
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2008, Article ID 541683, 12 pages
doi:10.1155/2008/541683

Research Article
Chaos in Ecology: The Topological Entropy of
a Tritrophic Food Chain Model

Jorge Duarte,1, 2 Cristina Januário,1 and Nuno Martins3

1 Department of Chemistry, Mathematics Unit, ISEL-High Institute of Engineering of Lisbon,
rua Conselheiro Emı́dio Navarro 1, 1959-007 Lisbon, Portugal

2 Research Centre in Mathematics and Applications (CIMA), University of Evora,
rua Romão Ramalho 59, 7000-671 Evora, Portugal

3 Department of Mathematics, Centre of Mathematical Analysis,
Geometry and Dynamical Systems, Instituto Superior Técnico (IST),
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An ecosystem is a web of complex interactions among species. With the purpose of understanding
this complexity, it is necessary to study basic food chain dynamics with preys, predators and
superpredators interactions. Although there is an elegant interpretation of ecological models in
terms of chaos theory, the complex behavior of chaotic food chain systems is not completely
understood. In the present work we study a specific food chain model from the literature. Using
results from symbolic dynamics, we characterize the topological entropy of a family of logistic-like
Poincaré return maps that replicates salient aspects of the dynamics of the model. The analysis of
the variation of this numerical invariant, in some realistic system parameter region, allows us to
quantify and to distinguish different chaotic regimes. This work is still another illustration of the
role that the theory of dynamical systems can play in the study of chaotic dynamics in life sciences.

Copyright q 2008 Jorge Duarte et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Motivation and preliminaries

The detailed examination of food chain dynamics is crucial to the study of important
ecological systems. Basic food chains can be thought as fundamental “building blocks” of
an ecosystem. The chaos theory, which has always intertwinedwith complex population
dynamics since its inception, is accepted as an important part of a paradigm by which
ecological complexity can be understood.

A compelling reason to study ecochaos, beside the challenging mathematical problems
that occur in this context, is due to a recent discovery (which may have important
management implications) that the average superpredator biomass in various tritrophic food
chain models is maximum at the onset of chaos (see [1, 2], and references therein).
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The main dynamical features of the well-known Lotka-Volterra models for two
species interactions, which are spatially homogeneous and time autonomous, are steady
states and limiting cycles. However, models for tritrophic food chains are extremely rich in
complex dynamics. The strong nonlinearity and high dimensionality of the phase space are a
significant obstacles in understanding the qualitative behavior of such systems.

The dynamical principles and mechanisms underlying the chaotic food chain behavior
can be analyzed with comprehensive studies of low-dimensional systems, which emerge
from the food chain models. Indeed, we can gain some important qualitative insights by
studying representative return maps, considered as one-dimensional interval maps.

The aim of this work is to provide a contribution for the detailed analysis of the chaotic
behavior of the time-diversified Rosenzweig-MacArthur tritrophic model, which is cast as
a singularly perturbed system. More precisely, using results of symbolic dynamics theory,
we compute the topological entropy of a family of logistic-like Poincaré return maps (with
the shape of a unimodal map) presented in [4], which incorporates fundamental dynamical
properties of the three-dimensional attractor. This measure of the amount of chaos in a
dynamical system is the most important numerical invariant related to the orbit growth
and its variation with particular parameters gives us a finer distinction between states of
complexity.

For the sake of clarity, the next paragraph begins with an overview of the food web
model considered (the reader is referred to [4]).

2. Description of the model

The Rosenzweig-MacArthur model for tritrophic food chains is given by the following
differential system:
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It is composed of a logistic prey X, a predator Y , and a top predator Z. The model assumes
predator/top predator responses that reflect the more realistic situations in the saturation
capture rate of prey by predator/predator by top predator.

In order to simplify the mathematical analysis, it is appropriate to nondimensionalize
the previous equations (2.1) so that the scaled system contains a minimal number of
parameters. We use the same scaling of variables and parameters as in [4],
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This procedure leads to the following dimensionless form
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.

