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Chemostat model with pulsed input in a polluted environment is considered. By using
the Floquet theorem, we find that the microorganism eradication periodic solution is
globally asymptotically stable if the impulsive period T is more than a critical value. At
the same time, we can find that the nutrient and microorganism are permanent if the
impulsive period T is less than the critical value.
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1. Introduction

A chemostat is a piece of laboratory apparatus frequently used for culturing microorgan-
isms. It can be used for representing all kinds of microorganism systems such as lake,
waste-water treatment, and reaches for commercial production of the advantage of be-
ing easily implementable in a laboratory, and hence the model has been studied by more
and more people. Chemostat with period inputs are studied in [1–3], those with periodic
washout rate in [4, 5] and those with periodic input and washout in [6]. However, exist-
ing theories on chemostat model largely ignore the effects of environmental pollution.

Environmental pollution by various industries and pesticide used in agriculture is one
of the most important of present day social and ecological problems. Organisms are of-
ten exposed to a polluted environment and take up toxicant. Uncontrolled contribution
of pollutant to the environment has led many species to extinction. In order to use and
regulate toxic substance wisely, we must assess the risk of the population exposed to toxi-
cant. Therefore, it is important to study the effects of toxicant on populations and to find
a theoretical threshold value, which determines permanence or extinction of a population
community.
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In this paper, we consider the dynamics of the polluted chemostat with pulsed input:

Ṡ=−QS− μxS

δ
, ẋ = x(μS−Q− rc), ċ =−Qc+Q f , t �= nT ,

ΔS= S0Q, Δx = 0, Δc = 0, t = nT ,
(1.1)

where ΔS = S(nT+)− S(nT), Δx = x(nT+)− x(nT), Δc = c(nT+)− c(nT), n ∈ Z+, Z+ =
{1,2, . . .}. S(t) denotes the concentration of the nutrient, and x(t) denotes the concen-
tration of the microorganism at time t. c(t) is the concentration of the toxicant in the
organism at time t. r > 0 is the decreasing rate of the intrinsic growth rate associated with
the uptake of the toxicant. f represents the exogenous rate of toxicant input into the or-
ganism. S0 represents the input concentration of the nutrient. Q (0 < Q < 1) is referred to
as the dilution rate. μ denote the predation constants of the predator. δ shows yield term.
T is the period of the pulse.

The aim of this work is to study the dynamical behaviors of the polluted chemostat
with pulsed input, and investigate how the impulsive perturbation affects the dynamical
behaviors of unforced continuous system.

The variables in the above system may be rescaled by measuring S = (Q/μ)x1, x =
(δQ/μ)x2, c = (Q/r)x3, t =Qt, then we have the following system:

ẋ1 =−x1− x1x2, ẋ2 = x2
(
x1− 1− x3

)
, ẋ3 =−x3 +u, t �= nT ,

Δx1 = p, Δx2 = 0, Δx3 = 0, t = nT ,
(1.2)

where p = μS0, u= f r/Q, Δxi = xi(nT+)− xi(nT), i= 1,2,3.
This paper is arranged as follows. In Section 2, we introduce some useful notations and

definitions. In Section 3, by using Floquet theorem for the impulsive equation, small-
amplitude perturbation skills and techniques of comparison, we get the local stability
and global asymptotic stability of the microorganism eradication periodic solution. In
Section 4, we show that the system is permanent if the impulsive period is less than some
critical value. In Section 5, we give a brief discussion.

2. Preliminaries

In this section, we will give some definitions, notations, and some lemmas which will be
useful for our main results.

Let R+ = [0,∞), let R3
+ = {x = (x1,x2,x3) ∈ R3 : x > 0}, and let N be the set of all

nonnegative integers. Denote by f = ( f1, f2, f3) the map defined by the right-hand side of
the first three equations of system (1.2). Let V : R+×R3

+ → R+, then V is said to belong to
class V0 if

(i) V is continuous in (nT , (n + 1)T] × R3
+ and for each x ∈ R3

+, n ∈ Z+,
lim(t,y)→(nT+,x)V(t, y)=V(nT+,x) exists.

