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two boundary conditions: x(0)= x(n)= 0 or x(0)= Δx(n− 1)= 0, where n≥ 3.
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1. Introduction

The second-order differential and difference boundary value problems arise in many
branches of both applied and basic mathematics and have been extensively studied in
the literature. We refer the reader to [1–4] for some recent results for second-order non-
linear two-point boundary value problems. The main tools used in the above works are
fixed-point theorems.

Avery and Peterson [1] generalize the fixed-point theorem of Leggett-Williams by us-
ing theory of fixed-point index and Dugundji extension theorem. Recently, Bai et al. [5]
have applied this theorem to prove the existence of three positive solutions for the second-
order differential equation x′′(t) + q(t) f (t,x(t),x′(t))= 0, 0 < t < 1.

In this paper, the aim of this work is to establish the existence of three positive solutions
for the second-order difference equation

Δ2x(k− 1) + q(k) f
(
k,x(k),Δx(k)

)= 0, for k ∈ {1,2, . . . ,n− 1}, (1.1)

subject to one of the following two pairs of boundary conditions:

x(0)= x(n)= 0, (1.2)

x(0)= Δx(n− 1)= 0, (1.3)
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where Δx(k) = x(k + 1)− x(k), for k ∈ {0,1, . . . ,n− 1}, and Δ2x(k) = x(k + 2)− 2x(k +
1) + x(k), for k ∈ {0,1, . . . ,n− 2}.

We are concerned with positive solutions to the above problem, that is, x(k) ≥ 0, for
k ∈ {0,1, . . . ,n}, and assume that

(C1) f : {1,2, . . . ,n− 1}× [0,∞)×R→ [0,∞) is continuous;
(C2) q(k)≥ 0 but q(k) does not identically equal to zero, for k ∈ {1,2, . . . ,n− 1}.
We will depend on an application of a fixed-point theorem due to Avery and Peterson,

which deals with fixed points of a cone-preserving operator defined on an ordered Banach
space to obtain our main results, and an example to illustrate the main results in this
paper.

2. Background materials and definitions

In this section, we present some background materials that will be needed in our discus-
sion.

Definition 2.1. Let E be a real Banach space over R. A nonempty convex closed set P ⊂ E
is said to be a cone of E, if it satisfies the following conditions:

(i) x ∈ P, λ≥ 0, implies λx ∈ P,
(ii) x ∈ P, −x ∈ P, implies x = 0.

Note that every cone P ⊂ E induces an ordering in E given by x ≤ y if and only if
y− x ∈ P.

Definition 2.2. An operator is called completely continuous if it is continuous and maps
bounded sets into precompact sets.

Definition 2.3. The map α is said to be a nonnegative continuous concave functional on
a cone P of a real Banach space E provided that α : P→ [0,∞) is continuous and

α
(
tx+ (1− t)y)≥ tα(x) + (1− t)α(y), (2.1)

for all x, y ∈ P and 0 ≤ t ≤ 1. Similarly, the map β is called a nonnegative continuous
convex functional on a cone P of a real Banach space E provided that β : P → [0,∞) is
continuous and

β
(
tx+ (1− t)y)≤ tβ(x) + (1− t)β(y) (2.2)

for all x, y ∈ P and 0≤ t ≤ 1.

Let γ and θ be nonnegative continuous convex functionals on P, let α be a nonnegative
continuous concave functional on P, and let ψ be a nonnegative continuous functional
on P. Then for positive real numbers a, b, c, and d, we define the following convex sets:

P(γ,d)= {x ∈ P | γ(x) < d
}

,

P(γ,α,b,d)= {x ∈ P | b ≤ α(x), γ(x)≤ d},

P(γ,θ,α,b,c,d)= {x ∈ P | b ≤ α(x), θ(x)≤ c, γ(x)≤ d},

(2.3)
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and a closed set

R(γ,ψ,a,d)= {x ∈ P | a≤ ψ(x), γ(x)≤ d}. (2.4)

The following fixed-point theorem of Avery and Peterson plays an important role in
this paper.

