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An SI epidemic model with stage structure is investigated. In the model, impulsive bio-
logical control is taken, that is, we release infected pests to the field at a fixed time pe-
riodically. We get a sufficient condition for the global asymptotical stability of the pest-
eradication periodic solution (0,0, ˜I(t)), and a condition for the permanence of the sys-
tem. At last, a brief discussion shows that our results will be helpful for pest management.
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1. Introduction

According to reports of Food and Agriculture Organization of the United Nations, the
warfare between human and pests (such as locust, Aphis, cotton bollworm, etc.) has sus-
tained for thousands of years. With the development of society and the progress of science
and technology, man has adopted some advanced and modern weapons such as chemical
pesticides, biological pesticides, remote sensing and measuring, computers, atomic en-
ergy, and so on. At last, some brilliant achievements have been obtained [1–4]. However,
the warfare is not over, and will continue. A great deal of, and a large variety of, pesti-
cides were used to control pests. In all, pesticides are useful because they can quickly kill a
significant portion of a pest population and sometimes provide the only feasible method
for preventing economic loss. However, pesticide pollution is also recognized as a ma-
jor health hazard to human beings and beneficial insects. Biological control is, man’s use
of a suitably chosen living organism, referred as the biological control agent, to control
another. Biological control agents can be predators, pathogens or parasites of the organ-
ism to be controlled that either kill the harmful organism or interfere with its biological
progress. There is a vast amount of literatures on the applications of microbial disease to
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suppress pests [1–3], but there are a few papers on the mathematical model of the dy-
namical of microbial disease in pest control [4–7]. The use of bacteria, fungi, and viruses
is potentially one of the most important approaches in pest control. For example, Asian
tiger mosquito (Aedes albopictus) can transmit viruses which cause dengue fever, Ross
River fever, or Japanese encephalitis. To avoid this and to control the spread of mosquito
swarms, we could spray with Bt, which is a variety of the bacterium Bacillus thuringiensis
(Bt). An advantage of using insect pathogens is that they are safer to man and are usually
safer to beneficial insects. In this paper, our aim is to control pests.

Impulsive equations are adequate to model processes with abrupt changes. Especially,
impulsive differential equations can describe population dynamic models, since many life
phenomena and human exploitation are almost impulsive in the natural world. (Some
recent and general references on the theory of impulsive equations are [8–16].) There are
also many applications of impulsive equations [17–25].

Stage structure is an important notation in epidemiology and demography because
there are some kinds of diseases which are only spread or have more opportunities to
be spread in children, for example, measles, mumps, chickenpox, scarlet fever, and diph-
theria, while other infectious diseases such as gonorrhea and syphilis are spread only in
adults. There are literatures about single species with stage structure [26, 27], while oth-
ers are about competitive or predator-prey systems with stage structure [28–31]. There
are still other models with stage structure [27, 32–36]. In this paper, we consider the case
in which the disease spreads only in mature pests, while the immature pests cannot be in-
fected, for the immature are protected by their eggshells. For the purpose of pests control,
we take biological control measures, that is, we release infected pests impulsively to the
field, then more of the pests will be infected and die. The infected pests may be cultivated
artificially in laboratory.

Xiao and Chen [34, 36] have studied SIS models with stage structure, but they did
not consider the effects of impulse. To our knowledge, there are few papers about stage-
structured models with impulse interruption (see [7]). The present paper constructs and
analyzes a realistic model of impulsive biological control system for pest management.
The paper is organized as follows. In Section 2, the main biological assumptions are for-
mulated, and the model is constructed. In Section 3, by use of the Floquet theory for
impulsive differential equations, the small-amplitude perturbation method and compar-
ison techniques, we get the sufficient condition for the global asymptotic stability of the
pest-eradication periodic solution and also the sufficient condition for the permanence
of the system. Finally, a brief discussion is provided in the last section.

