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1. Introduction

In biomathematics, many mathematical models have been established to describe the re-
lationships between species and the outer environment, and the connections between
different species. Among the relationships between the species living in the same outer
environment, the predator-prey theory plays an important and fundamental role. The
dynamic relationship between predators and their prey has long been one of the domi-
nant theses in both ecology and mathematical ecology. Many excellent works have been
done for the Lotka-Volterra type predator-prey system, for example, see [1-12]. In many
situations, especially when predators have to search for food, a suitable general predator-
prey theory is based on the so called ratio-dependent theory. Accordingly, researchers
have proposed many ratio-dependent response functions. In [13], Holling suggested that
there are three functional responses of the predator which usually are called Holling
type I, Holling type II, and Holling type III. The type III response is typical of preda-
tors showing learning behavior, and

(1.1)
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is usually a suitable response function. In [14], Wang and Li investigated the global ex-
istence of positive periodic solutions and permanent property of the ratio-dependent
predator-prey system with Holling type III functional response and delay, which takes
the form

c(t)x* (1) y(t)
X2+ Ay2(t)’

L e(t)x(t — 1)
y'(t) —}’(t)<—d(t)+ xZ(t_T)+Ay2(t—Tz)>’

X (1) = x(t) [a(t) —b(1) f k(t - s)x(s)ds] -
o (1.2)

where the functional response ¢(u) = cu?/(1+ Au?), u = x/y; a(t), b(t), c(t), e(t), and
d(t) are all positive periodic continuous functions, and A >0, T > 0 are real constants.
They found that the criteria for the permanence is exactly the same as that for the ex-
istence of the positive periodic solutions of (1.2). Other results about ratio-dependent
functional response can be found in [11, 15-18].

On the other hand, biological species may undergo discrete changes of relatively short
duration at a fixed time. Moreover, continuous changes in environment parameters such
as temperature or rainfall can also create discontinuous outbreaks in pest population.
Systems with short-term perturbations are often naturally described by impulsive differ-
ential equations.

The theory of impulsive differential equations is now being recognized to be not only
richer than the corresponding theory of differential equations without impulses, but also
representing a more natural framework for mathematical modeling of many real world
phenomena [19-24]. Thus the wide applications naturally motivate a deeper theoretical
study of the subject.

Recently, some impulsive equations have been introduced in population dynamics in
relation to population ecology, chemotherapeutic treatment of disease, impulsive birth,
see [25-29] and the references therein.

In this paper, we consider the nonautonomous ratio-dependent predator-prey system
with Holling type III functional response and impulsive effect

n 2
x'(t) = x(t) (a(t) -> bj(t)x%'(t)> _ bo(0)x*(6) y(t)

2 2 ’
j=1 , AP t#t,te],
con e(t)x*(t)
y 0=y -0+ 5575 ) (13)
x(te) = (1+g)x(t),
keZzt,

y(8) = y(t) +p,

where x(¢) and y(t) represent the densities of the prey population and predator pop-
ulation at time ¢, respectively; )Lj (1 <j<m), p, A are positive constants; a(t), b;(t)
(0 <i<m), d(t), e(t) are continuous w-periodic functions and w > 0; a(t) stands for
prey intrinsic growth rate, d(f) stands for the death rate of the predator, by(t) and e(t)
stand for the conversion rates, +/A stands for half capturing saturation, the function
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x(t)[a(t) — z;":l bj(t)x)‘f(t)] represents the specific growth rate of the prey in the ab-
sence of predator, and x*(t)/[x?(¢) + Ay*(t)] denotes the ratio-dependent response func-
tion, which reflects the capture of the predator. x(#;) and y(t) represent the right limit
of x(tx), y(tx), respectively. gx > —1 for k € Z* = {1,2,...,m}. ] C R is an interval and
e <ty tr €J fork e Z+.

Throughout this paper, we always assume system (1.3) satisfies the following condi-
tions.

(H) bi(t) =0 for 0 <i<m, e(t) >0 and there is at least iy € {1,...,m} such that
bj,(t) > 0. There exists an integer q > 0 such that grq = g, tktq = t + w.

Denote, by PC(J, R), the set of function p : ] — R which are continuous for t € J, t # #
are continuous from the left for t € J, and have discontinuities of the first kind at the point
tx. Denote, by PC!(J,R), the set of function p : ] — R with a derivative (dp/dt) € PC(],R).
The solution of the system (1.3) is a piecewise continuous function u = col(x(t), y(t)) :
J = R?, x(t) € PCY(J,R), y(t) € PC'(J,R) satisfying (1.2).