Theorem 2.4 [1]. Let P be a cone in a real Banach space E. Let γ and θ be nonnegative
continuous convex functionals on P, let α be a nonnegative continuous concave functional
on P, and let ψ be a nonnegative continuous functional on P satisfying ψ(λx)≤ λψ(x), for
0≤ λ≤ 1, such that for some positive numbers M and d,

α(x)≤ ψ(x), ‖x‖ ≤Mγ(x), (2.5)

for all x ∈ P(γ,d). Suppose T : P(γ,d)→ P(γ,d) is completely continuous and there exist
positive numbers a, b, and c with a < b such that

(S1) {x ∈ P(γ,θ,α,b,c,d) | α(x) > b} 
=∅ and α(Tx) > b, for x ∈ P(γ,θ,α,b,c,d);
(S2) α(Tx) > b, for x ∈ P(γ,α,b,d) with θ(Tx) > c;
(S3) 0 /∈ R(γ,ψ,a,d) and ψ(Tx) < a, for x ∈ R(γ,ψ,a,d) with ψ(x)= a.

Then T has at least three fixed points x1,x2,x3 ∈ P(γ,d), such that

γ
(
xi
)≤ d, for i= 1,2,3; b < α

(
x1
)
;

a < ψ
(
x2
)
, with α

(
x2
)
< b; ψ

(
x3
)
< a.

(2.6)

3. Main results

In this section, we will impose suitable growth conditions on f , which enable us to apply
Theorem 2.4 with respect to obtaining triple positive solutions of BVP (1.1)-(1.2) and
(1.1)–(1.3).

Now, we deal with the first problem. Let X = {x : {0,1, . . . ,n} → R} be endowed with
the ordering x ≤ y if x(k)≤ y(k), for all k ∈ {0,1, . . . ,n} with the norm

‖x‖ =max
{

max
k∈{0,1,...,n}

∣
∣x(k)

∣
∣, max

k∈{0,1,...,n−1}
∣
∣Δx(k)

∣
∣
}
. (3.1)

Then, we define the cone P in E by

P={x ∈ X : x(k)≥ 0, k ∈ {0,1, . . . ,n}; x(0)=x(n)=0, Δ2x(k)≤ 0, k ∈ {0,1, . . . ,n− 2}}.
(3.2)

Let the nonnegative continuous concave functional α, the nonnegative continuous convex
functional θ, γ, and the nonnegative continuous functional ψ be defined on the cone P
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by

γ(x)= max
k∈{0,1,...,n−1}

∣
∣Δx(k)

∣
∣, ψ(x)= θ(x)= max

k∈{0,1,...,n}
∣
∣x(k)

∣
∣,

α(x)= min
k∈{[n/4]+1,...,n−[n/4]−1}

∣
∣x(k)

∣
∣.

(3.3)

In order to prove our main results,we need the following lemma.

Lemma 3.1. If x ∈ P, then

max
k∈{0,1,...,n}

∣
∣x(k)

∣
∣≤ n

2
max

k∈{0,1,...,n−1}
∣
∣Δx(k)

∣
∣, that is, θ(x)≤ n

2
γ(x),

max
k∈{0,1,...,n}

∣
∣x(k)

∣
∣≥ max

k∈{0,1,...,n−1}
∣
∣Δx(k)

∣
∣, that is, θ(x)≥ γ(x).

(3.4)

Proof. Suppose the maximum of x occurs at k0 ∈ {1,2, . . . ,n− 1}, by the definition of
the cone P, we know Δx(k + 1)≤ Δx(k), for k ∈ {0,1, . . . ,n− 2}, then Δx(k)≥ 0, for k ∈
{0,1, . . . ,k0− 1}, and Δx(k)≤ 0, for k ∈ {k0,k0 + 1, . . . ,n− 1}. Then,

x
(
k0
)= x(k0

)− x(0)= Δx(0) +Δx(1) + ···+Δx
(
k0− 1

)

≤ k0Δx(0)≤ k0 max
k∈{0,1,...,n−1}

∣
∣Δx(k)

∣
∣,

x
(
k0
)= ∣∣x(n)− x(k0

)∣∣= ∣∣Δx(k0
)

+ ···+Δx(n− 1)
∣
∣

≤ (n− k0
)∣∣Δx(n− 1)

∣
∣≤ (n− k0

)
max

k∈{0,1,...,n−1}
∣
∣Δx(k)

∣
∣.