(ii) V is locally Lipschitzian in x.
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Definition 2.1. Let V ∈ V0, then for (t,x)∈ (nT , (n+ 1)T)]×R3
+, the upper right deriva-

tive of V(t,x) with respect to the impulsive differential system (1.2) is defined as

D+V(t,x)= lim
h→0+

sup
1
h

[
V
(
t+h,x+h f (t,x)

)−V(t,x)
]
. (2.1)

The solution of system (1.2) is a piecewise continuous function x : R+ → R3
+, x(t) is con-

tinuous on (nT , (n + 1)T], n ∈ Z+, and x(nT+) = limt→nT+ x(t) exists, the smoothness
properties of f guarantees the global existence and uniqueness of the solution (1.2), for
details see [7, 8].

Definition 2.2. The microorganism x2 of (1.2) is said to be permanent if there exist
constants 0 < m < M and T0 > 0 such that m < x2 < M for t > T0 with initial condition
x2(0) > 0, that is, the system (1.2) is permanent.

Definition 2.3. The microorganism x2 of (1.2) is said to be extinct if limt→∞ x2(t)= 0.

Lemma 2.4. Suppose ω(t) = (x1(t),x2(t),x3(t)) is a solution of (1.2) subject to ω(0+) ≥ 0,
then ω(t)≥ 0 for all t ≥ 0, and further ω(t) > 0, t ≥ 0, if ω(0+) > 0.

We will use a basic comparison result from [7, Theorem 3.1]. For convenience, we state
it in our notations.

Lemma 2.5. Let V : R+×R3 → R+ and V ∈V0. Assume that

D+V(t,ω)≤ g(t,V(t,ω)
)
, t �= nT ,

V
(
t,ω
(
t+
))≤ ψn

(
V
(
t,ω(t)

))
, t = nT ,

(2.2)

where g : R+ × R+ → R is continuous in (nT , (n + 1)T] × R+ and for y ∈ R+, n ∈ Z+,
lim(t,y)→(nT+,y) g(t, y) exists, ψn : R+ → R+ is nondecreasing. Let r(t) be the maximal solu-
tion of the scalar impulsive differential equation

du

dt
= g(t,u), t �= nT ,

u
(
t+
)= ψn

(
u(t)

)
, t = nT ,

u
(
0+)= u0,

(2.3)

existing on [0,∞). Then V(0+,ω0)≤ u0 implies that V(t,ω(t))≤ r(t), t ≥ 0, where ω(t) is
any solution of system (1.2).

Similar result can be obtained when all conditions of the inequalities in the lemma
are reversed. Note that if we have some smoothness conditions of g(t,u) to guarantee
the existence and uniqueness of the solutions for (2.3), then r(t) is exactly the unique
solution of (2.3).

For convenience, we give the basic properties of the following system:

ẋ1 =−x1, t �= nT ,

Δx1 = p, t = nT ,

x1
(
0+)= x10 ≥ 0.

(2.4)
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Lemma 2.6. System (2.4) has a positive periodic solution x∗1 (t) and for every solution x1(t)
of (2.4) with initial value x10 ≥ 0, |x1(t)− x∗1 (t)| → 0, as t→∞; moreover, x1(t)≥ x∗1 (t) if
x10 ≥ p/(1 − e−T) and x1(t) < x∗1 (t) if x10 < p/(1 − e−T), where x∗1 (t) = pe−(t−nT)/
(1− e−T), t ∈ (nT , (n+ 1)T], n∈ Z+, x∗1 (0+)= p/(1− e−T).

Proof. Clearly x∗1 (t) is a positive solution of (2.4). The solution x1(t) = (x10 − p/(1−
e−T))e−t + x∗1 (t), t ∈ (nT , (n + 1)T], n ∈ N . Hence, |x1(t)− x∗1 (t)| → 0 as t →∞. And
x1(t) ≥ x∗1 (t) if x10 ≥ p/(1− e−T); x1(t) < x∗1 (t) if x10 < p/(1− e−T). The proof is com-
plete. �

3. Extinction

In the section, we study the stability of the microorganism eradication periodic solution
as a solution of the full system (1.2). Firstly, we present the Floquet theory for the linear
T-periodic impulsive equation:

dx

dt
= A(t)x, t �= τk, t ∈ R,

Δx = Bkx, t = τk, k ∈ Z.
(3.1)

Then we introduce the following conditions:
(H1) A(·) ∈ PC(R,Cn×n) and A(t +T) = A(t) (t ∈ R), where PC(R,Cn×n) is a set of

all piecewise continuous matrix functions which is left continuous at t = τk, and
Cn×n is a set of all n×n matrices.