2. Model formulation

The basic stage-structured SI model is

S′1(t)= rS2(t)−μS1(t)− δS1(t),

S′2(t)= δS1(t)−μS2(t)− S2
2(t)−βS2(t)I(t),

I ′(t)= βS2(t)I(t)− (μ+α)I(t),

(2.1)
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where S2(t) and I(t) denote the densities of susceptible and infected mature populations,
respectively, and S1(t) denotes the density of an immature population which does not
contract the disease. All coefficients are positive constants. The models are derived with
the following assumptions.

(H1) All newborns are assumed to be susceptible. We assume that at any time t > 0,
birth into the immature population is proportional to the existing mature susceptible,
with proportionality r, and the infected mature population does not have offsprings.

(H2) The immature susceptible population has the natural death rate μ. The death
rate of the mature susceptible population is proportional both to the existing mature
population and to the square of it with proportionality constants μ and 1. The infected
mature population has the natural death rate μ and an extra disease-related death rate α.

(H3) The immature population enters into mature susceptible with proportionality
constant δ.

(H4) It is assumed that the incidence rate is double linear βS2(t)I(t), that is, the rate at
which the susceptible mature becomes infected.

In this paper, with an additional assumption (H5), we construct the following model,
and the parameters are the same as those in system (2.1).

(H5) We release an infected mature population with constant number p > 0 periodi-
cally with period τ > 0;

S′1(t)= rS2(t)−μS1(t)− δS1(t), t �= nτ, n= 1,2,3, . . . ,

S′2(t)= δS1(t)−μS2(t)− S2
2(t)−βS2(t)I(t), t �= nτ, n= 1,2,3, . . . ,

I ′(t)= βS2(t)I(t)− (μ+α)I(t), t �= nτ, n= 1,2,3, . . . ,

ΔS1(t)= 0, ΔS2(t)= 0, ΔI(t)= p, t = nτ, n= 1,2,3, . . . .

(2.2)

3. Qualitative analysis for system (2.2)

In this section, we will study the effect of impulsive releasing of infected pests to the
original model (2.1). To prove our main results, we give the following definition and
lemmas.

Definition 3.1. System (2.2) is said to be permanent if there are constants m,M > 0 (inde-
pendent of the initial value), and a finite time T0 such that for all solutions (S1(t),S2(t),
I(t)) with initial values S1(0+) > 0, S2(0+) > 0, I(0+) > 0, m≤ S1(t) + S2(t)≤M, and m≤
I(t) ≤M hold for all t ≥ T0. Here, T0 may depend on the initial values (S1(0+),S2(0+),
I(0+)).

Lemma 3.2 (see [8, 9]). Suppose (S1(t),S2(t),I(t)) is a solution of system (2.2) with initial
values S1(0+)≥ 0, S2(0+)≥ 0, and I(0+)≥ 0. Then S1(t)≥ 0, S2(t)≥ 0, and I(t)≥ 0 for all
t ≥ 0. And further, S1(t) > 0, S2(t) > 0, and I(t) > 0 if S1(0+) > 0, S2(0+) > 0, and I(0+) > 0.

Lemma 3.3 (see [9]). Let the function m∈ pC ′[R+,R] satisfy the inequalities

m′(t)≤ p(t)m(t) + q(t), t ≥ t0, t �= tk, k = 1,2, . . . ,

m
(

t+
k

)≤ dkm
(

tk
)

+ bk, t = tk,
(3.1)
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where p,q ∈ PC[R+,R], and dk ≥ 0, bk are constants. Then

m(t)≤m
(

t0
)

(

∏

t0<tk<t

dk

)

e
∫ t
t0
p(s)ds

+
∑

t0<tk<t

bk

[(

∏

tk<tj<t

dj

)

e
∫ t
tk
p(s)ds

]

+
∫ t

t0

(

∏

s<tk<t

dk

)

e
∫ t
s p(σ)dσq(s)ds,

(3.2)

for all t ≥ t0.

If S1(t)= S2(t)= 0, we have the following subsystem of system (2.2):

I ′(t)=−(μ+α)I(t), t �= nτ, n= 1,2, . . . .