(3.5)

Since

k0 ≤ n

2
or n− k0 ≤ n

2
, (3.6)

so, we have

max
k∈{0,1,...,n}

∣
∣x(k)

∣
∣≤ n

2
max

k∈{0,1,...,n−1}
∣
∣Δx(k)

∣
∣. (3.7)

The proof is complete. �

By Lemma 3.1 and the definitions, the functionals defined above satisfy

1
4
θ(x)≤ α(x)≤ θ(x)= ψ(x), ‖x‖ =max

{
θ(x),γ(x)

}= θ(x)≤ n

2
γ(x), (3.8)

for all x ∈ P(γ,d)⊂ P. Therefore, condition (2.5) is satisfied.
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Now, we show that (1/4)θ(x) ≤ α(x). Here, we also suppose θ(x) = x(k0), and by the
definitions of α and the cone P, we can distinguish two cases.

(i) α(x)= x([n/4] + 1), then we certainly have k0 ≥ [n/4] + 1, and

x(k0)= Δx(0) + ···+Δx
([

k0

4

])
+Δx

([
k0

4

]
+ 1
)

+ ···+Δx
([

k0

2

])

+Δx
([

k0

2

]
+ 1
)

+ ···+Δx
([

3k0

4

])
+Δx

([
3k0

4

]
+ 1
)

+ ···+Δx
(
k0− 1

)

≤ 4x
([

k0

4

]
+ 1
)
≤ 4x

([
n

4

]
+ 1
)

,

(3.9)

that is, (1/4)x(k0)≤ x([n/4] + 1).
(ii) α(x)= x(n− [n/4]− 1), then k0 ≤ n− [n/4]− 1, and

x
(
k0
)=−

(

Δx(n− 1) + ···+Δx
(
n−

[
n− k0

4
− 1

])
+Δx

(
n−

[
n− k0

4

]
− 2

)

+ ···+Δx
(
n−

[
n− k0

2
− 1

])
+Δx

(
n−

[
n− k0

2

]
− 2

)

+···+Δx
(
n−

[
3
(
n−k0

)

4
−1
])

+Δx
(
n−

[
3
(
n− k0

)

4

]
−2
)

+ ···+Δx(k0
)
)

≤ 4x
(
n−

[
n− k0

4

])
≤ 4x

(
n−

[
n

4

]
− 1

)
,

(3.10)

that is, (1/4)x(k0)≤ x(n− [n/4]− 1). So, we have (1/4)θ(x)≤ α(x).
G(k, i) is Green’s function for boundary value problem

−Δ2x(k− 1)= 0, for k ∈ {1,2, . . . ,n− 1},
x(0)= x(n)= 0.

(3.11)

Then G : {0,1, . . . ,n}×{1,2, . . . ,n− 1} → R is given by

G(k, i)=

⎧
⎪⎪⎨

⎪⎪⎩

(n− k)
i

n
, for 0≤ i≤ k ≤ n,

(n− i)k
n

, for 0≤ k ≤ i≤ n.
(3.12)

Let

M =max

{n−1∑

i=1

n− i
n

q(i),
n−1∑

i=1

i

n
q(i)

}

,

δ =min

{n−1∑

i=1

G
([

n

4

]
+ 1, i

)
q(i),

n−1∑

i=1

G
(
n−

[
n

4

]
− 1, i

)
q(i)

}

,

N = max
k∈{0,1,...,n}

n−1∑

i=1

G(k, i)q(i).