(H2) Bk ∈ Cn×n, det(E+Bk) �= 0, τk < τk+1 (k ∈ Z),
(H3) There exists a q ∈N such that

Bk+q = Bk, τk+q = τk +T (k ∈ Z). (3.2)

Let Φ(t) be a fundamental matrix of (3.1), then there exists a unique nonsingular matrix
M ∈ Cn×n such that

Φ(t+T)=Φ(t)M (t ∈ R). (3.3)

By equality (3.3) there corresponds to the fundamental matrix Φ(t) and the constant ma-
trix M which we call the monodromy matrix of (3.1) (corresponding to the fundamental
matrix of Φ(t)).

All monodromy matrices of (3.1) are similar and have the same eigenvalues. The eigen-
values μ1, . . . ,μn of the monodromy matrices are called the Floquet multipliers of (3.1).

Lemma 3.1 [8] (Floquet theory). Let conditions (H1)–(H3) hold. Then the linearT-periodic
impulsive equation (3.1) is

(1) stable if and only if all multipliers μj ( j = 1, . . . ,n) of (3.1) satisfy the inequality
|μj| ≤ 1, and moreover, to those μj for which |μj| = 1, there correspond simple ele-
mentary divisors;

(2) asymptotically stable if and only if all multipliers μj ( j = 1, . . . ,n) of (3.1) satisfy the
inequality |μj| < 1;

(3) unstable if |μj| > 1 for some j = 1, . . . ,n.



Z. Zhao and X. Song 5

Theorem 3.2. Let ω(t) = (x1(t),x2(t),x3(t)) be any solution of system (1.2), then
(x∗1 (t),0,u) is globally asymptotically stable, provided that T > p/(1 +u).

Proof. Firstly, we prove locally asymptotically stable. The local stability of the periodic
solution (x∗1 (t),0,u) may be determined by considering the behavior of small-amplitude
perturbations of the solution. Define

x1(t)= x∗1 (t) + y1(t), x2(t)= y2(t), x3(t)= u+ y3(t), (3.4)

where y1, y2 and y3 are small perturbations. Equation (1.2) can be expanded in a Taylor
series: after neglecting higher-order terms, they may be written as

⎛

⎜
⎝

y1(t)
y2(t)
y3(t)

⎞

⎟
⎠=Φ(t)

⎛

⎜
⎝

y1(0)
y2(0)
y3(0)

⎞

⎟
⎠ , (3.5)

where Φ(t) must satisfy

dΦ(t)
dt

=
⎛

⎜
⎝

−1 −x∗1 (t) 0
0 x∗1 (t)− 1−u 0
0 0 −1

⎞

⎟
⎠Φ(t), (3.6)

with Φ(0)= I , where I is the identity matrix. Hence, the fundamental solution matrix is

Φ(t)=
⎛

⎜
⎝

e−t ∗ 0

0 e
∫ t

0 (x∗1 (t)−1−u)dt 0
0 0 e−t

⎞

⎟
⎠ , (3.7)

there is no need to calculate the exact form (∗) as it is not required in the analysis that
follows. The resetting impulsive conditions of (1.2) from the fourth to the sixth become

⎛

⎜
⎝

y1
(
nT+

)

y2
(
nT+

)

y3
(
nT+

)

⎞

⎟
⎠=

⎛

⎜
⎝

1 0 0
0 1 0
0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

y1(nT)
y2(nT)
y3(nT)

⎞

⎟
⎠ . (3.8)

Thus, the monodromy matrix of (3.5) is

M =
⎛

⎜
⎝

1 0 0
0 1 0
0 0 1

⎞

⎟
⎠Φ(T). (3.9)

Let λ1, λ2, λ3 be eigenvalues of M, then

λ1 = λ3 = e−T < 1,

λ2 = e
∫ T

0 (x∗1 (t)−1−u)dt.
(3.10)

Hence, according to Lemma 3.1, if absolute values of all eigenvalues of M are less than
one, then T-periodic solution locally asymptotically stable. Thus, if and only if T > p/(1 +
u), the solution (x∗1 (t),0,u) is locally asymptotically stable. The proof is complete. �
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In the following, we prove the global attractivity. Choose ε1 > 0, and ε2 > 0 such that

δ = p+ ε1T −T + ε2T −uT < 0. (3.11)

Noting that ẋ1 ≤−x1, considering the following impulsive differential equation:

ż1(t)=−z1(t), t �= nT ,

Δz1 = p, t = nT ,
(3.12)

we have x1(t)≤ z1(t), and z1(t)→ z∗1 (t), as t→∞, where z∗1 (t) is the periodic solution.
Then,

x1(t)≤ z1(t) < z∗1 (t) + ε1, (3.13)

for t large enough. Since x3(t)→ u, as t→∞, therefore,

x3(t) > u− ε2, (3.14)

for t large enough. For simplification, we may assume that (3.13), (3.14) hold for all t ≥ 0.
From (1.2), we can get

ẋ2 ≤ x2
(
z∗1 (t) + ε1− 1−u+ ε2

)
, (3.15)

integrating (3.15) on (nT , (n+ 1)T] yields

x2
(
(n+ 1)T

)≤ x2
(
nT+)exp

∫ (n+1)T

nT

(
z∗1 (t) + ε1− 1−u+ ε2

)
dt, (3.16)

therefore, we have x2((n + 1)T) ≤ x2(nT+)exp(δ). Thus, x2(nT) ≤ x2(0+)exp(nδ) and
x2(nT)→ 0 as n→∞. Since 0 < x2(t) < x2(nT), therefore, x2(t)→ 0 as t→∞.

Next we prove that x1(t)→ x∗1 (t) as t→∞, if limt→∞ x2(t)= 0. For ε3 > 0, there exists
a T̂ > 0 such that 0 < x2(t) < ε3, for all t ≥ T̂ .

Then, we have

−x1− ε3x1 ≤ ẋ1 ≤−x1, (3.17)

by Lemma 2.5 we obtain z2(t)≤ x1(t)≤ z1(t), and z1(t)→ x∗1 (t) and z2(t)→ z∗2 (t) as t→
∞, where z2(t) is the solution of

ż2 =−z2
(
1 + ε3

)
, t �= nT ,

Δz2 = p, t = nT ,
(3.18)

and z∗2 (t) = pexp((−1− ε3)(t − nT))/(1− exp((−1− ε3)T)), nT < t ≤ (n + 1)T , there-
fore z∗2 (t)− ε4 < x1(t) < x∗1 (t) + ε4, ε4 > 0, for t large enough. Let ε3 → 0, we get z∗2 (t)→
x∗1 (t). Hence, x1(t)→ x∗1 (t) as t→∞. This completes the proof.
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4. Permanence

First, we show that all solutions of (1.2) are uniformly ultimately bounded.

Theorem 4.1. There exists a constant M > 0 such that x1(t)≤M, x2(t)≤M, x3(t)≤M for
each positive solution ω(t)= (x1(t),x2(t),x3(t)) of (1.2) with t large enough.

Proof. Define a function V(t,ω(t)) = x1 + x2 + x3, then V(t,ω(t)) ∈ V0 and the upper
right derivative of V(t,ω(t)) along a solution of (1.2) is described as

D+V
(
t,ω(t)

)=−(x1 + x2 + x3
)− x2x3 +u≤−V +u, t �= nT ,

ΔV = p, t = nT ,
(4.1)

we obtain

V(t)≤V(0+)e−t +u
(
1− e−t)+ p

e−(t−T)

1− eT +
peT

eT − 1
−→ peT

eT − 1
+u, t −→∞. (4.2)

By the definition of V(t,ω(t)), we obtain that each positive solution of (1.2) is uniformly
ultimately bounded. �

Next we give the conditions of permanence.

Theorem 4.2. System (1.2) is permanent if T < p/(1 +u).

Proof. Suppose ω(t)= (x1(t),x2(t),x3(t)) is a solution of (1.2) with positive initial value.
From Theorem 4.1 we may assume x1(t) ≤M, x2(t) ≤M, x3(t) ≤M, t ≥ 0, and M > 0.
From system (1.2), we can see that

ẋ1 ≥−x1(1 +M). (4.3)

Considering the comparison

ẇ =−w(1 +M), t �= nT ,

Δw = p, t = nT ,
(4.4)

let m1 = pe−(1+M)T/(1 − e−(1+M)T) − ε5 > 0, ε5 > 0. From Lemma 2.5, clearly we have
x1(t)≥w(t) >m1 for t large enough.

In the following, we want to find m3 > 0 such that x2(t) ≥m3 for t large enough. We
will do it in the following two steps for convenience.