I
(

nτ+)= I(nτ) + p, t = nτ, n= 1,2, . . . .
(3.3)

Obviously, ˜I(t)= pe−(μ+α)(t−nτ)/(1− e−aτ), t ∈ (nτ, (n+ 1)τ], n∈ Z+ = {1,2,3, . . .}, ˜I(0+)
= p/(1− e−(μ+α)τ), is a positive periodic solution of system (3.3). Therefore, the com-
plete expression for the pest-eradication periodic solution of system (2.2) is obtained as
(0,0, ˜I(t)) = (0,0, pe−(μ+α)(t−nτ)/(1− e−(μ+α)τ)), t ∈ (nτ, (n+ 1)τ], n ∈ Z+. Since the solu-
tion of system (3.3) is I(t) = (I(0+)− p/(1− e−(μ+α)τ))e−(μ+α)t + ˜I(t), t ∈ (nτ, (n + 1)τ],
n∈ Z+, so we derive the following.

Lemma 3.4 (see [8]). For every solution of system (3.3) with initial condition I(0+) > 0, it
follows that I(t)→˜I(t) as t→∞.

Lemma 3.5. There exists a constant M > 0 such that S1(t) ≤M, S2(t) ≤M, I(t) ≤M for
each solution (S1(t),S2(t),I(t)) of system (2.2) for all t large enough (where t depends on the
initial value).

Proof. Due to the positivity of S1(t), S2(t), and I(t), we can select U(t) = S1(t) + S2(t) +
I(t) as a Liapunov function.

When t �= nτ, we have

D+U(t) +μU(t)= rS2(t)− S2
2(t)−αI(t)

≤ rS2(t)− S2
2(t)≤ r2

4
.

(3.4)

When t = nτ, U(nτ+)=U(nτ) + p.
By Lemma 3.3, for t ∈ (nτ, (n+ 1)τ], we have

U(t)≤
(

U
(

0
+)− r2

4μ

)

e−μt +
p
(

1− e−nμτ
)

1− e−μτ
e−μ(t−nτ) +

r2

4μ
. (3.5)

So U(t) is uniformly ultimately bounded by a constant, and there exists a constant M > 0
such that S1(t) ≤M, S2(t) ≤M, I(t) ≤M for each solution (S1(t),S2(t),I(t)) of system
(2.2) for all t large enough. The proof is complete. �

In the following, we investigate the stability of the pest eradication periodic solution
of system (2.2).
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Theorem 3.6. Let (S1(t),S2(t),I(t)) be any solution of system (2.2) with initial values
S1(0+) > 0, S2(0+) > 0, and I(0+) > 0, then (0,0, ˜I(t)) is locally asymptotically stable, pro-
vided that

p >
τab

β
, (3.6)

where a= μ+α > 0, b = (δr−μ(μ+ δ))/(μ+ δ) > 0.

Proof. The local stability of pest-eradication periodic solution may be determined by
considering the behaviors of a small amplitude perturbation of the solution. Define x(t)=
S1(t), y(t)= S2(t), z(t)= I(t)− ˜I(t), then the linearized system of system (2.2) reads as

x ′(t)= r y(t)− (μ+ δ)x(t), t �= nτ, n= 1,2, . . . ,

y ′(t)= δx(t)−μy(t)−β˜I(t)y(t), t �= nτ, n= 1,2, . . . ,

z ′(t)= β˜I(t)y(t)− (μ+α)z(t), t �= nτ, n= 1,2, . . . ,

x
(

nτ+)= x(nτ), y
(

nτ+)= y(nτ), z
(

nτ+)= z(nτ), t = nτ, n= 1,2, . . . .

(3.7)

Let Φ(t) be the fundamental solution matrix of system (3.7), then Φ(t) must satisfy

dΦ(t)
dt

=
⎛

⎜

⎝

−(μ+ δ) r 0
δ −μ−β˜I(t) 0
0 β˜I(t) −(μ+α)

⎞

⎟

⎠Φ(t)
.=AΦ(t), (3.8)

and Φ(0)= I , the identity matrix. We can easily see that one of the eigenvalues of matrix
A is −(μ+α), and the other two eigenvalues are determined by the 2× 2 matrix B, where

B =
(−(μ+ δ) r

δ −μ−β˜I(t)

)

. (3.9)