(3.13)
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To present our main result, we assume there exist constants 0 < a < b ≤ d/4 such that
(A1) f (k,u,v)≤ d/M, for (k,u,v)∈ {1,2, . . . ,n− 1}× [0,(n/2)d]× [−d,d];
(A2) f (k,u,v) > b/δ, for (k,u,v)∈ {[n/4] + 1, . . . ,n− [n/4]− 1}× [b,4b]× [−d,d];
(A3) f (k,u,v) < a/N , for (k,u,v)∈ {1,2, . . . ,n− 1}× [0,a]× [−d,d].

Theorem 3.2. With the assumptions (A1)–(A3), the boundary value problem (1.1)-(1.2)
has at least three positive solutions x1, x2, and x3 satisfying

max
k∈{0,1,...,n−1}

∣
∣Δxi(k)

∣
∣≤ d, for i= 1,2,3;

b< min
k∈{[n/4]+1,...,n−[n/4]−1}

x1(k); a< max
k∈{0,1,...,n}

x2(k),

with min
k∈{[n/4]+1,...,n−[n/4]−1}

x2(k)<b; max
k∈{0,1,...,n}

x3(k) < a.

(3.14)

Proof. x is a solution of problem (1.1)-(1.2) if and only if

x(k)= Tx(k)=
n−1∑

i=1

G(k, i)q(i) f
(
i,x(i),Δx(i)

)
. (3.15)

Using the continuity of f and the definition of T , it is easy to see that T : P → P is
continuous. Next, we prove T is completely continuous.

Suppose that the sequence {xi} ⊆ P is bounded, then there exists M > 0, such that
‖xi‖ ≤M, for any i= 1,2, . . . . By the continuity of f with Green’s function, G is bounded,
we know that there exists M

′
> 0, such that |Txi(k)| ≤M

′
, for k ∈ {0,1, . . . ,n} and i =

1,2, . . . . In view of the bounded sequence {Txi(0)}, there exists {xi0} ⊆ {xi}, such that
limi→∞Txi0(0)= a0. For the bounded sequence {Txi0(1)}, there exists {xi1} ⊆ {xi0}, such
that limi→∞Txi1(1)= a1. By repetition in this way, we have that there exists {xi j}⊆{xi j−1},
for j = 2,3, . . . ,n, such that limi→∞Txi j( j)= aj . Let y = {a0,a1, . . . ,an}, by the definition
of the norm on X , there exists {xin} ⊆ {xi}, such that limi→∞Txin = y.

Hence, T : P→ P is completely continuous.
We now show that all the conditions of Theorem 2.4 are satisfied. If x ∈ P(γ,d), then

γ(x)= max
k∈{0,1,...,n−1}

∣
∣Δx(k)

∣
∣≤ d. (3.16)

With Lemma 3.1,

max
k∈{0,1,...,n}

∣
∣x(k)

∣
∣≤ n

2
d, (3.17)
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then assumption (A1) implies f (k,u,v)≤ d/M, and

γ(Tx)= max
k∈{0,1,...,n−1}

∣
∣ΔTx(k)

∣
∣=max

{∣
∣ΔTx(0)

∣
∣,
∣
∣ΔTx(n− 1)

∣
∣
}

=max
{
Tx(1),Tx(n− 1)

}

=max

{n−1∑

i=1

G(1, i)q(i) f
(
i,x(i),Δx(i)

)
,
n−1∑

i=1

G(n− 1, i)q(i) f
(
i,x(i),Δx(i)

)
}

≤ d

M
max

{n−1∑

i=1

G(1, i)q(i),
n−1∑

i=1

G(n− 1, i)q(i)

}

= d

M
max

{n−1∑

i=1

n− i
n

q(i),
n−1∑

i=1

i

n
q(i)

}

= d

M
·M = d.

