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We prove that the system of difference equations x(i)
n+1 = λix

(i)
n + fi(αix

(i+1)
n − βix

(i+1)
n−1 ), i∈

{1,2, . . . ,k}, n ∈ N, (we regard that x(k+1)
n = x(1)

n ) is permanent, provided that αi ≥ βi,
λi+1 ∈ [0,βi/αi), i ∈ {1,2, . . . ,k}, fi : R→ R, i ∈ {1,2, . . . ,k}, are nondecreasing functions
bounded from below and such that there are δi ∈ (0,1) and M > 0 such that fi(αix)≤ δix,
i∈ {1,2, . . . ,k}, for all x ≥M. This result considerably extends the results existing in the
literature. The above system is an extension of a two-dimensional discrete neural network
system.

Copyright © 2007 Stevo Stević. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Recently, there has been a great interest in studying nonlinear difference equations and
systems of nonlinear difference equations, see, for example, [1–31] and the references
therein. One of the reasons for this is a necessity for some techniques which can be useful
in investigating equations arising in mathematical models describing real life situations
in population biology, economics, probability theory, genetics, psychology, sociology,
and so forth. Such equations also appear naturally as discrete analogues of differential
equations which model various biological and economic systems (see, e.g., [6, 10, 12–
16, 18, 27, 28] and the related references therein).

This paper studies the permanence of the following system of difference equations:

x(1)
n+1 = λ1x

(1)
n + f1

(
α1x

(2)
n −β1x

(2)
n−1

)
,
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x(2)
n+1 = λ2x

(2)
n + f2

(
α2x

(3)
n −β2x

(3)
n−1

)
, (1.1)

...

x(k−1)
n+1 = λk−1x

(k−1)
n + fk−1

(
αk−1x

(k)
n −βk−1x

(k)
n−1

)
,

x(k)
n+1 = λkx

(k)
n + fk

(
αkx

(1)
n −βkx

(1)
n−1

)
,

n∈N, where k ∈N, αi,βi > 0, λi ∈ [0,1), and where fi, i∈ {1,2, . . . ,k}, are real functions.
The case k = 2, with λ1 = λ2 and f1 = f2, was considered in [5], from which our moti-

vation for this paper stems from. For the one-dimensional case, see [14]. System (1) with
k = 2 can also be regarded as an extension of the discrete version of a neural network
of two neurons with dynamical threshold effects, which has applications in the temporal
evolution of sublattice magnetization (see [11]).

We say that system (1) is permanent if there is a compact subset K of Rk such that
every solution of (1) eventually enters K .

Our aim here is to extend considerably the main result of paper [5]. The main result
in this paper is the following.

Theorem 1.1. Consider system (1), where the following conditions are satisfied:
(a) αi ≥ βi, i∈ {1,2, . . . ,k};
(b) λi+1 ∈ [0,βi/αi), i∈ {1,2, . . . ,k};
(c) fi :R→R, i∈ {1,2, . . . ,k}, are nondecreasing functions bounded from below on R;
(d) there are δi ∈ (0,1) and M > 0 such that for all x ≥M,

fi
(
αix
)≤ δix, i∈ {1,2, . . . ,k}. (1.2)

Then system (1) is permanent.

In Section 2, we give some auxiliary results which will be used in the proof of Theorem
1.1. Theorem 1.1 is proved in Section 3.

Throughout the paper, we often use the notation u(i)
l = u

( j)
l (or x(i)

l = x
( j)
l , etc.) if i= j

(modk).

2. Auxiliary results

The following system plays an important role in the proof of the main result of this paper:

u(1)
n+1 = f1

(
α1u

(2)
n

)
,

u(2)
n+1 = f2

(
α2u

(3)
n

)
,

...

u(k−1)
n+1 = fk−1

(
αk−1u

(k)
n

)
,

u(k)
n+1 = fk

(
αku

(1)
n

)
.

(2.1)
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Lemma 2.1. Assume that fi :R→R, i∈ {1,2, . . . ,k}, are nondecreasing functions and that
there are δi ∈ (0,1) and M > 0 such that for all x ≥M,

fi
(
αix
)≤ δix, i∈ {1,2, . . . ,k}. (2.2)

Then every solution of system (2.1) is eventually bounded from above (independently of
initial conditions).