Denote the eigenvalues of B as λ1, λ2, then we have λ1 + λ2 = −(μ + δ)− μ− β˜I(t) < 0,
λ1λ2 = (μ+ δ)(μ+β˜I(t))− rδ = (μ+ δ)[μ− rδ/(μ+ δ) +β˜I(t)]. Therefore, by the Floquet
theorem, (0,0, ˜I(t)) is locally asymptotically stable, provided that

∫ τ

0

(

μ+β˜I(t)− rδ

μ+ δ

)

dt > 0, (3.10)

that is,

[

rδ−μ(μ+ δ)
]

τ <
βp(μ+ δ)
μ+α

. (3.11)

When R0 = rδ/μ(μ + δ) ≤ 1, the above inequality is satisfied for all p > 0; when R0 =
rδ/μ(μ+ δ) > 1, the above inequality equals

p >
τab

β
. (3.12)

The proof is complete. �
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Theorem 3.7. If R0 ≤ 1, or R0 > 1, and p > (eaτ − 1)(b/β), then (0,0, ˜I(t)) is globally
asymptotically stable for system (2.2).

Proof. Let

f (x)= ex − 1− x (3.13)

because

f ′(x)= ex − 1 > 0, whenever x > 0. (3.14)

So we have

eaτ − 1 > aτ,

p >
(

eaτ − 1
)b

β
> aτ

b

β
.

(3.15)

By Theorem 3.6, we know that (0,0, ˜I(t)) is locally asymptotically stable. In the following,
we will prove the global attraction of (0,0, ˜I(t)).

Let

V(t)= δS1(t) + (μ+ δ)S2(t). (3.16)

Then

V ′(t)|(2.2) =
[

rδ−μ(μ+ δ)− (μ+ δ)S2(t)−β(μ+ δ)I(t)
]

S2(t). (3.17)

When R0 ≤ 1, we clearly have

V ′(t)|(2.2) ≤−β(μ+ δ)I(t)S2(t) < 0, ∀ t ≥ 0, (3.18)

so V(t)→0, S1(t)→0, S2(t)→0, as t→+∞, and (0,0, ˜I(t)) is globally attractive.
When R0 > 1 and p > (eaτ − 1)(b/β), we can select ε > 0 small enough such that p >

(eaτ − 1)(b+ 2ε)/β.
From system (2.2), we have

I ′(t)= βS2(t)I(t)− aI(t)≥−aI(t), t �= nτ, n= 1,2, . . . ,

I
(

nτ+)= I(nτ) + p, t = nτ, n= 1,2, . . . .
(3.19)

By Lemmas 3.3 and 3.4, we know that there exists a t1 > 0 such that I(t) ≥ pe−aτ/(1−
e−aτ)− ε/β for all t ≥ t1.

Thus when t ≥ t1, we have

V ′(t)|(2.2) = (μ+ δ)
[

b− S2(t)−βI(t)
]

S2(t)

≤−(μ+ δ)
(

S2(t) + ε
)

S2(t) < 0.
(3.20)

So V(t)→0, S1(t)→0, S2(t)→0, and (0,0, ˜I(t)) is globally attractive. The proof is complete.
�
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Theorem 3.8. If R0 > 1 and 0 < p < b(1− e−aτ)/β, then system (2.2) is permanent.

Proof. Suppose (S1(t),S2(t),I(t)) is any solution of system (2.2) with initial values
S1(0+) > 0, S2(0+) > 0, and I(0+) > 0. By Lemmas 3.2 and 3.5, we may assume S1(t) ≤
M, S2(t) ≤M, and I(t) ≤M, for all t ≥ 0, and M > b/(1 + β). Let m = pe−(μ+α)τ/(1−
e−(μ+α)τ)− ε3 > 0, ε3 > 0. From Lemma 3.3, we clearly have I(t)≥m for all t large enough.
We will next find an m1 > 0 such that S1(t) + S2(t)≥m1 for t large enough. We will do it
in the following two steps.