(3.18)

Thus, T : P(γ,d)→ P(γ,d).
To check condition (S1) of Theorem 2.4, let x(k) = 4b, for k ∈ {1,2, . . . ,n− 1} and

x(0) = x(n) = 0. It is easy to see that x ∈ P(γ,θ,α,b,4b,d) and α(x) = 4b > b, so {x ∈
P(γ,θ,α,b,4b,d) | α(x) > b} 
= ∅. If x ∈ P(γ,θ,α,b,4b,d), then b ≤ x(k)≤ 4b, |Δx(k)| ≤
d, for k∈{[n/4]+, . . . ,n− [n/4]−1}. From assumption (A2), we have f (k,x(k),Δx(k))>
b/δ for k ∈ {[n/4] + 1, . . . ,n− [n/4]− 1}, then

α(Tx)=min

{

Tx
([

n

4

]
+ 1
)

,Tx
(
n−

[
n

4

]
− 1

)}

=min

{n−1∑

i=1

G
([

n

4

]
+ 1, i

)
q(i) f

(
i,x(i),Δx(i)

)
,

n−1∑

i=1

G
(
n−

[
n

4

]
− 1, i

)
q(i) f

(
i,x(i),Δx(i)

)
}

>
b

δ
min

{n−1∑

i=1

G
([

n

4

]
+ 1, i

)
q(i),

n−1∑

i=1

G
(
n−

[
n

4

]
− 1, i

)
q(i)

}

= b

δ
· δ = b.

(3.19)

Therefore, the condition (S1) of Theorem 2.4 is satisfied.
Secondly, with (3.8), we have

α(Tx)≥ 1
4
θ(Tx) >

1
4
· 4b = b, (3.20)

for all x ∈ P(γ,α,b,d) with θ(Tx) > 4b. Thus, condition (S2) of Theorem 2.4 is satisfied.
Finally, we show that (S3) of Theorem 2.4 also holds. As ψ(0) = 0 < a, we know 0 /∈

R(γ,ψ,a,d). Suppose that x∈R(γ,ψ,a,d) with ψ(x)=a. Then 0≤x(k)≤ a,−d ≤ Δx(k)≤
d, for k ∈ {1,2, . . . ,n− 1}, from the assumption (A3), we have f (k,x(k),Δx(k)) < a/N .
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Then,

ψ(Tx)= max
k∈{0,1,...,n}

∣
∣Tx(k)

∣
∣= max

k∈{0,1,...,n}

n−1∑

i=1

G(k, i)q(i) f
(
i,x(i),Δx(i)

)

<
a

N
max

k∈{0,1,...,n}

n−1∑

i=1

G(k, i)q(i)= a

N
·N = a.

(3.21)

So, condition (S3) of Theorem 2.4 is satisfied.
Applying Theorem 2.4, we know the boundary value problem (1.1)-(1.2) has at least

three positive solutions x1, x2, and x3 satisfying (3.14). The proof is complete. �

Remark 3.3. To apply Theorem 2.4, we only need T : P(γ,d)→ P(γ,d), therefore, condi-
tion (C1) can be substituted with a weaker condition:

(C1)’ f : {1,2, . . . ,n− 1}× [0,(n/2)d]× [−d,d]→ [0,∞) is continuous.

Now we deal with problem (1.1)–(1.3). The method is just similar to what we have
done above. So, the proof is omitted. Define the cone P1 ⊂ X by

P1 =
{
x ∈ X : x(k)≥ 0, k ∈ {0,1, . . . ,n}; x(0)= Δx(n− 1)= 0, Δ2x(k)≤ 0,

k ∈ {0,1, . . . ,n− 2}
}
.

(3.22)

Let the nonnegative continuous concave functional α1, the nonnegative continuous con-
vex functional θ1, γ, and the nonnegative continuous functional ψ be defined on the cone
P1 by

γ1(x)= max
k∈{0,1,...,n−1}

∣
∣Δx(k)

∣
∣= Δx(0)= x(1),

ψ1(x)= θ1(x)= max
k∈{0,1,...,n}

∣
∣x(k)

∣
∣= x(n− 1)= x(n),

α1(x)= min
k∈{[n/2],...,n}

∣
∣x(k)

∣
∣= x

([
n

2

])
, for x ∈ P1.

