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Global exponential stability of a class of discrete-time Hopfield neural networks with
variable delays is considered. By making use of a difference inequality, a new global expo-
nential stability result is provided. The result only requires the delay to be bounded. For
this reason, the result is milder than those presented in the earlier references. Further-
more, two examples are given to show the efficiency of our result.
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1. Introduction

In the past decade, the stability problem of continuous-time Hopfield neural networks
(HNNs) with time delays has received considerable attention. The existence of delay in
a practical neural network may induce instability, oscillation, and poor performance.
So far, various stability criteria for continuous-time HNNs with delays have been pre-
sented in the literature, see, for example, and references therein [1–11]. Compared with
continuous-time HNNs, less attention has been paid to discrete-time HNNs with time
delays. However, when implementing the continuous-time neural networks for computer
simulation or computational purposes, it is necessary to formulate a discrete-time version
which is an analogue of the continuous-time neural networks. On the other hand, the
discrete-time analogue may not preserve the convergence dynamics of their continuous-
time counterparts since some of the numerical schemes can lead to the existence of spuri-
ous equilibria and spurious asymptotic behavior which are not present in the continuous-
time counterparts [12], for details the readers can refer to [13, 14]. For this reason, it is
desirable to investigate the stability of discrete-time HNNs. To the best of our knowl-
edge, the stability results for discrete-time HNNs with delays are very few [12, 15, 16].
In this paper, by using a discrete-time version of Halanay inequality [18], a new global



2 Discrete Dynamics in Nature and Society

exponential stability result for discrete-time HNNs with variable delays is considered.
The result is less conservative than those given in the previous literature since both the
delay functions and the activation functions imposed on, in this paper, are milder than
those earlier presented. Two numerical simulations are given to show the validity of our
result.

2. Stability analysis

The dynamic behavior of discrete-time Hopfield neural networks with variable delays can
be described as follows [12, 15]:

xi(n+ 1)= cixi(n) +
m∑

j=1

ai j f j
(
xj(n)

)
+

m∑

j=1

bi j f j
(
xj
(
n− κ(n)

))
+ Ji, (2.1)

for i ∈ {1,2, . . . ,m}, n ∈ {0,1,2, . . .}, where m corresponds to the number of units in a
neural networks; x(n) = [x1(n), . . . ,xm(n)]T ∈ Rm corresponds to the state vector;
f (x(n)) = [ f1(x1(n)), . . . , fm(xm(n))]T ∈ Rm denotes the activation function of the neu-
rons; f (x(n− κ(n)))= [ f1(x1(n− κ(n))), . . . , fm(xm(n− κ(n)))]T ∈ Rm; and C = diag(ci)
(ci ∈ (0,1)) represents the rate with which the ith unit will reset its potential to the rest-
ing state in isolation when disconnected from the network and external inputs. A= {ai j}
is referred to as the feedback matrix, B = {bi j} represents the delayed feedback matrix,
while J = [J1, . . . , Jm]T is an external bias vector and κ(n) is the transmission delay along
the axon of the jth unit and satisfies 0≤ κ(n)≤ κ (κ is a constant).

The initial conditions associated with system (2.1) are of the form:

xi(l)= ϕi(l), i∈ {1,2, . . . ,m}, (2.2)

where l is an integer with l ∈ [−κ,0].

Definition 2.1. A vector x∗ = (x∗1 ,x∗2 , . . . ,x∗m)T is said to be an equilibrium point of system
(2.1), if the following equation holds:

x∗i = cix
∗
i +

m∑

j=1

ai j f j
(
x∗j
)

+
m∑

j=1

bi j f j
(
x∗j
)

+ Ji. (2.3)

In this paper, we assume that the activation function fi, i= 1,2, . . . ,m, is bounded and
satisfies the following assumption.

Assumption 2.2.
∣∣ fi(ξ1)− fi(ξ2)

∣∣≤ Li
∣∣ξ1− ξ2

∣∣, ∀ξ1,ξ2 ∈R. (2.4)

This type of activation functions is clearly more general than both the usual sigmoid
activation functions and the piecewise linear function (PWL): fi(x) = (1/2)(|x + 1| −
|x− 1|) which is used in [10].