(2.3)

In the context of ecology, the parameters have the following definitions:

(i) ζ = c1/r, where c1 is the maximum per capita growth rate of the predator and r is
the maximum per capita growth rate for the prey;

(ii) ε = c2/c1, where c2 is the maximum per capita growth rate of the top predator and
c1 is the maximum per capita growth rate for the predator;

(iii) β1 is the dimensionless semisaturation constant measured against prey’s carrying
capacity;

(iv) β2 is the dimensionless semisaturation constant for the predator, measured against
its predation capacity;

(v) δ1 = d1/c1, where d1 is the per capita natural death rate of the predator and c1 is
the maximum per capita growth rate for the predator;

(vi) δ2 = d2/c2, where d2 is the per capita natural death rate of the top predator and c2

is the maximum per capita growth rate for the top predator.

As in [4], we assume throughout that

0 < β1 < 1, 0 < β2 < 1, (2.4)

which can be interpreted to mean that both the predator and the superpredator are good
hunters. We also assume throughout that

0 < δ1 =
d1

c1
< 1, 0 < δ2 =

d2

c2
< 1. (2.5)

This is in fact a default assumption because the condition of either δi > 1 (i = 1, 2) would
lead to the collapse of the tritrophic food chain. More specifically, with d1 > c1, the predator
dies out faster than it can reproduce even at its maximum reproduction rate. With d2 > c2,
the top predator must die out by the same reasoning. In both cases, we would have a trivial
tritrophic food chain, whose dynamics is entirely understood.

Under the “trophic time diversification hypothesis,” which states that the maximum per
capita growth rate decreases from bottom to top along the food chain, namely,

r > c1 > c2 > 0 (2.6)
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Figure 1: Solution visualized as a trajectory in the three-dimensional space for ε = 0.4 and δ2 = 0.65.

or equivalently

0 < ζ � 1, 0 < ε < 1. (2.7)

Equation (2.3) become a singularly perturbed system of three-time scales. The rates of change
for the prey, predator, and top predator are fast, intermediate, and slow, respectively. From
the ecological point of view, it means that the prey reproduces faster than the predator which
in turn reproduces faster than the top predator.

3. Unimodal return maps. Symbolic dynamics, topological entropy, and chaos

As we mentioned before, this paper aims to address a study of the topological entropy of a
family of logistic-like Poincaré return maps associated to the model (2.3). The existence of
these maps, for some system realistic parameter region (see region Ω in Figure 8 represented
below), was demonstrated in [4] using a geometric method of singular perturbations, which
have proved to be extremely effective for ecological models (see [4–7]).

For numerical investigation, we will use throughout

ζ = 0.1, β1 = 0.3, β2 = 0.1, δ1 = 0.2, (3.1)

and consider ε and δ2 as control parameters. As we saw earlier, the parameter ε is the
reproduction rate ratio of the top predator over the predator and the parameter δ2 is the
ratio of the per capita natural death rate of the top predator over its reproduction rate.

3.1. Return maps

Using numerical integration of the system (2.3), we can gain some insights about the
geometry of the trajectories in the long run. After an initial transient, a structure emerges
when the solution (x(t), y(t), z(t)) is visualized as a trajectory in three-dimensional space (see
Figure 1). The projection of the three-dimensional trajectory onto a two-dimensional plane is
exhibited in Figure 2.
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Figure 2: Projection of the three-dimensional trajectory onto the zy-plane for ε = 0.4 and δ2 = 0.65.

0.120.10.080.060.040.020
zn

0

0.02

0.04

0.06

0.08

0.1

0.12

z
n
+

1

Figure 3: The iterated map for ε = 0.4 and δ2 = 0.65.

With the purpose of understanding the main features of the three-dimensional flow,
we can use the Poincaré map technique to reduce the dimensionality of the phase space and
so make the analysis simpler. Now we briefly describe the construction of a Poincaré map.