With the model (1.3), we can take into account the possible exterior effects under
which the population densities change very rapidly. For instance, impulsive effect of the
pest population density is possible after its partial destruction by catching, poisoning with
chemicals used in agriculture (—1 < gk < 0), or after its increase because of migration of
the outside pest population (g > 0). An impulsive increase of the predator population
density is possible by artificially breeding the species or releasing some species (p > 0).

We will also investigate the asymptotic behavior of nonnegative solution for system
(1.3). Note that according to biological interpretation of the solutions x(t) and y(t), they
must be nonnegative. Our results extend the ideas in [30]. The organization of this paper
is as follows. In the next section, we present necessary preliminaries and consider the
dynamics of a single species model. We obtain the sufficient and necessary condition for
permanence in Section 3. In Section 4, we discuss the existence and attractivity of the
periodic solution of system (1.3).

2. Preliminary lemmas

In this section, we first consider the nonlinear single species model

1
4 — _ . Vi
x'(t) = x(t) (oc(t) ;ﬁ,(t)x (t)), t# th o

x(t,:r) = (1 +hk)x(tk),

where a(t), Bi(¢) (1 <i <) are continuous w-periodic functions; 5;(t) = 0 (1 <i <1); y;
is a positive constant; there exists an integer g > 0 such that hy, 4 = hy, tiyy = t + w, and
hi, >—1forallk e Z*.

In order to explore the existence of periodic solutions of (2.1), for the reader’s, we first
summarize below a few concepts and results from [31] that will be used in this section.

Let X, Z be a normed space, L: DomL C X — Z be a linear mapping, and N: X - Z
be a continuous mapping. The mapping L will be called a Fredholm mapping of index if
dimKerL = codimImL < 400 and Im L is closed in Z. If L is a Fredholm mapping of index
zero, there exist continuous projectors P: X — X and Q: Z — Z such that ImP = KerL,
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Ker Q = ImP. It follows that L|pomrnkerp — ImL is invertible. We denote the inverse of
that map by Kp. If Q is an open bounded subset of X, the mapping N will be called L-
compact on Q if QN (Q) is bounded and Kp(I — Q)N : Q — X is compact. Since ImQ is
isomorphic to Ker L, there exists an isomorphism J : ImQ — KerL.

Lemma 2.1 [31]. Let Q C X be an open bounded set and L be a Fredholm mapping of index
zero. Assume that N : X — Z is a continuous operator and L-compact on Q. Suppose
(a) Lx # ANx for all A € (0,1) and x € 0Q N Dom L;
(b) QNx # 0 for x € 0Q N KerL;
(c) deg{JQN,Q N KerL,0} # 0.
Then Lx = Nx has at least one solution in O N DomL.

LemMma 2.2. (1) All solutions x(t) of (2.1) with positive initial value satisfy lim,_., x(t) = 0,
provided

w q
J a(s)ds+1n ] (1+H) <0, (2.2)

0 i=1

(2) There is at least Iy € {1,...,1} such that B;,(t) >0, then system (2.1) admits a unique
positive w-periodic solution if and only if

w q
J a(s)ds +1n ] (1+Hh) >0, (2.3)
0

i=1
which, moreover, is globally asymptotically stable.

Proof. (1) Without loss of generality, we consider (2.1) on [0,00) and let #; > 0. Now
assume that x(0) > 0. It is easy to show that x(¢) >0 for ¢t = 0. Then from (2.1), we have
that

¥ (1) < a(H)x(d). (2.4)
And so
0 < x(t) < x(0) 0<1t_k[<t (14 he) exp (L oc(s)ds). (2.5)

The condition that f(;‘) a(s)ds+1n H?=1(1 + h;) < 0 implies that

lim 1_[ (14 hy) exp (Jt(x(s)ds) =0. (2.6)

t—
® 0<te<t 0

Hence lim;_ » x(t) = 0.
(2) Making the change of variable x(t) = expu(t), (2.1) is transformed into

1
u'(t) = alt) - izzlﬁj(t)exp()’ju(t)), t 4ty o)

u(tf) =u(te) +1n(1+hy).
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Let X = {u € PC(R,R),u(t +w) = u(t)} with the norm |[ul| = SUP;c(0,0] lu(t)]. Let Y =
PC(R,R) x R with the norm [|(u,a1,...,aq)|l = (lull>+ai+- - - +aé)1/2. Then X and Y
are Banach spaces. O