Assumption 2.3.

0≤ ( fi
(
ξ1
)− fi

(
ξ2
))(

ξ1− ξ2
)≤ Li

(
ξ1− ξ2

)2
, ∀ξ1,ξ2 ∈R. (2.5)
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Remark 2.4. In [16], under the assumptions that the bounded activation function fi,
i= 1,2, . . . ,m, satisfies Assumption 2.3, and ai j = 0 in (2.1), the authors studied the global
exponential stability for (2.1). It is obvious that Assumption 2.3 is more restrictive than
Assumption 2.2. Hence, due to this fact, the result in this paper improves that of [16].

Remark 2.5. Due to the boundedness of the activation functions under Assumption 2.2,
by using the well-known Brouwer fixed point theorem and the same way as in [17], we
can easily know that there must exist an equilibrium point of system (2.1).

Let x∗ = (x∗1 ,x∗2 , . . . ,x∗n )T be an equilibrium point of (2.1), one can derive from (2.1)
that the transformation yi(n) = xi(n)− x∗i transforms system (2.1) into the following
system:

yi(n+ 1)= ci yi(n) +
m∑

j=1

ai jg j
(
yj(n)

)
+

m∑

j=1

bi jg j
(
yj
(
n− κ(n)

))
(2.6)

or equivalently,

y(n+ 1)= Cy(n) +Ag
(
y(n)

)
+Bg

(
y
(
n− κ(n)

))
, (2.7)

where y(n)=(y1(n), y2(n), . . . , ym(n))T ,C=diag(c1,c2, . . . ,cm),A=(ai j)m×m, B=(bi j)m×m,
g(y(n))= (g1(y1(n)),g2(y2(n)), . . . ,gm(ym(n)))T , and gj(yj(n))= f j(yj(n) + x∗j )− f j(x∗j ).

Since each function f j(·) satisfies Assumption 2.2, hence, each gj(·) satisfies

∣∣gj
(
ξj
)∣∣≤ Lj

∣∣ξj
∣∣. (2.8)

To prove the stability of x∗ of (2.1), it is sufficient to prove the stability of the trivial
solution of (2.6).

In the following, denote ‖u‖ as a vector norm of the vector u ∈ Rm and ‖A‖p is the
p-norm of A induced by the vector norm.

Definition 2.6. The trivial solution of (2.6) is said to be globally exponentially stable if for
any solution xi(n,ϕi) with the initial condition xi(l)= ϕi(l) for l ∈ [−κ,0] from Rm there
exist constants ε ∈ (0,1) and M ≥ 1 such that

∥∥y(n)
∥∥≤M‖φ‖εn, ∀n≥ 0, (2.9)

where ‖φ‖ =maxl∈[−κ,0]{‖φ(l)‖}, φ(l)= (ϕ1(l),ϕ2(l), . . . ,ϕm(l))T .

Lemma 2.7 [19]. Let r > 0 be a natural number, and let {z(n)}n≥−r be a sequence of real
numbers satisfying the inequality:

Δz(n)≤−pz(n) + qmax
{
z(n),z(n− 1), . . . ,z(n− r)

}
, (2.10)

where Δz(n) = z(n + 1)− z(n) and n ≥ 0. If 0 < q < p ≤ 1, then there exists a constant
λ0 ∈ (0,1) such that

z(n)≤max
{

0,z(0),z(−1), . . . ,z(−r)
}
λn0, n≥ 0. (2.11)
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Moreover, λ0 can be chosen as the smallest root in the interval (0,1) of equation

λr+1 + (p− 1)λr − q = 0. (2.12)

Now we will present a sufficient condition for ensuring global exponential stability of
(2.1).

Remark 2.8. Lemma 2.7 can be regarded as discrete Halanay-type inequalities corre-
sponding to the original [18].

Theorem 2.9. Under Assumption 2.2, the equilibrium point of (2.1) is globally exponen-
tially stable if

cmax +Lmax
(‖A‖+‖B‖) < 1, (2.13)

where cmax =max j(cj) and Lmax =max j(Lj).