Proof. We prove that there exist n1 ∈N such that u(i)
n1 <M for each i∈ {1, . . . ,k}. First, we

prove that there is an n0 ∈N such that u(1)
n0 <M. Assume to the contrary that u(1)

n ≥M > 0
for every n∈N. Then, we have

u(k)
n+1 = fk

(
αku

(1)
n

)≤ δku
(1)
n < u(1)

n ,

u(k−1)
n+2 = fk−1

(
αk−1u

(k)
n+1

)≤ fk−1
(
αk−1u

(1)
n

)≤ δk−1u
(1)
n < u(1)

n ,

...

u(2)
n+k−1 = f2

(
α2u

(3)
n+k−2

)≤ f2
(
α2u

(1)
n

)≤ δ2u
(1)
n < u(1)

n ,

u(1)
n+k = f1

(
α1u

(2)
n+k−1

)≤ f1
(
α1u

(1)
n

)≤ δ1u
(1)
n ,

(2.3)

which implies that

u(1)
n+k ≤ δ1u

(1)
n . (2.4)

Since this inequality holds for every n∈N, it follows that

u(1)
n+km ≤ δm1 u

(1)
n (2.5)

for every m∈N. Letting m→∞ in (2.5) and using the fact that δ1 ∈ (0,1), we obtain that

for each fixed n∈N, limsupm→∞u
(1)
n+km ≤ 0, which is a contradiction.

Now, we prove that there exists an md ∈N such that u(i)
n0+kmd

< M for i ∈ {1,2, . . . ,k}.
Assume now that u(2)

n0+km ≥M for every m ∈N. Then, similar to above, it can be shown
that

0 <M ≤ u(2)
n0+km ≤ δm2 u

(2)
n0

(2.6)

for every m∈N, which together with the fact δ2 ∈ (0,1) leads to a contradiction. Hence,

there is an m1 such that u(2)
n0+km1

<M.
On the other hand, by the monotonicity of the functions fi, i ∈ {1, . . . ,k}, similar

to (2.3), we have that u(1)
n0 < M, implies u(1)

n0+km < M, for every m ∈ N, in particular for

m =m1. Hence, u(i)
n0+km1

<M, i ∈ {1,2}. Repeating this procedure k− 2 times, the claim
follows.

Using the fact u(i)
n1 <M, i∈ {1, . . . ,k}, and (2.1), we have that

u(i)
n1+1 = fi

(
αiu

(i+1)
n1

)≤ fi
(
αiM

)≤ δiM <M (2.7)
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for each i∈ {1, . . . ,k}. By induction, it follows that

u(i)
n+1 = fi

(
αiu

(i+1)
n

)≤ fi
(
αiM

)≤ δiM <M, (2.8)

for every n≥ n1 and for each i∈ {1, . . . ,k}, finishing the proof of the lemma. �

The following lemma is a dual result to Lemma 2.1 and its proof is omitted.

Lemma 2.2. Assume that fi :R→R, i∈ {1,2, . . . ,k}, are nondecreasing functions and that
there are δi ∈ (0,1) and M > 0 such that for all x ≤−M,

fi
(
αix
)≥ δix, i∈ {1,2, . . . ,k}. (2.9)

Then every solution of system (2.1) is eventually bounded from below (independent of initial
conditions).

Lemma 2.3. Assume that fi : R → R, i ∈ {1,2, . . . ,k}, are nondecreasing functions, and

(x(1)
n , . . . ,x(k)

n ) is a nonnegative solution of the following system of difference inequalities:

x(1)
n+1 ≤ λ1x

(1)
n + f1

(
α1x

(2)
n −β1x

(2)
n−1

)
,

x(2)
n+1 ≤ λ2x

(2)
n + f2

(
α2x

(3)
n −β2x

(3)
n−1

)
,

...

x(k−1)
n+1 ≤ λk−1x

(k−1)
n + fk−1

(
αk−1x

(k)
n −βk−1x

(k)
n−1

)
,

x(k)
n+1 ≤ λkx

(k)
n + fk

(
αkx

(1)
n −βkx

(1)
n−1

)
,

(2.10)

with initial conditions (x(1)
0 , . . . ,x(k)

0 ) and (x(1)
1 , . . . ,x(k)

1 ). Further, assume that (u(1)
n , . . . ,u(k)

n )
is the solution of (2.1) with the following initial conditions:

α1u
(2)
1 = α1x

(2)
1 −β1x

(2)
0 ,

α2u
(3)
1 = α2x

(3)
1 −β2x

(3)
0 ,

...

αk−1u
(k)
1 = αk−1x

(k)
1 −βk−1x

(k)
0 ,

αku
(1)
1 = αkx

(1)
1 −βkx

(1)
0 ,

(2.11)

and that

λi+1 ≤ βi
αi

, i∈ {1, . . . ,k}. (2.12)

Then for every n∈N and each i∈ {1, . . . ,k}, the following inequalities hold true:

αix
(i+1)
n ≤ λn−1

i+1 βix
(i+1)
0 +

n∑

j=1

λ
n− j
i+1 αiu

(i+1)
j . (2.13)
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Proof. First, note that (2.11) can be written in the form