Define mappings L and N by

L:DomLCcX —Y, u— (u,Au(t), Au(ty), ...,Au(ty)),

! 2.8
N:X—Y,u— (oc(t) = > Bit)exp (yju(t)),In(1+hy), ...,1n(1+hk)>. (28)
j=1
It is easy to check that
KerL={ueX:u=c€eR},
@ a 2.9
ImL = {(u,al,...,aq) :J u(s)ds+za,-=0} 29)
0 i=1

Since ImL is closed in Z and dimKerL = codimImL = 1, L is a Fredholm mapping of
index zero. There exist continuous projectors P: X — X and Q:Y — Y by

Pu= lj u(s)ds,
w Jo

Q(u,ai,...,a4) = (1[qu(s)ds+ia,-],0,...,0>.

w 0

(2.10)

The generalized inverse Kp : ImL — Dom L N Ker P is given,

w w ot q q
Kp(u,ay,...,aq) = L u(s)d5+za,-— éjo JO u(s)dsdt—Zaﬁézaiti. (2.11)
i=1 i=1

t>t;

Clearly, QN and Kp(I — Q)N are continuous. It is not difficult to show that Kp(I —
Q)N(Q) is compact for any open bounded set QO C X. So N is L-compact.
We consider operator equation Lu = ANu, A € (0,1), that is,

1

u'(t) = /\[tx(t) — > Bi(t)exp (yiu(t))], t# te,

j=1
u(tf) = u(te) +Aln (1 +hy).

(2.12)

Let u(t) be a w-periodic solution of (2.7); integrating (2.12), we obtain

w 1 w !
L a(s)ds+In [ (1+hy) = L S B;() exp (yiu(0)) dt. (2.13)
i=1 =1
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From (2.12) and (2.13), we have that

J [ (t) |dt<AJ

</\J |at) |dt+J zﬁj(t)exp(yiu(t))dt (2.14)
=1

a(t)dt — Zﬂj (t) exp (yiu(1)) ‘dt

w ) q
sAL |oc(t)|dt+L a(t)dt+In] [ (1+hy) =

i=1
Since u € X, there exist £, € [0,w] such that

u(t) = mm x(t) u(n) = tn?glx]x(t). (2.15)

From (2.13), we have

wp exp (y%t(f)) < L als) ds+1n1_[ 1+hy) < wZﬁMexp (y u(q)) (2.16)

i=1

where
Yt =min {y1,...,y1}, M =max{y,....,yi},
. 2.17
B! = max B0, B = min By (1), 217
Thus
uly) = yl zll M(j (s)ds+1n]‘[ 1+ k) )
j 1[3 i=1 (218)
u(é) < noi (J a(s) ds+lnﬂ 1+ hy) )
Hence we have
u(t)su(f)+J ' (1) | dt
]
1n/3(J a()ds+1n] ] (1+ e )+M1 =M,
b - (2.19)

—j ' ()| dt
0

W q
> llnllM<J (x(s)ds+lnn(1+hk)> ~ M, =: M;.
0

yM “)Zj=1/3j i=1
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Put M = [M,| + |M3| + 1, then max,e[o,o] |4(¢)| < M. Evidently, M is not dependent on

the choice of A. Let Q = {u € X : |lull < M}, then Q verifies the requirement (a) in Lemma
2.1. When u € 0Q n KerL, u is a constant with |u| = M, then

1) I o q
QNu=1<J a(t)dt—ZJ ﬁj(t)exp(yju)dt+lnn(1+h,~),0,...,0) #(0,0,...,0).
w\Jo j=170 i=1

(2.20)
Forue QO nKerL,
1 w I o q
JQNu= 1+ (J at)dt - zj Bi(t)exp (yju)dt +1n] | (1+h,»)>, (221)
w 0 j=1 0 i=1
where
J:ImQ — KerL, (14,0,...,0) — wu. (2.22)

It is easy to prove that deg{/QN,Q N KerL,0} # 0. By Lemma 2.1, (2.7) has at least a
w-periodic solution. So (2.1) has at least a positive w-periodic solution x*(t).