Step 1. Since R0 > 1 and 0 < p < b(1− e−aτ)/β, we can choose m2 > 0, ε1 > 0 small enough
such that

0 < p <

(

b−m2− ε1
)(

1− e−(a−βm2)τ
)

β
. (3.21)

Denote

ρ = b−m2− ε1− pβ

1− e−(a−βm2)τ > 0,

σ = b−M(1 +β) < 0.
(3.22)

Consider the Liapunov function

V(t)= δS1(t) + (μ+ δ)S2(t). (3.23)

We claim that V(t) < (μ+ δ)m2 =m3 cannot hold for all t ≥ 0. Otherwise, we have that
S2(t) < m2 for all t ≥ 0. Then, from the third and the sixth equations of system (2.2), we
get

I ′(t)≤ (βm2− a
)

I
(

t
)

, t �= nτ, n= 1,2, . . . ,

I(nτ+)= I(nτ) + p, t = nτ, n= 1,2, . . . .
(3.24)

By Lemma 3.3, we know that there exists a t1 > 0 such that I(t) ≤ u(t) + ε1/β, for all t ≥
t1, and here, u(t)= pe−(a−βm2)(t−nτ)/(1− e−(a−βm2)τ), t ∈ (nτ, (n+ 1)τ], n∈ Z+. So I(t)≤
p/(1− e−(a−βm2)τ) + ε1/β, for all t ≥ t1, and

V ′(t)|(2.2) = (μ+ δ)
[

b− S2(t)−βI(t)
]

S2(t)

≥ (μ+ δ)
[

b−m2− ε1− pβ

1− e−(a−βm2)τ

]

S2(t)

= ρ(μ+ δ)S2(t) > 0

(3.25)

for all t > t1. Thus

V ′(t)|(2.2) ≥ ρ(μ+ δ)S2
(

t1
)= ε2 > 0,

V(t)−→ +∞, S2(t)−→ +∞, as t −→ +∞.
(3.26)

It is a contradiction since V(t) is ultimately bounded by Lemma 3.5. Therefore, there
exists t1 > 0 such that V(t1)≥m3.
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Step 2. If V(t) ≥m3 hold for all t ≥ t1, then we can select m1 =m2, and our aim is ob-
tained. We consider those solutions which leave the region D = {(S1,S2,I)∈R3

+ : V(t)=
δS1(t) + (μ + δ)S2(t) < m3}, and reenter it again. Let t∗ = inf t≥t1{V(t) < m3}. Then
V(t)≥m3 for t ∈ [t1, t∗), and V(t∗)=m3. Suppose t∗ ∈ [n1τ, (n1 + 1)τ), n1 ∈N . Select
n2,n3 such that

n2τ > T2 =− 1
a−βm2

ln
ε1

M + p
,

n3τ > T3 = m3

ρ1
,

ρ1 = ρ(μ+ δ)S2
((

n1 + 1 +n2
)

τ+).

(3.27)

Let T = (n2 +n3)τ. We claim that there must be a t2 ∈ [(n1 + 1)τ, (n1 + 1)τ +T] such that
V(t2)≥m3. Otherwise, V(t) <m3 and S2(t) <m2, for all t ∈ [(n1 + 1)τ, (n1 + 1)τ +T].

Consider

u′(t)≤ (βm2− a
)

u(t), t �= nτ, n= n1 + 1, n1 + 2, . . . ,

u
(

nτ+)= u(nτ) + p, t = nτ, n= n1 + 1, n1 + 2, . . . ,

u
((

n1 + 1
)

τ+)= I
((

n1 + 1
)

τ+).

(3.28)

By Lemmas 3.3 and 3.4, we have

u(t)=
(

u
((

n1 + 1
)

τ+)− p

1− e−(a−βm2)τ

)

e−(a−βm2)(t−(n1+1)τ) +u(t) (3.29)

for t ∈ (nτ, (n+ 1)τ], n1 + 1≤ n≤ n1 + 1 +n2 +n3. Then

∣

∣u(t)−u(t)
∣

∣≤ (M + p)e−(a−βm2)n2τ < ε1, (3.30)

and by the comparison principle, we have

I(t)≤ u(t)≤ u(t) +
ε1

β
≤ p

1− e−(a−βm2)τ +
ε1

β
(3.31)

for (n1 + 1 +n2)τ ≤ t ≤ (n1 + 1)τ +T , which imply that

V ′(t)|(2.2) ≥ ρ
(

μ+ δ)S2
(

(n1 + 1 +n2
)