(3.23)

Lemma 3.4. If x ∈ P1, then θ1(x)≤ (n− 1)γ1(x).

With Lemma 3.4 and the definitions, the functionals defined above satisfy

1
2
θ1(x)≤ α1(x)≤ θ1(x)= ψ1(x), ‖x‖ =max

{
θ1(x),γ1(x)

}= θ1(x)≤ (n− 1)γ1(x),

(3.24)

for all x ∈ P1(γ1,d)⊂ P1. Therefore, condition (2.5) is satisfied.
G1(k, i) is Green’s function for boundary value problem

−Δ2x(k− 1)= 0, for k ∈ {1,2, . . . ,n− 1},
x(0)= Δx(n− 1)= 0.

(3.25)
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Then, G1 : {0,1, . . . ,n}×{1,2, . . . ,n− 1} → R is given by

G1(k, i)=
⎧
⎨

⎩
i, for 0≤ i≤ k ≤ n,

k, for 0≤ k ≤ i≤ n. (3.26)

Let

M1 =
n−1∑

i=1

q(i),

δ1 =
[n/2]∑

i=1

iq(i) +
[
n

2

] n−1∑

i=[n/2]+1

q(i),

N1 =
n−1∑

i=1

iq(i).

(3.27)

Suppose there exist constants 0 < a < b ≤ (1/2)d such that
(A4) f (k,u,v)≤ d/M1, for (k,u,v)∈ {1,2, . . . ,n− 1}× [0,nd]× [0,d];
(A5) f (k,u,v) > b/δ1, for (k,u,v)∈ {[n/2], . . . ,n− 1}× [b,2b]× [0,d];
(A6) f (k,u,v) < a/N1, for (k,u,v)∈ {1,2, . . . ,n− 1}× [0,a]× [0,d].

Theorem 3.5. Under assumptions (A4)–(A6), the boundary-value problem (1.1)–(1.3) has
at least three positive solutions x1, x2, and x3 satisfying

max
k∈{0,1,...,n−1}

Δxi(k)≤ d, for i= 1,2,3;

b< min
k∈{[n/2],...,n}

x1(k); a< max
k∈{0,1,...,n}

x2(k), with min
k∈{[n/2],...,n}

x2(k)<b; max
k∈{0,1,...,n}

x3(k) < a.

(3.28)

Example 3.6. Consider the following boundary value problem:

Δ2x(k− 1) + f
(
k,x(k),Δx(k)

)= 0, for k ∈ {1,2,3,4} x(0)= Δx(4)= 0, (3.29)

with a= 12, b = 15, d = 60, where

f (k,u,v)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

lnk+
(
u

12

)2

+
(
v

60

)2

, for u≤ 12,

lnk+
(
u

5

)2

+
(
v

60

)3

, for 12 < u≤ 60,

lnk+
(
u

30

)2

+
(
v

60

)2

, for u > 60,

(3.30)

and note M = 2, δ = 3, N = 3. Then, f (k,u,v) satisfies
(i) f (k,u,v) < a/N = 4, for (k,u,v)∈ {1,2,3,4}× [0,12]× [−60,60];

(ii) f (k,u,v) > b/δ = 5, for (k,u,v)∈ {2,3}× [15,60]× [−60,60];
(iii) f (k,u,v)≤ d/M = 30, for (k,u,v)∈ {1,2,3,4}× [0,150]× [−60,60].

It is clear that all the assumptions of Theorem 3.5 are satisfied. Therefore, by
Theorem 3.5, we know that problem (3.29) has at least three positive solutions x1, x2,
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x3 such that

max
k∈{0,1,...,4}

Δxi(k)≤ 60, for i= 1,2,3;

15 < min
k∈{2,3}

x1(k); 12 < max
k∈{0,1,...,5}

x2(k), with min
k∈{2,3}

x2(k) < 15; max
k∈{0,1,...,5}

x3(k) < 12.

(3.31)
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