Next, we consider the stability property of x*(#). Let x(¢) be any solution of system
(2.1) with positive initial value x(0) > 0, then x*(¢) and x(t) are strictly on [0, c0). Set
Lyapunov function

V(t) = | Inx(¢t) —Inx*(t)|, t=0. (2.23)

It is easy to check that V() is continuous on [0, co). Calculating the upper right derivative
of V(t), it follows that when ¢ # fi,

s st (255

I I (2.24)
= sgn (x(t) — x*(t)) [ Z () (x(1))” Z (x*(1)) ]

Note that sgn(x(t) —x*(t)) = sgn((x(¢))" — (x*(£))") for j = 1,2,...,1, we have that
I
=D B (x() = (x* ()] <0, t# (2.25)
j=1

From (2.25), we know that V(¢) is decreasing on ¢ > 0. Since V = 0, lim;— V(¢) = V* >
0. We will show that V* = 0. Since x*(t) is a positive periodic solution of (2.1), it follows
that [Inx(t) — Inx*(¢)| + [Inx*(¢)] is bounded. From |Inx(¢)| < V + [Inx*(t)], it follows
that | Inx(¢)| is bounded. Thus there is an My > 0 such that | Inx(¢)| < Mg and |Inx*(¢)| <
M. By the mean value theorem, one have

[ (x(0)" = (x* ()" | = yjexp{y;Inx(t)} V (1), (2.26)
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where X(t) lies between x(t) and x*(¢). Put m;k = yjexpi—Myy;}, M]* = yjexpiMoy;},
then

miV (1) < | (x(6)" = (x* ()" | = MV (1) (2.27)

From (2.25) and (2.27), we have D*V(¢) < —BimV(t), t # t for k € Z*. So
lim;_ V(t) = V* =0. Using again the mean value theorem, one can obtain lim,_.« |x(¢)—
x*(t)| = 0. From the stability property of x* (¢), one knows that the positive periodic solu-
tion of (2.1) is unique. This completes the sufficient part of Lemma 2.2(2). The necessary
part is easily obtained from Lemma 2.2(1).

Remark 2.3. In [30], the authors considered the special case [ = 1 of (2.1). Our result
generalizes the result in [30].
LemMA 2.4. Consider the equation

X (t) = alt)x(t), t# b, (228)
2.28
x(t) = x(t) + p,

where «(t) is a continuous w-periodic function, p is a positive constant, and there is an
integer q > 0 such that tiyg = tx + w. Assume that fo t)dt < 0, then (2.28) has a unique
positive, globally asymptotically stable w-periodic solutlon.

Remark 2.5. If |’ a(t)dt > 0, then the solution x(¢) with any positive initial value satisfies
limy_. . x(t) = +co.

It is easy to show that the following function

s {x*(t),' o (O-’w]" ; (2.29)
x(t-jo), te (jo,(j+Dw], j€ {...,-2,-1,0,1,...},
where
* l 1eXP(L t)dt) t
x*(t) = 1 = exp ([0 alt)dt) exp (J (S)ds) +p0§<texp (J (s)ds) (2.30)

is a unique positive, globally asymptotically stable w-periodic solution of (2.28).

3. Permanence

In this section, we consider the permanence of (1.3). We assume that J = [0,0) and let
t; > 0. Now assume that x(0) >0, 4y(0) > 0. It is easy to show that x(t) >0, y(¢) > 0 for
t>0.

Definition 3.1. System (1.3) is said to be permanent if there are m, M > 0(independent
of initial value) and a finite ; such that, for solution u = col(x(¢), y(t)) with initial value
x(0) >0, y(0) >0, m < x(t), y(t) < M holds for all t = t,. Here ¢, may depend on the
initial value.
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Lemma 3.2. Let d(t) be a continuous w-periodic function. w >0 and [’ d(t)dt > 0, then the
following inequality

c(t—s)

eclt=9) < pl+Dat[d(r)dr fort=>s (3.1)

holds, where constantc:0< ¢ < min{fo"J d(t)dt/w, 1/w} and D = max{|d(t)|: t € [0,w]}.

Proof. Putt =s+nw+p, wheren € {0,1,2,...} and 0 < 4 < w. Then we have

el+Dw+L‘d(r)dr _ el+Dw+f;+"w+"d(r)dr
> el+nf0wd(r)dr > pltncw (32)

> ec(nw+/4) _ ec(tfs)'

The proof is complete. O
THEOREM 3.3. The system (1.3) is permanent if and only if

J a(s)ds+1n] ] (1+) >0, J d(t)dt >0, (33)
i=1 0

Proof. Let col(x(t), y(t)) be a solution of (1.3) with x(0) >0, y(0) > 0. Since x(t) >0
y(t) >0 for t = 0; from (1.3), we have that for ¢ # t;, t > 0,

X' (1) < ( - > bj( ) (3.4)
i
y' () = =d()y(1). (3.5)