Consider an n-dimensional system dx/dt = f(x). Let P be an (n − 1)-dimensional
surface, called a Poincaré section. P is required to be transverse to the flow. The Poincaré
map F is a map from P to itself, obtained by following trajectories from one intersection with
P to the next. If xn ∈ P denotes the nth intersection, then the Poincaré map is defined by
xn+1 = F(xn). In our particular case, we have a system with three dynamical variables and we
consider a Poincaré plane of the form y = k(k ∈ R), namely, Γ1 : y = 0.2 (see Figure 2). After
allowing the initials to decay, we record the successive intersections of the trajectory with the
plane, which are specified by two coordinates xn and zn. The logistic-like iterated map of
Figure 3 consists of pairs (zn, zn+1), obtained from the successive second coordinates of the
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Figure 4: Bifurcation diagram for zn as a function of ε, with δ2 = 0.662 and ε ∈ [0.36, 1.0[.
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Figure 5: Bifurcation diagram for zn as a function of δ2, with ε = 0.5 and δ2 ∈ [0.585, 0.686[.

points defined by the Poincaré map. The obtained iterated map dynamically behaves like a
unimodal map (family of continuous maps on the interval with two monotonic subintervals
and one turning point).

In order to see the long term behavior for different values of the parameters at once,
we plot typical bifurcation diagrams. The dynamics bifurcate into stable equilibria with the
increase in the parameters ε and δ2 (see Figures 4 and 5).

At this point, we are in a position to devote our attention to the study of the topological
entropy of the logistic-like return maps using results of symbolic dynamics theory.

3.2. Symbolic dynamics, topological entropy, and chaos

In this paragraph, we describe techniques of symbolic dynamics, in particular some results
concerning to Markov partitions associated to unimodal maps. For more details see [8–10].

A unimodal map f on the interval I = [a, b] is a 2-piecewise monotone map with one
critical point c. Thus I is subdivided into the following sets:

IL = [a, c[, IC = {c}, IR =]c, b], (3.2)
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in such way that the restriction of f to interval IL is strictly increasing and the restriction of
f to interval IR is decreasing (see Figure 3). Each of such maximal intervals on which the
function f is monotone is called a lap of f , and the number � = �(f) of distinct laps is called
the lap number of f . Beginning with the critical point of f , c (relative extremum), we obtain
the orbit

O(c) =
{
xi : xi = fi(c), i ∈ N

}
. (3.3)

With the purpose of studying the topological properties, we associate to the orbit O(c) a
sequence of symbols, itinerary (i(x))j = S = S1S2 . . . Sj . . ., where Sj ∈ A = {L,C,R} and

Sj = L, if fj(x) < c,

Sj = C, if fj(x) = c,

Sj = R, if fj(x) > c.

(3.4)

The turning point c plays an important role. The dynamics of the interval is characterized
by the symbolic sequence associated to the critical point orbit. When O(c) is a k-periodic
orbit, we obtain a sequence of symbols that can be characterized by a block of length k, the
kneading sequence S(k) = S1S2 . . . Sk−1C.

We introduce, in the set of symbols, an order relation L < C < R. The order of the
symbols is extended to the symbolic sequences. Thus, for two of such sequences P and Q in
AN, let i be such that Pi /=Qi and Pj = Qj for j < i. Considering the R-parity of a sequence,
meaning odd or even number of occurrence of a symbol R in the sequence, if the R-parity of
the block P1 . . . Pi−1 = Q1 . . . Qi−1 is even, we say that P < Q, if Pi < Qi. And if the R-parity of
the same block is odd, we say that P < Q, if Pi > Qi. If no such index i exists, then P = Q.

The ordered sequence of elements xi of O(c) determines a partition P(k−1) of the
interval I = [f2(c), f(c)] = [x2, x1] into a finite number of subintervals labeled by
I1, I2, . . . , Ik−1. To this partition, we associate a (k − 1) × (k − 1) transition matrix M = [aij]
with

aij =

{
1 if Ij ⊂ f(Ii),
0 if Ij /⊆ f(Ii).