Step 1. Let m3 > 0 and ε6, ε7 be small enough. Such that

ρ = p− ε6T −T −uT − ε7T > 0. (4.5)

We will prove that x2(t) <m3 cannot hold for all t ≥ 0. Otherwise,

dx1

dt
≥−(1 +m3

)
x1, (4.6)
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from Lemma 2.5, we have x1(t)≥ v(t) and v(t)→ v∗(t), t→∞. Where v(t) is the solution
of

dv

dt
=−(1 +m3

)
v, t �= nT ,

Δv = p, t = nT ,
(4.7)

v∗(t)= pexp
((− 1−m3

)
(t−nT)

)

1− exp
((− 1−m3

)
T
) , t ∈ (nT , (n+ 1)T

]
, (4.8)

therefore, there exists n1 > 0, t > n1T such that x1(t)≥ v(t) > v∗(t)− ε6. Since x3(t)→ u,
as t→∞, we have x3(t) < u+ ε7 for t > n2T . At the same time, we have

ẋ2(t)≥ x2
(
v∗(t)− ε6− 1−u− ε7

)
, (4.9)

integrating (4.9) on t ∈ (nT , (n+ 1)T], n > n2 > n1, we obtain

x2
(
(n+ 1)T

)≥ x2(nT)exp
∫ (n+1)T

nT

(
v∗(t)− ε6− 1−u− ε7

)
dt, (4.10)

therefore,

x2
(
(n+ 1)T

)≥ x2(nT)exp(ρ). (4.11)

Then, x2((N1 + k)T) ≥ x2(N1T)exp(kρ) →∞ as k →∞, which is contradiction to the
boundedness of x2(t). Therefore, there is a t1 > 0 such that x2(t1) > m3. If x2(t)≥m3 for
all t > t1, then our aim is obtained. Otherwise, there exists a t1 > t1 such that x2(t1) <m3.
Setting t∗ = inf t>t1{x2(t) <m3}, then we have x2(t)≥m3 for t ∈ [t, t∗), and x2(t∗)=m3.

Step 2. Since x2(t) is continuous, suppose that t∗ ∈ (n1T , (n1 + 1)T], n1 ∈N , select n2 ∈
N , n3 ∈N , such that

n2T >
1

−1−m3
ln

ε6

M + p
,

exp
(
η
(
n2 + 1

)
T
)

exp
(
n3ρ
)
> 1,

(4.12)

where η = −1 +m1 − u− ε7 < 0, let T′ = n2T + n3T , we claim that there must exist a
t′ ∈ ((n1 + 1)T , (n1 + 1)T + T′] such that x2(t) ≥ m3; otherwise, x2(t) < m3, t ∈ ((n1 +
1)T , (n1 + 1)T +T′]. Consider (4.7) with v((n1 + 1)T+)= x1((n1 + 1)T+), we have

v(t)=
(
v
((
n1 + 1

)
T+)− p

1− e−(1+m3)T

)
e−(1+m3)(t−(n1+1)T) + v∗(t), (4.13)

for t ∈ (nT , (n+ 1)T], n1 + 1 < n≤ n1 +n2 +n3 + 1. Then,

∣
∣v(t)− v∗(t)

∣
∣≤ (M + p)e−(1+m3)(t−(n1+1)T) < ε6, (4.14)

and x1(t) ≥ v(t) > v∗(t)− ε6, for (n1 + 1 + n2)T ≤ t ≤ (n1 + 1)T +T′ which implies that
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Figure 5.1. Extinct of system (1.2): (a) time series of the nutrient, (b) time series of the microorgan-
ism, (c) time series of the toxicant in the organism, p = 1.25, q = 1.86, T = 0.6.

(4.9) holds. For (n1 + 1 + n2)T ≤ t ≤ (n1 + 1)T +T′, as in Step 1, we have x2((n1 + n2 +
n3 + 1)T) ≥ x2((n1 + n2 + 1)T)exp(n3ρ), there are two possible cases for t ∈ (t∗, (n1 +
1)T].

Case 1. If x2(t) <m3 for t ∈ (t∗, (n1 + 1)T], then x2(t) <m3 for all t ∈ (t∗, (n1 + 1 +n2)T],
system (1.2) gives

ẋ2(t)≥ x2(t)
(− 1 +m1−u− ε7

)= ηx2(t), (4.15)

integrating (4.15) on (t∗, (n1 + 1 +n2)T], which yields x2((n1 +n2 + 1)T)≥m3 exp(η(n2 +
1)), then x2((n1 + 1 + n2 + n3)T) ≥ m3 exp(η(n2 + 1)T)exp(n3ρ) > m3, which is a con-
tradiction. Let t = inf t>t∗{x2(t) ≥m3}, then x2(t) =m3 and (4.15) holds for t ∈ [t∗, t).
Then integrating (4.15) on [t∗, t) yields x2(t)≥ x2(t∗)exp(η(t− t∗))≥m3 exp(η(1 +n2 +
n3)T) � m3. For t > t, the same argument can be continued since x2(t) ≥ m3. Hence,
x2(t)≥m3 for all t > t1.