τ+)= ρ1 > 0,

V
((

n1 + 1
)

τ +T
)≥V

((

n1 + 1 +n2
)

τ+)+ ρ1n3τ.
(3.32)

When t ∈ [t∗, (n1 + 1 +n2)τ], we have

V ′(t)|(2.2) =
[

rδ−μ(μ+ δ)− (μ+ δ)S2(t)−β(μ+ δ)I(t)
]

S2(t)

≥ (μ+ δ)[b−M−βM]S2(t)

= (μ+ δ)σS2(t)≥ σV(t).

(3.33)
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Thus

V
((

n1 + 1 +n2
)

τ
)≥V

(

t∗
)

eσ(n2+1)τ > 0,

V
((

n1 + 1
)

τ +T
)≥V

((

n1 + 1 +n2
)

τ
)

+ ρ1n3τ > m3.
(3.34)

It is a contradiction. Let t = inf t≥t∗{V(t)≥m3}. Then V(t)≥m3. For t ∈ [t∗, t), we have

V(t)≥V
(

t∗
)

eσ(t−t∗) ≥m3e
σ(1+n1+n2+n3) .=m4. (3.35)

For t > t, the same arguments can be continued since V(t) ≥ m3. We can select m1 =
m4/(μ+ δ), and S1(t) + S2(t)≥m1 for all t ≥ t1. The proof is complete. �

Remark 3.9. From Theorem 3.8, we can see that if the coefficients satisfy the condi-
tion R0 > 1, then, without control of releasing infected pests, or the releasing number
p < (1− e−aτ)(b/β), the pests will be permanent and they will do harm to the crops. Un-
der this condition, we can increase the releasing amount until p > (eaτ − 1)(b/β), and by
Theorem 3.7, we know that the pests will be doomed.

4. Discussion

In this paper, a stage-structured SI epidemic model is investigated. In the model, im-
pulsive biological control is taken into consideration, and we analyzed the existence and
stability of the pest-eradication periodic solution of the system. We also get a sufficient
condition for the permanence of the system. In the real world, we can take impulsive
biological control to constrain the pest population. There is still an interesting prob-
lem: if R0 > 1 and 0 < p < b(1− e−aτ)(b/β), then the system is permanent; if R0 > 1 and
p > (eaτ − 1)(b/β), then (0,0, ˜I(t)) is globally asymptotically stable. But we have not con-
sidered the case that R0 > 1 and b(1− e−aτ)/β < p < (eaτ − 1)(b/β), how about the dynam-
ical behaviors of the system? In this paper, our aim is to control the pest population, so
we omit the above problems. But from a mathematical aspect, it is very interesting, and
we leave it as a future work.
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[12] J. J. Nieto and R. Rodrı́guez-López, “Periodic boundary value problem for non-Lipschitzian
impulsive functional differential equations,” Journal of Mathematical Analysis and Applications,
vol. 318, no. 2, pp. 593–610, 2006.

[13] J. J. Nieto, “Periodic boundary value problems for first-order impulsive ordinary differential
equations,” Nonlinear Analysis: Theory, Methods & Applications, vol. 51, no. 7, pp. 1223–1232,
2002.

[14] L. Chen and J. Sun, “Nonlinear boundary value problem of first order impulsive functional
differential equations,” Journal of Mathematical Analysis and Applications, vol. 318, no. 2, pp.
726–741, 2006.

[15] Y. Liu, “Further results on periodic boundary value problems for nonlinear first order impulsive
functional differential equations,” Journal of Mathematical Analysis and Applications, vol. 327,
no. 1, pp. 435–452, 2007.

[16] J. Li, J. J. Nieto, and J. Shen, “Impulsive periodic boundary value problems of first-order differ-
ential equations,” Journal of Mathematical Analysis and Applications, vol. 325, no. 1, pp. 226–236,
2007.
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