has positive unbounded solutions.
(b) If p2 < 4r, or 2

√
r ≤ p < 1 + r, r ∈ (0,1), then all positive solutions of (1.1) are

bounded.

The following result gives some more information of some unbounded solutions of
(1.1) for the case p = r + 1, r ∈ (0,1).

Theorem 2.7. Assume that p = r + 1 and r ∈ (0,1). Then every positive solution of (2.20)
diverging to +∞ satisfies the following condition

lim
n→∞

xn
xn−1

= 1. (2.32)

Proof. First, note that we can assume that A = 1 in (2.20) since, by using the change
xn = Aun, the equation is reduced to this case.

Hence, from (2.20), we have that

xn+1

xn
≤ 1 +

(
xn
xn−1

)r

, n∈N. (2.33)

In view of the assumption r ∈ (0,1), similar to the proof of Theorem 2.5, the bounded-
ness of the sequence xn/xn−1 can be proved.

Since xn tend to +∞, it follows that

lim
n→∞

1
xn
= 0. (2.34)

Hence, the sequence εn = 1/xn is a zero sequence. Now, consider the difference equations

yn = y rn−1, zn = ε+ zrn−1, (2.35)

with x0/x−1 = y0 = z0. Without loss of generality, we may assume that εn < ε for every
n∈N0. It is easy to see by induction that

yn ≤ xn
xn−1

≤ zn, n∈N. (2.36)

Since yn = yr
n

0 , we have that limn→∞yn = 1. On the other hand, as in Theorem 2.5, we have
that zn converges to the positive solution x∗(ε) of the equation x− ε− xr = 0. Because the
function x− ε− xr is continuous on R2, it follows that x∗(ε)→x∗(0) = 1, as ε→0. This
finishes the proof. �

3. On the equation xn+1 =max{A,x
p
n /xr

n−1}
In this section, we study the boundedness character of positive solutions of (1.2), where
A, p,r ∈ (0,∞), which is closely related to (1.1).
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The following result is main in this section. Since the proof of the result is similar to
the proofs of Theorems 2.1–2.5, we will only point out important differences.

Theorem 3.1. Consider (1.2), where A, p, and r are positive real numbers. The following
statements are true.

(a) If p2 ≥ 4r > 4, or p ≥ 1 + r, r ∈ (0,1], then (1.2) has positive unbounded solutions.
(b) If p2 < 4r, or 2

√
r ≤ p < 1 + r, r ∈ (0,1), then all positive solutions of (1.2) are

bounded.

Proof. (a) The proof of this statement is a direct consequence of the proofs of Theorems
2.1, 2.3, and 2.4. It should be only noticed that for a solution (xn) of (1.2), inequalities
(2.1) and (2.22) hold for the corresponding values of parameters p and r in Theorems
2.1, 2.3, and 2.4.

(b) Assume first that p2 < 4r. Similar to (2.14), it can be proved that

xn+1=max

{
A,

{
A

x
r/p
n−1

,

{
A

x
r/(p−r/p)
n−2

,

{
···

{
A

x
pk
n−k

,
x
p−pk
n−k

xr
n−k−1

}p−pk−1

···
}p−r/(p−r/p)}p−r/p}p}

,

(3.1)

where (pk)k∈N0
is defined in (2.15), from which the boundedness of (xn) follows by mak-

ing use of arguments similar to those ones in the proof of Theorem 2.2.
Assume that 2

√
r ≤ p < 1 + r and r ∈ (0,1]. Let λ1 and λ2 be as in the proof of Theorem

2.5. From (1.2), it follows that

xn+1

xλ1
n

=max

{
A

xλ1
n

,

(
xn

xλ1
n−1

)λ2}
≤max

{
A1−λ1 ,

(
xn

xλ1
n−1

)λ2}
, (3.2)

for n∈N.
Let un = xn/x

λ1
n−1 and (vn)n∈N0

be the solution of the difference equation

vn =max
{
A1−λ1 ,vλ2

n−1

}
, n∈N, (3.3)

with v0 = u0. Similar to the proof of Theorem 2.5, it follows that the sequence (vn) is
bounded, and as a consequence that solutions of (1.2) are bounded in the case. �

Remark 3.2. Theorem 3.1 extends Theorems 1 and 2 in [14].

Acknowledgment

The author would like to express his sincere thanks to the referees of the paper whose
comments improved the presentation in the paper.

References

[1] A. M. Amleh, E. A. Grove, G. Ladas, and D. A. Georgiou, “On the recursive sequence xn+1 =
α + xn−1/xn,” Journal of Mathematical Analysis and Applications, vol. 233, no. 2, pp. 790–798,
1999.
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[4] K. S. Berenhaut and S. Stević, “The behaviour of the positive solutions of the difference equation
xn = A+ (xn−2/xn−1)p,” Journal of Difference Equations and Applications, vol. 12, no. 9, pp. 909–
918, 2006.

[5] L. Berg, “On the asymptotics of nonlinear difference equations,” Zeitschrift für Analysis und ihre
Anwendungen, vol. 21, no. 4, pp. 1061–1074, 2002.

[6] R. DeVault, G. Ladas, and S. W. Schultz, “On the recursive sequence xn+1 = A/xn + 1/xn−2,” Pro-
ceedings of the American Mathematical Society, vol. 126, no. 11, pp. 3257–3261, 1998.

[7] H. M. El-Owaidy, A. M. Ahmed, and M. S. Mousa, “On asymptotic behaviour of the difference
equation xn+1 = α+ x

p
n−1/x

p
n ,” Journal of Applied Mathematics & Computing, vol. 12, no. 1-2, pp.

31–37, 2003.
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