αix
(i+1)
1 = αiu

(i+1)
1 +βix

(i+1)
0 , i∈ {1, . . . ,k}, (2.14)

which shows that (2.13) holds for n= 1.
From this and (2.10), we have that

αix
(i+1)
2 ≤ αi

(
λi+1x

(i+1)
1 + fi+1

(
αi+1x

(i+2)
1 −βi+1x

(i+2)
0

))

= λi+1

(
αiu

(i+1)
1 +βix

(i+1)
0

)
+αi fi+1

(
αi+1u

(i+2)
1

)

= λi+1βix
(i+1)
0 + λi+1αiu

(i+1)
1 +αiu

(i+1)
2 ,

(2.15)

from which it follows that (2.13) holds for n= 2. Now, we use the method of induction.
Assume that (2.13) holds for some n∈N. We have that

αix
(i+1)
n+1 ≤ αi

(
λi+1x

(i+1)
n + fi+1

(
αi+1x

(i+2)
n −βi+1x

(i+2)
n−1

))

≤ λi+1

(

λn−1
i+1 βix

(i+1)
0 +

n∑

j=1

λ
n− j
i+1 αiu

(i+1)
j

)

+αi fi+1

(
αi+1x

(i+2)
n −βi+1x

(i+2)
n−1

)

= λni+1βix
(i+1)
0 +

n∑

j=1

λ
n+1− j
i αiu

(i+1)
j +αi fi+1

(
αi+1x

(i+2)
n −βi+1x

(i+2)
n−1

)
.

(2.16)

Now, we prove that

fi+1

(
αi+1x

(i+2)
n −βi+1x

(i+2)
n−1

)
≤ u(i+1)

n+1 , (2.17)

from which the result follows.
From (2.10) and by condition (2.12), we have that

αi+1x
(i+2)
n −βi+1x

(i+2)
n−1 ≤

(
αi+1λi+2−βi+1)x(i+2)

n−1 +αi+1 fi+2

(
αi+2x

(i+3)
n−1 −βi+2x

(i+3)
n−2

)

≤ αi+1 fi+2

(
αi+2x

(i+3)
n−1 −βi+2x

(i+3)
n−2

)
.

(2.18)

From this and by the monotonicity of f , it follows that

fi+1

(
αi+1x

(i+2)
n −βi+1x

(i+2)
n−1

)
≤ fi+1

(
αi+1 fi+2

(
αi+2x

(i+3)
n−1 −βi+2x

(i+3)
n−2

))
. (2.19)

Repeating this procedure, we obtain

fi+1

(
αi+1x

(i+2)
n −βi+1x

(i+2)
n−1

)

≤ fi+1

(
αi+1 fi+2 ···αi+n−1 fi+n

(
αn+ix

(n+i+1)
1 −βn+ix

(n+i+1)
0

)
···

)
.

(2.20)

Now, note that system (2.1) is defined by

u(i+1)
n+1 = fi+1

(
αi+1u

(i+2)
n

)
, (2.21)
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which implies

u(i+1)
n+1 = fi+1

(
αi+1 fi+2 ···αi+n−1 fi+n

(
αn+iu

(n+i+1)
1

)
···

)
. (2.22)

By (2.11), we have that

αn+iu
(n+i+1)
1 = αn+ix

(n+i+1)
1 −βn+ix

(n+i+1)
0 . (2.23)

Thus, (2.20) and (2.22) imply (2.17) as desired. �

Similar to Lemma 2.3, the following (dual) lemma can be proved.

Lemma 2.4. Assume that fi : R → R, i ∈ {1,2, . . . ,k}, are nondecreasing functions, and

(x(1)
n , . . . ,x(k)

n ) is a nonpositive solution of the following system of difference inequalities:

x(1)
n+1 ≥ λ1x

(1)
n + f1

(
α1x

(2)
n −β1x

(2)
n−1

)
,

x(2)
n+1 ≥ λ2x

(2)
n + f2

(
α2x

(3)
n −β2x

(3)
n−1

)
,

...

x(k−1)
n+1 ≥ λk−1x

(k−1)
n + fk−1

(
αk−1x

(k)
n −βk−1x

(k)
n−1

)
,

x(k)
n+1 ≥ λkx

(k)
n + fk

(
αkx

(1)
n −βkx

(1)
n−1

)
,

(2.24)

with initial conditions (x(1)
0 , . . . ,x(k)

0 ) and (x(1)
1 , . . . ,x(k)

1 ). Further, assume that (u(1)
n , . . . ,u(k)

n )
is the solution of (2.1) satisfying (2.11) and (2.12).

Then for every n∈N and each i∈ {1, . . . ,k}, the following inequalities hold true:

αix
(i+1)
n ≥ λn−1

i+1 βix
(i+1)
0 +

n∑

j=1

λ
n− j
i+1 αiu

(i+1)
j . (2.25)

3. Proof of the main result

In this section, we prove the main result of this paper, Theorem 1.1.