(3.5)

Now we consider the topological entropy. As we pointed out before, this important
numerical invariant is related to the orbit growth and allows us to quantify the complexity of
the phenomenon. It represents the exponential growth rate for the number of orbit segments
distinguishable with arbitrarily fine but finite precision. In a sense, the topological entropy
describes in a suggestive way the total exponential complexity of the orbit structure with a
single number.

A definition of chaos in the context of one-dimensional dynamical systems states that a
dynamical system is called chaotic if its topological entropy is positive. Thus, the topological
entropy can be computed to express whether a map has chaotic behavior, as we can see in
[11, 12]. In these references, Glasner and Weiss, in a discussion of Devaney’s definition (of
chaos), proposed positive entropy as a strong property for the characterization of complex
dynamical systems, more precisely, as the essential criterium of chaos. Important results were
constructed using this property (see [13, 14]).
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The topological entropy of a unimodal interval map f , denoted by htop(f), is given by

htop(f) = logλmax
(
M(f)

)
= log s(f), (3.6)

where λmax(M(f)) is the spectral radius of the transition matrix M(f) and s(f) is the growth
rate,

s(f) = lim
k→∞

k

√
�
(
fk

)
, (3.7)

of the lap number of fk (kth-iterate of f) (see [10, 15, 16]). In summary, for each value of the
parameter, the computation begins with the symbolic codification of the critical point orbits
which determines a Markov partition of the interval. Then, we compute the transition matrix
induced by the interval map on the Markov partition. Finally, the topological entropy is given
by the logarithm of the highest eigenvalue of this transition matrix.

In order to illustrate the outlined formalism about the computation of the topological
entropy, we discuss the following example.

Example 3.1. Let us consider the map of Figure 3. The orbit of the turning point defines the
period-6 kneading sequence (RLLLLC)∞. Putting the orbital points in order we obtain

x2 < x3 < x4 < x5 < x0 < x1. (3.8)

The corresponding transition matrix is

M(f) =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎦
, (3.9)

which has the characteristic polynomial

p(λ) = det
(
M(f) − λI) = 1 + λ + λ2 + λ3 + λ4 − λ5. (3.10)

The growth number s(f) (the spectral radius of matrix M(f)) is 1.96595 . . . . Therefore, the
value of the topological entropy can be given by

htop(f) = log s(f) = 0.675975 . . . . (3.11)

Several situations of the variation of the topological entropy with each of the
parameters are plotted in Figures 6 and 7. We emphasize that the logistic-like family of
Poincaré return maps associated to the Rosenzweig-MacArthur model for tritrophic chains
exhibit positive topological entropy, which is a signature of its chaotic behavior. Indeed, the
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Figure 6: Variation of the topological entropy for ε ∈ [0.36, 1.0[, with δ2 = 0.662.
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Figure 7: Variation of the topological entropy for δ2 ∈ [0.585, 0.686], with ε = 0.5.

consideration of a Poincaré section of the type y = k led us to identify a large region of the
parameter space, associated to logistic-like maps, where chaos occurs.

It is interesting to notice that with the study of the kneading sequences it is possible to
represent the curves, in the region Ω of the parameter space, corresponding to the periodic
orbits of the turning point C. The diagram of Figure 8 shows how the periods (n ≤ 5)
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Table 1

Kneading sequences Characteristic polynomial Topological entropy
RC 1 − t 0
RLRC −1 + t + t2 − t3 0
RLRRC −1 + t − t2 − t3 + t4 0.414013 . . .
RLC −1 − t + t2 0.481212 . . .
RLLRC 1 − t − t2 − t3 + t4 0.543535 . . .
RLLC 1 + t + t2 − t3 0.609378 . . .
RLLLC −1 − t − t2 − t3 + t4 0.656256 . . .
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Figure 8: Periodic orbits (n ≤ 5) of the turning pointC in the Ω region. From right to left, the corresponding
kneading sequences are as follows:C∞, (RC)∞, (RLRC)∞, (RLRRC)∞, (RLC)∞, (RLLRC)∞, (RLLC)∞, and
(RLLLC)∞. The parameter values in the grey region do not correspond to unimodal maps and are beyond
the scope of our study.