Case 2. There exists a t′ ∈ (t∗, (n1 + 1)T] such that x2(t′) ≥m3. Let t̂ = inf t>t∗{x2(t) ≥
m3}, then x2(t) < m3 for t ∈ [t∗, t̂) and x2(t̂)=m3. For t ∈ [t∗, t̂), (4.15) holds and inte-
grating (4.15) on [t∗, t̂), we have x2(t) ≥ x2(t∗)exp(η(t− t∗)) ≥m3 exp(ηT) > m3. This
process can be continued since x2(t̂) ≥m3, and we have x2(t) ≥m3 for t > t1. Thus, in
both cases, we conclude that x2(t)≥m3 for all t > t1.

Incorporating into Theorem 4.1, the proof is complete. �

5. Discussion

In this paper, we have investigated the model for a polluted chemostat with impulsive
input. We have proved that microorganism eradication periodic solution (x∗1 (t),0,u) is
globally asymptotically stable if T > p/(1 +u), which is showed in Figure 5.1. We can see
that the variables x1(t), x3(t) oscillate in a stable periodical cycle, in contrast x2(t) rapidly
decrease to zero. At the same time we also have proved that the system (1.2) is permanent
if T < p/(1 +u), which is simulated in Figure 5.2. The variables x1(t), x2(t), x3(t) oscillate
in a stable periodical cycle, respectively. So we can find thatT = p/(1 +u) is a threshold. In
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Figure 5.2. Permanence of system (1.2): (a) time series of the nutrient, (b) time series of the microor-
ganism, (c) time series of the toxicant in the organism, p = 5, q = 4, T = 0.299.
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Figure 5.3. Time series of the system (5.1), p = 4.5, q = 4, T = 0.5.

fact, when the period of pulses is less than the threshold, the nutrient and microorganism
coexist. If the period is more than the threshold, the microorganism will become extinct.

If we replace the pulse input in system (1.2) with continuous input, the system (1.2)
becomes

ẋ1 = p

T
− x1− x1x2,

ẋ2 = x2
(
x1− 1− x3

)
,

ẋ3 =−x3 +u,

(5.1)

there also exists a microorganism eradication equilibrium for system (5.1), that is,
(p/T ,0,u) which is globally asymptotically stable if T > p/(1 +u) (see the appendix). The
result is the same as our system (1.2), the result is simulated in Figure 5.3. We can obtain
that impulsive input effect is the same as the continuous input.

Appendix

In this appendix, we will prove that the microorganism eradication equilibrium (p/T ,
0,u) is globally stable with respect to intR3

+ if T > p/(1 +u), where R3
+ = {(x1,x2,x3) : x1 >

0, x2 > 0, x3 > 0}.
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Let us denote the Jacobian matrix system (5.1) evaluated at the equilibrium point
E(p/T ,0,u) as

J(E)=

⎛

⎜
⎜
⎜
⎝

−1
p

T
0

0
p

T
− 1−u 0

0 0 −1

⎞

⎟
⎟
⎟
⎠
. (A.1)

It is easy to see that all eigenvalues of J(E) are negative if and only if T > p/(1 +u). There-
fore, E(p/T ,0,u) is locally stable if T > p/(1 +u).

Since x3(t)→ u, as t→∞, we only consider the following equation:

ẋ1 = p

T
− x1− x1x2,

ẋ2 = x2
(
x1− 1−u).

(A.2)

Let V(x1,x2) be positive definite function about (x1,x2), given by

V
(
x1,x2

)= c1

(
x1− x∗1 − x∗1 ln

x1

x∗1

)
+ c2x2, (A.3)

where ci > 0, i= 1,2. Then, the derivative of V along solution of the system (A.2) is

V̇ =−c1

(
x1− x∗1

)2

x1
+
(
c2− c1

)
x2
(
x1− x∗1

)
+ c2x2

(
x∗1 − 1−u), (A.4)

we choose ci (i= 1,2) such that c1 = c2. Then, V̇ is negative definite in intR2
+ if and only

if T > p/(1 + u). Therefore, the equilibrium (p/T ,0,u) is globally stable in intR3
+ if T >

(p/1 +u).
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