Proof. Consider the following function:

z(n)= ∥∥y(n)
∥∥, (2.14)

then, we get

z(n+ 1)= ∥∥y(n+ 1)
∥∥

= ∥∥Cy(n) +Ag
(
y(n)

)
+Bg

(
y
(
n− κ(n)

))∥∥

≤ ∥∥Cy(n)
∥∥+

∥∥Ag
(
y(n)

)∥∥+
∥∥Bg

(
y
(
n− κ(n)

))∥∥

≤ cmax
∥∥y(n)

∥∥+‖A‖Lmax
∥∥y(n)

∥∥+‖B‖Lmax
∥∥y
(
n− κ(n)

)∥∥

≤ (cmax +Lmax‖A‖
)∥∥y(n)

∥∥+Lmax‖B‖
∥∥y
(
n− κ(n)

)∥∥.

(2.15)

Calculating Δz(n) along (2.7), we obtain

Δz(n)= z(n+ 1)− z(n)

≤ (cmax +Lmax‖A‖
)∥∥y(n)

∥∥+Lmax‖B‖
∥∥y
(
n− κ(n)

)∥∥−∥∥y(n)
∥∥

= (cmax− 1 +Lmax‖A‖
)∥∥y(n)

∥∥+Lmax‖B‖
∥∥y
(
n− κ(n)

)∥∥

=−(1− cmax−Lmax‖A‖
)
z(n) +Lmax‖B‖z

(
n− κ(n)

)

≤−pz(n) + qmax
{
z(n),z(n− 1), . . . ,z(n− κ)

}
,

(2.16)

where

p = 1− cmax−Lmax‖A‖,

q = Lmax‖B‖.
(2.17)

By Lemma 2.7, we know that if

0 < q < p ≤ 1 (2.18)
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then, there exists a constant λ0 ∈ (0,1) such that

z(n)= ∥∥y(n)
∥∥

≤max
{

0,z(0),z(−1), . . . ,z(−κ)
}
λn0

=max
{

0,
∥∥y(0)

∥∥,
∥∥y(−1)

∥∥, . . . ,
∥∥y(−κ)

∥∥
}
λn0

≤ ‖φ‖λn0 .

(2.19)

It directly follows from Definition 2.6 that the unique equilibrium point of (2.1) is global
exponential stability under Assumption 2.2.

Remark 2.10. The uniqueness of the equilibrium point of (2.1) will follow from the global
exponential stability of the system, see, for example, [18]. �

Corollary 2.11. Under Assumption 2.2, the unique equilibrium point of (2.1) is globally
exponentially stable if

cmax +Lmax

(
max

1≤ j≤m

m∑

i=1

∣∣ai j
∣∣+ max

1≤ j≤m

m∑

i=1

∣∣bi j
∣∣
)
< 1. (2.20)

Corollary 2.12. Under Assumption 2.2, the unique equilibrium point of (2.1) is globally
exponentially stable if

cmax +Lmax

(
max

1≤i≤m

m∑

j=1

∣∣ai j
∣∣+ max

1≤i≤m

m∑

j=1

∣∣bi j
∣∣
)
< 1. (2.21)

Proof. Taking the induced norm as 1-norm ‖A‖1 and infinity norm ‖A‖∞ in Theorem 2.9
respectively, one can easily obtain Corollaries 2.11 and 2.12. �

Remark 2.13. In [12], the authors studied the global exponential stability of discrete-
time cellular neural networks with constant delays and obtained a sufficient condition.
However, the results in [12] cannot be applied to the neural networks with variable delays.

Remark 2.14. In [15], under the assumption that the bounded delay satisfies 1 < κ(n+
1) < 1 + κ(n), the authors obtained some global exponential stability criteria for system
(2.1). In this paper, our Theorem 2.9 removes this restriction and only requires the delays
to be bounded. Hence, our result is less restrictive than that given in [15].