Proof of Theorem 1.1. Let

z(i)
n = fi

(
αix

(i+1)
n −βix

(i+1)
n−1

)
, i∈ {1, . . . ,k}. (3.1)

By standard arguments, from (1), we have that

x(i)
n = λn−1

i x(i)
1 +

n−1∑

j=1

λ
n− j−1
i z(i)

j . (3.2)

Assume that m0 is a lower bound for all fi, i ∈ {1, . . . ,k}. Without loss of generality, we
may assume that m0 is a negative number. Then from (3.2), we have that

x(i)
n ≥ λn−1

i x(i)
1 +m0

1− λn−1
i

1− λi
, (3.3)
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for each i∈ {1, . . . ,k}, and consequently the following estimates eventually hold:

x(i)
n ≥ min

i=1,...,k

{
m0

1− λi
− 1
}

:= L, (3.4)

for i∈ {1, . . . ,k}, for example, for n≥ n1.
Now, we prove that x(i)

n , i∈ {1, . . . ,k}, are bounded above. Let

y(i)
n = x(i)

n+n1 −L, i∈ {1, . . . ,k}. (3.5)

Note that such defined y(i)
n are nonnegative numbers for every n∈N0 and i∈ {1, . . . ,k}.

Also, we have

y(i)
n+1 = λix

(i)
n+n1 + fi

(
αix

(i+1)
n+n1 −βix

(i+1)
n+n1−1

)−L

= λi y
(i)
n + fi

(
αix

(i+1)
n+n1 −βix

(i+1)
n+n1−1

)−L
(
1− λi

)
.

(3.6)

In view of condition (a), we have that

αix
(i+1)
n+n1 −βix

(i+1)
n+n1−1 = αiy

(i+1)
n −βi y

(i+1)
n−1 +L

(
αi−βi

)≤ αiy
(i+1)
n −βi y

(i+1)
n−1 . (3.7)

From (3.6) and (3.7) and condition (c), it follows that

y(i)
n+1 ≤ λi y

(i)
n + gi

(
αi y

(i+1)
n −βi y

(i+1)
n−1

)
, (3.8)

where gi(x)= fi(x)−L(1− λi), i∈ {1, . . . ,k}.
It is easy to see that if x ≥ max{M,−2L(1− λ1)/(1− δ1), . . . ,−2L(1− λk)/(1− δk)},

then

gi
(
αix
)≤ 1 + δi

2
x, i∈ {1, . . . ,k}. (3.9)

Now, consider the system

v(i)
n+1 = gi

(
αiv

(i+1)
n

)
, i∈ {1, . . . ,k}, (3.10)

with the initial conditions

v(i+1)
1 = αiy

(i+1)
1 −βi y

(i+1)
0

αi
, i∈ {1, . . . ,k}. (3.11)

By employing Lemma 2.1, it follows that there is a positive constant M0 and an n1 ∈ N
such that v(i)

n ≤M0 for every n≥ n1 and i∈ {1, . . . ,k}. On the other hand, by Lemma 2.3,
we have that

αi y
(i+1)
n ≤ λn−1

i+1 βix
(i+1)
0 +

n∑

j=1

λ
n− j
i+1 αiv

(i+1)
j

≤ λn−1
i+1 βix

(i+1)
0 + λn−n1+1

i+1

n1−1∑

j=1

λ
n1− j−1
i+1 αiv

(i+1)
j +

αiM0

1− λi+1
,

(3.12)
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from which it follows that eventually

y(i+1)
n ≤ M0

1− λi+1
+ 1, (3.13)

i∈ {1, . . . ,k}, and the result is proven. �

By using Lemmas 2.2 and 2.4, similar to the proof of Theorem 1.1 the following theo-
rem can be proved.

Theorem 3.1. Consider system (1), where the following conditions are satisfied:
(a) αi ≥ βi, i∈ {1,2, . . . ,k};
(b) λi+1 ∈ [0,βi/αi), i∈ {1,2, . . . ,k};
(c) fi :R→R, i∈ {1,2, . . . ,k}, are nondecreasing functions bounded from above on R;
(d) there are δi ∈ (0,1) and M2 > 0 such that for all x ≤−M2,

fi
(
αix
)≥ δix, i∈ {1,2, . . . ,k}. (3.14)

Then system (1) is permanent.
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[16] S. Stević, “Asymptotic behavior of a sequence defined by iteration with applications,” Colloquium
Mathematicum, vol. 93, no. 2, pp. 267–276, 2002.
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[20] S. Stević, “A note on periodic character of a difference equation,” The Journal of Difference Equa-
tions and Applications, vol. 10, no. 10, pp. 929–932, 2004.
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