Now suppose that (3.3) holds and consider the equations

(1) = t)( H-3 )
! ‘ le e (3.6)
u(t) = (L+go)ult),

vi(t) = —d(t)v(t),
t# ty. (3.7)
v(t) =v(te) +p,

By Lemmas 2.2 and 2.4, (3.6) and (3.7) have unique positive, globally asymptotically sta-
ble w-periodic solutions #(t) and ¥(t), respectively. Let u(t) be the solution of (3.6) with
initial value u(0) = x(0), let v(t) be the solution of (3.7) with initial value v(0) = y(0).
By using the comparison theorem of impulsive differential equations (see [20, Theorem
1.6.1]), it follows that

x(t) <u(t), y()=v(t), fort=0. (3.8)
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The attractivity of 7(¢) and v(¢) implies that there exists a T; > 0 such that

u(t) <u(t)+1, v(t) = zv(t) fort=T). (3.9)

N | —

It is clear that x(¢) is bounded above and y(¢) is bounded below by a positive constant.
Next, we show that y(t) is bounded above. Let X = sup,. ,x(), then 0 <x < co. From
the second equation of (3.3), we have that when t # t,

y(t)—y(t)( (t)+*2+Ay2(t)) (3.10)
ex’ .
_d(t)y(t)+m)’(t),

where € = max;ege(t). Since the function g(x) = Bx/(C+ Ax?) (A >0, B>0, C >0) has
maximal for x > 0, there is My > 0 such that when ¢ # t;,

Y () +d(t)y(t) < My. (3.11)

For any t € (t},t;+1], we have from Lemma 3.2 that

y(t) < y(t) exp( Jdt)dt) +M4J exp(J dr)dr>d5+ Z pexp(J d(r dr)

to<tr<t
t j
< y(to) e D9t 1 pel*Dw JO 60 s+ peltDe S geltid
k=1

1+D j
Me!*tPe (1= e¥t) + pel*Pe Z ec1-R)a

k=1

< y(to)eHDw +

Me1+Dw pel+Dw
< y(to)e P + P R—

(3.12)

where o = mings(tx — tx_1) >0 and constant c: 0 < ¢ < min{fow d(t)dt/w, 1/w} and D =
max{|d(t)| : t € [0,w]}. So y(¢) is bounded above.

Let y = min{y(t), t = 0}, ¥ = max{y(t), t = 0}, then y >0, y < co. From (1.3), we
have that for ¢ # t, t > 0, B

X (1) = x(t) ( Zb ()b (t) — ()(t)y)
- (3.13)

>x(t< i b, (1) (1) — bO(;)y ()).
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Consider the equation

z’(r)=z<t><a(t> S by (1) - 20T <t)> £t
=1 Ay? (3.14)

z2(5) = (1+g)z(t).

By Lemma 2.2, (3.14) has a unique positive, globally asymptotically stable w-periodic
solution z(¢). Let z(#) be the solution of (3.14) with initial value z(0) = x(0). By using the
comparison theorem of impulsive differential equations, it follows that

x(t) = z(t) fort=0. (3.15)

From the attractivity of z(¢), there exists T> > 0 such that z(t) > (1/2)z(t) for t > T,. It is
clear that x(#) is bounded below by a positive constant. This completes the sufficient part
of Theorem 3.3.

Now suppose that the system (1.3) is permanent. If [;"d(¢)dt < 0, we obtain from
Remark 2.5 that the solution v(f) with initial value v(0) = y(0) of (3.7) satisfies
lim;_ v(t) = +co. The comparison theorem of an impulsive differential equation implies
lim;_« y(t) = +oco, which is a contradiction. So f(;') (t)dt > 0.

Let [y a s)ds+ln]_[ 1(1+g) <0. Since x(t) = Cy >0 for t = 0, from (1.3), we have
fort# t;, t =0,

ip—1 m
x'(t)sx(t)(a() W (DCH" — Zb(t - > bj(t)x%(t)). (3.16)

j=io+1
Consider the equation

ip—1

z’(t)=z(t)<a(t)— '°—Zb () - i bi(t)zkj(t))’ EF tho (3.17)

j:i0+1

z( k) = (1+gk)z(t).