are organized throughout the region Ω of the parameter space considered (whose pairs
of values (δ2, ε) correspond to logistic-like Poincaré return maps). From right to left in
Figure 8, the corresponding kneading orbits are as follows: 1-period—C∞, 2-period—(RC)∞,
4-period—(RLRC)∞, 5-period—(RLRRC)∞, 3-period—(RLC)∞, 5-period—(RLLRC)∞, 4-
period—(RLLC)∞, and 5-period—(RLLLC)∞. The parameter space ordering of the kneading
sequences leads to the identification of different levels for the topological entropy, which
remains constant over each curve. Table 1 represents some kneading sequences and the
corresponding topological entropy.This is an example of how our understanding of the
parameter space can be enhanced by the techniques of symbolic dynamics.

4. Final considerations

In this paper, we have provided new insights into the study of a very well-known model
in the field of theoretical ecology: the Rosenzweig-MacArthur model for tritrophic food
chains. In the available literature, the detailed examination of this remarkable model involves
many different issues, both in the biological and mathematical domains, and its scientific
investigation is still an active research area. As pointed out in the introduction, a plausible
and compelling motive to study chaos in ecology is due to the principle (which may have a
direct biological relevance and significant management implications) that the average top
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predator biomass, in various tritrophic food chain models, is maximum at the onset of
chaos. From the point of view of mathematics, chaos in food chain models is not clearly
understood. Indeed, the first theorem on the existence of chaotic food chain dynamics was
recently obtained in [4]. The characterization and analysis of chaos generating mechanisms
for the Rosenzweig-MacArthur tritrophic food chain model are one of the recent significant
achievements in mathematics applied to ecology (see [4–6, 17]). These studies proved the
existence of different one-dimensional Poincaré return maps generated by the model and left
open a collection of questions pertaining to chaotic attractors in terms of symbolic dynamics
and various measurements of complexity (see [5]). In this context, the work carried out in
the present article addresses a contribution for the comprehensive mathematical study of the
chaotic behavior associated to a specific class of one-dimensional return maps (see [18], for
the analysis of a different class of maps).

In the field of life sciences, where quantitatively predictive theories are rare, the
use of powerful tools for the analysis of dynamic models, such as the symbolic dynamics
theory, stands out to be extremely effective for the computation of an important numerical
invariant related to the exponential orbit growth—the topological entropy. In fact, a rigorous
study of the iterated maps, that incorporate the salient dynamical properties of the system,
became possible analyzing the variation of this measure of complexity with the two control
parameters ε and δ2. Our analysis reveals that when the reproduction rate of the top predator
and the reproduction rate of the predator become closer (which means an increase in ε), the
topological entropy decreases. In a similar way, when the per capita natural death rate of
the top predator becomes closer to its reproduction rate (which means an increase in δ2), the
topological entropy also decreases. Therefore, high values of these control parameters tend
to stabilize the food chain. To each value of these control parameters corresponds a value of
the topological entropy which is a quantifier for the complex orbit structure and an attribute
efficiently used to identify different chaotic states.

The representation of the isentropic curves (corresponding to the periodic orbits of
the turning point c) in the region Ω allowed us to introduce the parameter space ordering of
the dynamics. In fact, this construction gives insights about the behavior of the topological
entropy in all the parameter space considered.

Indeed, the family of maps associated to the model exhibits positive topological
entropy, which demonstrates its chaotic nature. The techniques of symbolic dynamics
allowed us to quantify the orbit complexity and to distinguish different chaotic regimes
(extracting order from chaos) in a significant region of the parameter space.
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