3. Examples

In this section, we will give two examples to show that the condition given in this paper
is less restrictive than that given in some earlier literature.
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Example 3.1. Consider the following discrete-time delayed Hopfield neural networks
with two neurons:

x1(n+ 1)= 0.2x1(n) + 0.1 f
(
x1(n)

)
+ 0.2 f

(
x2(n)

)

− 0.2 f
(
x1
(
n− κ(n)

))
+ 0.1 f

(
x2
(
n− κ(n)

))− 3,

x2(n+ 1)= 0.1x2(n)− 0.25 f
(
x1(n)

)
+ 0.15 f

(
x2(n)

)

− 0.15 f
(
x1
(
n− κ(n)

))
+ 0.3 f

(
x2
(
n− κ(n)

))− 1;

(3.1)

that is,

C =
[

0.2 0
0 0.1

]
, A=

[
0.1 0.2
−0.25 0.15

]
, B =

[−0.2 0.1
−0.15 0.3

]
, (3.2)

and the nonlinear input-output function is chosen as f (x) = tanh(x). It can be veri-
fied that this function satisfies Assumption 2.2 with L1 = L2 = 1. The unique equilibrium
point of system (3.1) can be obtained as

x∗ = (x∗1 ,x∗2
)T = (−3.9197,−1.0598)T. (3.3)

Furthermore, one can easily check that

‖A‖1 +‖B‖1 = 0.75 < 1− cmax = 0.8. (3.4)

Therefore, from Corollary 2.11, it follows that the equilibrium point of system (3.1) is
globally exponentially stable.

For the convenience of numerical simulation, let κ(n) = 1 in (3.1). It is obvious that
κ(n) = 1 does not satisfy the condition 1 < κ(n+ 1) < 1 + κ(n) which is needed in [15].
Therefore, the results in [15] cannot be applied to this example.

The initial state (ϕ1(l),ϕ2(l))T = (−3,1)T for l ∈ [−1,0]. The numerical simulation is
illustrated in Figure 3.1.

Example 3.2. Consider the following discrete-time delayed Hopfield neural networks
with two neurons:

x1(n+ 1)= 0.2x1(n) + 0.25 f
(
x1(n)

)
+ 0.1 f

(
x2(n)

)

− 0.2 f
(
x1
(
n− κ(n)

))
+ 0.1 f

(
x2
(
n− κ(n)

))
+ 2,

x2(n+ 1)= 0.15x2(n)− 0.2 f
(
x1(n)

)
+ 0.15 f

(
x2(n)

)

+ 0.1 f
(
x1
(
n− κ(n)

))
+ 0.3 f

(
x2
(
n− κ(n)

))
+ 3;

(3.5)



Qiang Zhang et al. 7

0 10 20 30 40 50 60 70 80

n

�5

�4

�3

�2

�1

0

1

x(
n

)

x1(n)
x2(n)

Figure 3.1. The solution of (3.1).

that is,

C =
[

0.2 0
0 0.15

]
, A=

[
0.25 0.1

−0.2 0.15

]
, B =

[
−0.2 0.1

0.1 0.3

]
, (3.6)

and the activation function is f (x)= (1/2)(|x− 1| − |x + 1|). Since this type of function
is not nondecreasing, it does not satisfy Assumption 2.3 which is used in [16]. There-
fore, the results in [16] cannot be applied to this example. On the other hand, it can be
checked that this function satisfies Assumption 2.2 with L1 = L2 = 1. The unique equilib-
rium point of system (3.1) can be obtained as

x∗ = (x∗1 ,x∗2
)T = (2.1875,3.1176)T. (3.7)

Furthermore, one can easily check that

‖A‖∞ +‖B‖∞ = 0.75 < 1− cmax = 0.8. (3.8)

Therefore, from Corollary 2.12, it follows that the equilibrium point of system (3.5) is
globally exponentially stable.

In the following numerical simulation, let κ(n)= [0.5 + 2n/(n+ 7)] in (3.5), where [r]
denotes the integer part of the real number r. It is obvious that 0≤ κ(n) ≤ 2 is bounded
but does not satisfy the condition 1 < κ(n+ 1) < 1 + κ(n) which is needed in [15]. There-
fore, the results in [15] cannot be applied to this example.

The initial state (ϕ1(l),ϕ2(l))T = (1,2)T for l ∈ [−1,0]. The numerical simulation is
illustrated in Figure 3.2.
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Figure 3.2. The solution of (3.5).
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