Clearly, [, (a(s) — b,-o(t)Ci[" )ds+InTTL, (1 +gi) < 0. Lemma 2.2(1) implies the solution
z(t) with initial value z(0) = x(0) of (3.17) satisfies lim;_« z(t) = 0. From the comparison
theorem of impulsive differential equations, one easily obtain that lim;_ x(#) = 0, which
is a contradiction. This completes the proof of Theorem 3.3. O

THEOREM 3.4. Suppose that [, d(t)dt >0 and

W q
J a(s)ds+In[ | (1+g) <0 (3.18)
0

i=1

hold, then the solution (x(t), y(t)) of system (1.3) with any positive initial value satisfies

(x(8), y(£)) — (0,y*(¥)) ast— oo, (3.19)
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where y*(t) is a unique positive w-periodic solution of the following equation:

y(6)=—dt)y(t), t+u,

3.20
y(tf) = y(t) +p. (3:20)

4. Positive periodic solution

In this section, we investigate the existence and attractivity of the periodic solution of
system (1.3). We say that a positive solution of system (1.3) is globally asymptotically
stable if it attracts all the other positive solutions of the system.

Theorem 3.3 shows that when the assumption (3.3) holds, any solution of system (1.3)
with a positive initial value ultimately enters the region Q = {(x,y)|Cyx < x,y < C*},
where Cy and C* are positive constants. By applying the Brouwers fixed point theorem,
we have the following result.

THEOREM 4.1. Assume (3.3) holds, then system (1.3) has at least one positive w-positive
solution which lies in Q.

In order to investigate the uniqueness and stability property of the positive w-periodic
solution, we recall some results on abstract persistence of autonomous semiflows.

Let (X,d) be a Banach space with metric d. Suppose that T(¢): X — X,t > 0is a C°
semiflow on X, that is, T(0) = E, T(t+s) = T(t)T(s) for t,s > 0, and T'(¢)x is continuous
in t and x. T(t) is said to be point dissipative in X if there is a bounded nonempty set B
in X such that for any x € X, there is a ty = ty(x, B) > 0 such that T(t)x € B for ¢ > t,.

Definition 4.2. Assume that X = X, U 0X and X, N 0Xy, = & with X, being open in X.
The semiflow T'(¢) : X — X is said to be of uniform persistence with respect to (Xo,0Xp)
if there exists an # > 0 such that for any x € Xy, liminf, .. d(T(t)x,0Xy) = #.

The following lemma can be found in [32].

LemMA 4.3. Let S: X — X be a continuous map with S(Xo) C Xo. Assume that
(1) S is point dissipative,
(2) S is compact,
(3) S is uniformly persistent with respect to (Xo,0Xo).

Then there exists a global attractor Ay for S in X relative to strongly bounded sets in
Xy, and S has a coexistence sate xg € Ayg.

THEOREM 4.4. Assume (3.3) holds, then the w-positive solution of system (1.3) is globally
asymptotically stable.

Proof. To apply Lemma 4.3, we consider the properties of the solution operator T(t) of
the following ordinary differential equations with impulse

Z(t)=F(t,z(t), t#t

z(tf) —z(te) = k(z(t)), ke Z™, (4.1)
z(0) = ¢,
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where F € C([0,0) X R?,R?), ¢ € R, F(t+ w,u) = F(t,u), [y € C(R?,R?) and w > 0. There
exists an integer q > 0 such that Iy14 = I, tgyg = tx + @.
The solution operator T(¢) of system (4.1) can be expressed as

T(t)z = ze M+ Jte*MH) [F(s,T(s)z) +AT(s)z]ds + Z e MEWOL(T ()2),  (4.2)

0 0<tr<t

where A is a positive constant. We show that T(0) = E, T(t+w) = T(¢)T(w). Obviously,
T(0) = E. When t # t, letting

(4.3)

T(s)z, 0<s<w,
u(s) =
Ts—w)T(w)z, w<s<t+w,

we can verify that u(s), s € [0,f + w] is a solution of (4.1) with an initial value u(0) = z.
By the uniqueness theorem, we have T(t + w)z = u(t+ w) = T(+) T (w)z.
When t = t;, we have

Tt +w)z=T(t+w)z+ L (T(t +w)z) =T (t) T(w)z+ Ik (T (t) T(w)z) =T () T(w)z.
(4.4)

LetS= T(w),$* =SoS = T(w) o T(w) = T(2w). Since T(t) is a completely continuous
operator (see [19]), so is S. Put

X ={zi:zieR, z=0}, i=1,2, X4 ={zi:zi€R, z; >0}, i=1,2,

4.5
X=Xt %X,  Xo=XhxXbh  0Xo=X/Xo. (45)
When (3.3) holds, system (1.3) is permanent, thus S satisfies (1) and (3) in Lemma 4.3.
By Lemma 4.3, S admits a global attractor. The proof is complete. O
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